多面体外接球半径常见求法

合集下载

多面体的外接球和内切球(解析版)

多面体的外接球和内切球(解析版)

多面体的外接球和内切球一、结论1、球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

球的内切问题(等体积法)例如:在四棱锥P -ABCD 中,内切球为球O ,求球半径r .方法如下:V P -ABCD =V O -ABCD +V O -PBC +V O -PCD +V O -PAD +V O -PAB即:V P -ABCD =13S ABCD ⋅r +13S PBC ⋅r +13S PCD ⋅r +13S PAD ⋅r +13S PAB ⋅r ,可求出r .球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB =CD ,AD =BC ,AC =BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4.双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型例题1(2023春·湖南湘潭·高二统考期末)棱长为1的正方体的外接球的表面积为()A.3π4B.3πC.12πD.16π【答案】B【详解】解:易知,正方体的体对角线是其外接球的直径,设外接球的半径为R,则2R=12+12+12=3,故R=3 2.所以S=4πR2=4π×322=3π.故选:B.【反思】本例属于正方体外接球问题,其外接球半径公式可直接记忆.2(2023春·湖南长沙·高三长沙一中校考阶段练习)在四面体PABC中,PA⊥AB,PA⊥AC,∠BAC= 120°,AB=AC=AP=2,则该四面体的外接球的表面积为()A.12πB.16πC.18πD.20π【答案】D【详解】因为PA⊥AB,PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.设底面△ABC的外心为G,外接球的球心为O,则OG⊥平面ABC,所以PA⎳OG.设D为PA的中点,因为OP=OA,所以DO⊥PA.因为PA⊥平面ABC,AG⊂平面ABC,所以PA⊥AG,所以OD⎳AG.因此四边形ODAG为平行四边形,所以OG=AD=12PA=1.因为∠BAC=120°,AB=AC=2,所以BC=AB2+AC2-2AB⋅AC cos∠BAC=4+4-2×2×2×-1 2=23,由正弦定理,得2AG=2332=4⇒AG=2.所以该外接球的半径R满足R2=OG2+AG2=5,故该外接球的表面积为S=4πR2=20π.故选:D.【反思】本例属于单面定球心问题①用正弦定理求出ΔABC外心G;②过G做平面ABC的垂线,则外接球球心O在此垂线上;③通过计算算出半径.3(2023秋·湖南娄底·高三校联考期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【详解】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA 2+AB 2+AD 22=32+42+522=522,则外接球的表面积为:S =4πR 2=4π⋅504=50π.故选:B【反思】本例属于墙角型模型,通过补形,将原图形补成长方体模型,借助长方体模型求外接球半径.4(2023·全国·高三专题练习)已知菱形ABCD 的各边长为2,∠D =60°.如图所示,将ΔACD 沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S -ABC ,此时SB =3.E 是线段SA 的中点,点F 在三棱锥S -ABC 的外接球上运动,且始终保持EF ⊥AC ,则点F 的轨迹的周长为()A.233π B.433π C.533π D.2213π【答案】C【详解】取AC 中点M ,则AC ⊥BM ,AC ⊥SM ,BM ∩SM =M ,∴AC ⊥平面SMB ,SM =MB =3,又SB =3,∴∠SBM =∠MSB =30°,作EH ⊥AC 于H ,设点F 轨迹所在平面为α,则平面α经过点H 且AC ⊥α,设三棱锥S -ABC 外接球的球心为O ,△SAC ,△BAC 的中心分别为O 1,O 2,易知OO 1⊥平面SAC ,OO 2⊥平面BAC ,且O ,O 1,O 2,M 四点共面,由题可得∠OMO 1=12∠O 1MO 2=60°,O 1M =13SM =33,解Rt △OO 1M ,得OO 1=3O 1M =1,又O 1S =23SM =233,则三棱锥S -ABC 外接球半径r =OO 21+O 1S 2=73,易知O 到平面α的距离d =MH =12,故平面α截外接球所得截面圆的半径为r 1=r 2-d 2=73-14=536,∴截面圆的周长为l =2πr 1=533π,即点F 轨迹的周长为533π.故选:C 【反思】此题典型的双面定球心。

外接球公式总结

外接球公式总结

外接球公式总结
外接球公式是几何中的重要问题,涉及到多面体、旋转体等空间几何图形的外接球问题。

一般情况下,外接球公式可以用来计算几何体的表面积或体积。

以下是一些关于外接球公式的总结:
1. 多面体外接球公式:对于正多面体,各顶点同在一球面上,这个球叫做正多面体的外接球。

正四棱锥的外接球公式为:DU2tR,其中 D 是底面直径,U 是底面边长,t 是棱锥的高,R 是外接球半径。

2. 旋转体外接球公式:旋转体的外接球公式比较复杂,需要根据旋转轴的不同进行分类。

一般情况下,可分为三类:
(1) 旋转轴与底面垂直时,外接球公式为:S=frac{4}{3}R^2,其中 S 是外接球表面积,R 是外接球半径。

(2) 旋转轴与底面平行时,外接球公式为:S=pi R^2,其中 S 是外接球表面积,R 是外接球半径。

(3) 旋转轴不与底面垂直或平行时,需要分类讨论,一般情况下可以采用轴对称性来求解。

3. 球体外接球公式:球体的外接球公式为:S=4pi R^2,其中 S 是外接球表面积,R 是外接球半径。

在实际应用中,外接球公式常常用于计算几何体的面积或体积,也可以用于求解几何体的表面积或体积最小值等问题。

例谈多面体外接球半径的常见求法

例谈多面体外接球半径的常见求法

例谈多面体外接球半径的常见求法湖北省荆州市沙市第五中学张胜言求棱锥、棱柱的外接球半径、表面积、体积的问题在近几年各地的高考模拟题和全国高考试题中经常出现,这是高考的重点,也是学生学习的难点.困难表现在两个方面:一是找不到外接球球心的位置,二是如何采用适当的方法求外接球的半径.下面例谈几类多面体外接球半径的常见求法.方法一:首先构造简单的几何体,如长方体、正方体、三棱柱等,易作出这些简单几何体的外接球,从而求解.定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.一、长方体、正方体外接球的半径1.长方体:因为长方体外接球半径是体对角线长的一半,设长方体长、宽、高分别为c b a ,,,外接球半径为R ,则2222c b a R ++=(如图1).2.正方体:设正方体棱长为a ,外接球半径为R ,则a R 23=(如图2).二、三棱柱外接球半径1.底面是直角三角形的直三棱柱:把三棱柱补成长方体,易求(如图3).设底面三角形两直角边长分别为b a ,,直三棱柱高为c ,则外接球半径为R ,则2222c b a R ++=.2.正三棱柱:(如图4),正三棱柱球心O 在两底面中心21O O ,的中点处,设底面边长为a ,高为h ,外接球半径为R ,构造11OO A Rt ∆,则,,R OA hOO ==112a a D A O A 33233232111=⨯==,22233⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=h a R 三、三棱锥外接球半径c bO a 图1O a图2c b O aACB A 1C 1B 1图3AC BO B 1DC 1A 1O 1O 2a h R 图4AB DC图51.三条棱互相垂直的三棱锥:把它补成以这三条互相垂直的棱为长、宽、高的长方体,易求.(如图5)2.三组相对棱分别相等的三棱锥:(如图6),把它补成以这三组棱分别为面对角线的长方体,设c BD AC b AD BC a CD AB ======,,,设长方体长、宽、高分别为z y x ,,,则⎪⎩⎪⎨⎧=+=+=+222222222c x z b z y a y x ,2222222c b a z y x ++=++,()422222222c b a z y x R ++=++=.3.正四面体:设棱长为a ,外接球半径为R ,由2易知a R 46=.例题1:如图7,正方形ABCD 的边长为4,点E ,F 分别是BC ,CD 的中点,沿AE ,EF ,FA 折成一个三棱锥AEF B -(使点D C B ,,重合于点B ),则三棱锥AEF B -的外接球半径为.【解】在正方形ABCD 中,︒=∠=∠=∠90EBA FCE ADF ,所以折成三棱锥后,可将其转化为以)(,,DF BF BE AB 为棱的长方体,62224222=++=∴R 练习1:已知四面体ABC P -的四个顶点都在球O 的球面上,若⊥PB 平面ABC ,AC AB ⊥,且1=AC ,2==AB PB ,则球O 的体积为.例题2:已知正三棱柱111C B A ABC -的体积为2,32==AB V ,则该三棱柱外接球的表面积为.【解】如图8,设三棱柱的高为h ,3243S 2111=⨯=∆C B A ,2,332,=∴=∴=h h Sh V 11=∴OO ,3322233232111=⨯⨯==D A O A ,3713322221211=+⎪⎪⎭⎫ ⎝⎛=+=∴OO O A R ,ππ32842==∴R S 练习2:已知三棱柱111C B A ABC -侧棱垂直于底面,各顶点都在同一球面上,若该棱柱体积Cc b O a D A B x y z图6AB FE图7(2)ACB 1B O DC 1A 1O 1O 2R 图8︒=∠===602AB ,1,62BAC AC V ,,则该球表面积为.方法二:由定义法求多面体外接球半径.这类问题关键是找出球心O 位置:一般地,先在一个面上找到一点1O 到其余各点距离相等,球心O 就在经过点1O 并垂直于该平面的直线l 上,构造出两个直角三角形,利用勾股定理解方程组求出R .例题3:已知三棱锥ABC S -所有顶点都在球O 的球面上,且⊥SC 平面ABC ,若1===AC AB SC ,︒=∠120BAC ,则球O 的表面积为.【解】如图9,作菱形ABCD ,则︒=∠=∠6021BAC DAC 易得ACD∆为正三角形D ∴为ABC ∆外接圆的圆心,⊥∴OD 平面ABC ,又⊥SC 平面ABC ,SC OD ∥∴,过点O 作SC OE ⊥,垂足为E ,R OS OC ==,设x CE OD ==,则x SE -=1,在OSE Rt OCD Rt ∆∆,中有:()⎩⎨⎧=-+=+222222111R x R x ,解得⎪⎪⎩⎪⎪⎨⎧==2521R x 所以球的表面积为πππ5254422=⎪⎪⎭⎫ ⎝⎛⨯==R S .练习3:若三棱锥ABC P -的高和底面边长都等于6,则其外接球的表面积为()A.64π B.32π C.16π D.8π方法三:对于一些特殊的图形,利用其特有的性质找到外接球球心,直接求解.例题4:在三棱锥ABC S -中2==BC AB ,2==SA SC ,6=SB ,若C B A S ,,,在同一球面上,则该球的表面积是()A.68 B.π6C π24 D.π6【解】如图10,2==BC AB ,2==SA SC ,6=SB ,在SAB ∆中,由于222SB AB SA =+,故︒=∠90SAB ,同理︒=∠90SCB ,故SB 的中点是三棱锥ABC S -外接球的球心O ,从而半径为26=R ,所以该球的表面积为ππ62642=⎪⎪⎭⎫ ⎝⎛=S ,选D.练习4:已知三棱锥ABC -S 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面⊥SCA 平面SCB ,BC SB AC SA ==,,三棱锥ABC -S 的体积为9,则球O 的表面积为.图9SCRRE BAO D图10AOS CB A FE D CB 图7(1)(附练习题答案:1、29π=V ;2、π36=S ;3、选A ;4、π36)。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.练习1 (2003,四个顶点在同一球面上,则此球的表面积为( )3π B. 4πC. D. 6π2(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A. 27B. 2C. 8D. 243 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .4(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截CDAB SO 1图3面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.外接球内切球问题1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

外接球半径常见的求法

外接球半径常见的求法

多面体外接球半径常见求法知识回顾:左义1:若一个多而体的各顶点都在一个球的球而上,则称这个多面体是这个球的内接多而体,这个 球是这个多而体的外接球。

宦义2:若一个多而体的各面都与一个球的球而相切,则称这个多而体是这个球的外切多而体,这个 球是这个多而体的内切球。

球心到截而的距离〃与球半径尺及截而的半径『有以下关系: __________________ .球而被经过球心的平而截得的圆叫 _________ •被不经过球心的平而截得的圆叫 __________________ 球的表面积表面积S= __________ :球的体积9= __________ .球与棱柱的组合体问题1. 正方体的内切球:球与正方体的每个而都相切,切点为每个而的中心,显然球心为正方体的中心。

设正方体的棱长 为球半径为尺。

如图3,截而图为正方形EFGH 的内切圆,得/? = -:22. 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截而图,圆0为正方形EFGH 的外接圆,易得R = —a 023. 正方体的外接球:正方体的八个顶点都在球而上,如图5,以对角面作截而图得,圆0为一、公式法例1 一个六棱柱的底而是正六边形,苴侧棱垂宜于底而,已知该六棱柱的顶点都在同一个球面上,9且该六棱柱的体积为-,底而周长为3,则这个球的体积为8 -----------------------------------------------------------矩形AA.QC 的外接圆,易得R = A }O = 4 ——a2图3图4C1C小结本题是运用公式R2=r2求球的半径的,该公式是求球的半径的常用公式.二、多面体几何性质法例2已知各顶点都在同一个球而上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16兀B. 20”C. 24兀D. 32龙小结 本題是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.三、补形法 例3若三棱锥的三个侧而两两垂直,且侧棱长均为则其外接球的表面积是小结 一般地,若一个三棱维的三条侧棱两两垂直,且其长度分别为“、b 、c,则就可以将这个三棱 维补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径•设其外接球的半径为R ,则有2R = >ja 2 +b 2 +c 2 .变式仁三棱锥O — 4BC 中,OAQBQC 两两垂直,且OA = OB = 2OC = 2a,则三棱锥O-ABC 外接球的表而积为()四、寻求轴截面圆半径法例4正四棱锥S - ABCD 的底面边长和各侧棱长都为,S 、A. B 、C 、£>都在同一球面上,则此球的体积为 ___________而把立体几何问题转化为平面几何问题来研究•这种等价转化的数学思 法值得我们学习.变式仁求棱长为a 的正四面体P-ABC 的外接球的表面积变式I:底而边长为后勺正三棱柱外接球的体积为竽,则该三棱柱的体积为五、确定球心位置法C. \2TTU 2D. 24曲'想方1:三棱锥P-ABC中,底IfilAABC是边长为2的正三角形,P4丄底而ABC,且E4 = 2,贝眦三棱锥外接球的半径为()A. 41B・y[5C・ 2 D・^―3六.构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心泄在上下底而中心连线的中点处,由球心、底而中心及底而一顶点构成的直角三角形便可得球半径。

数学复习:多面体外接球半径的求法

数学复习:多面体外接球半径的求法

数学复习:多面体外接球半径的求法近年来,求多面体的外接球半径成为全国各地高考的热点问题,是考察学生空间想象能力、画图能力和分析问题能力的一类综合题型,难度中等偏上。

因此,这类问题也是学生失分的重灾区,主要存在以下难点:一不能选择恰当的角度认识多面体;二不能准确分析几何体的线面关系找到球心。

这两个困难让学生对此类问题无从下手,渐渐地对此类问题失去信心。

本文从“画法”到“算法”,简单归纳出几类多面体的外接球半径的典型求法,试图突破此类问题在高三复习中的教学难点。

1通过补形直接求半径若多面体的每个顶点都落在长方体(或直三棱柱)的顶点上,那么该多面体的外接球也是该长方体(或直三棱柱)的外接球。

直三棱柱的外接球球心是上下底面外心连线的中点。

已知直三棱柱111C B A ABC -,设其上下底面的外接圆半径为r,三棱柱的高为h,则其外接球半径222r h R +⎪⎭⎫ ⎝⎛=。

长方体的外接球球心是体对角线的中点。

设长方体的长宽高分别为c b a ,,,则其外接球半径2222c b a R ++=。

1.1墙角锥若在一个三棱锥中,共顶点的三条棱两两垂直,那么我们可以把它补形成一个长方体。

例1.三棱锥P-ABC 的三条侧棱两两垂直,三个侧面的面积分别是22、32、62,则该三棱锥的外接球的体积是A.23B.8236π6π分析:如图(1),由题可以把三棱锥看成是以P 为墙角的墙角锥,易得,,3,21===c b a π6262222=∴=++=∴V c b a R 1.2三对对棱分别相等的四面体若一个三棱锥的三对对棱分别相等,那么我们可以把这个三棱锥看成是由一个长方体的六个面对角线构成的。

例2,在三棱锥A BCD -中,2AB CD ==5AD BC AC BD ====,则三棱锥A BCD -外接球的半径为________。

分析:如图(2),易得2,1,1===c b a 262222=++=∴c b a R 1.3四个面都是直角三角形的三棱锥利用长方体的线面关系,可将四个面都是直角三角形的三棱锥放在长方体内。

高三数学专题复习 多面体外接球半径常见的5种求法

高三数学专题复习  多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、公式法 例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解:设正六棱柱的底面边长为x ,高为h ,则有263,1,296,8x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径R= .4π3V ∴=球. 小结:本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 二、多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π 解:设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R =∴= ∴这个球的表面积是24π24πR =.选C .小结: 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.三、补形法例3 若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 . 解:据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱于是正方体的外接球就是三棱锥的外接球. 设其外接球的半径为R ,则有()222229R =++=.∴294R =.故其外接球的表面积24π9πS R ==. 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R .四、寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和S ,A ,B ,C ,D 都在同一球面上,则此球的体积为 . 解:设正四棱锥的底面中心为O 1,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得OO 1⊥平面ABCD .又SO 1⊥平面ABCD ,∴球心O 必在SO 1所在的直线上.∴△ASC 的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径. 在△ASC中,由2SA SC AC ===,得222SA SC AC +=.∴△ASC 是以AC 为斜边的Rt △.∴12AC=是外接圆的半径,也是外接球的半径.故4π3V =球. 小结:根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.C D A B S O 1图3五、确定球心位置法例5 在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B - AC -D ,则四面体ABCD 的外接球的体积为( )CA.12512πB.1259π C.125π6 D.125π3解:设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA =OB =OC =OD .∴点O 到四面体的四个顶点A 、B 、C 、D 的距离相等,即点O 为四面体的外接球的球心,如图4所示.∴外接球的半径52R OA ==.故34125ππ36V R ==球.选C . 练习:1.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )C A.33 B.3C.3D.3 2. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A A. 3π B.4π C. 33π D. 6π 3. 在等腰梯形ABCD 中,AB =2DC =2, ∠DAB =60°,E 为AB 的中点,将△ADE 与 △BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则三棱锥P -DCE 的外接球的体积为( ) C A.43π B.6π2 C. 6π D. 6π244.已知三棱锥A -BCD 内接于球O ,AB =AD =AC =BD =3,BCD ∠=60°,则球O 的表面积为( )DA.3π2B.2πC.3πD.9π25.已知正三棱锥P -ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )DA.4πB.12πC.16π3 D.64π36.已知三棱柱ABC -A B C ''',侧棱AA '⊥底面ABC ,AA '=4,BC 360A ∠=o ,则该三棱柱外接球的表面积为( )CA.18πB.19πC.20πD.21π 7.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )317B.210C.132D.310【答案】C【解析】由球心作面ABC 的垂线,则垂足为BC 中点M .计算AM =52,由垂径定理,OM =6,所以半径R 22513()622+=.8.(2014·全国大纲)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( )A.814π B.16π C.9π D.274π【答案】A9.若三棱锥P -ABC 的最长的棱PA =2,且各面均为直角三角形,则此三棱锥的外接球的体积是 .4π310.在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S -ABC 外接球的表C AO D B图4面积是.【答案】36π【解析】一定要用上隐含条件正三棱锥对棱垂直,又MN∥BS,可得BS⊥SA,BS⊥SC.又AS⊥BC,AS⊥SB得AS⊥SC即SA,SB,SC两两垂直.又因正棱锥SA=SB=SC,所以此三棱锥外接球与补成正方体的外接球相同.所以2R=323g=6,所以R=3.所以正三棱锥S-ABC外接球的表面积是24πR=36π.11. (2015·唐山二模)在三棱锥P-ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=23,则该三棱锥的外接球的表面积为.【答案】20π12.在菱形ABCD中,A=60°,AB=3,将△ABD沿BD折起到△PBD的位置.若平面PBD⊥平面CBD,则三棱锥P-BCD的外接球体积为.【答案】13.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥外接球的半径为( )A.3B.5C.2D.2【答案】B14. 四棱锥P-ABCD的底面ABCD为矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD外接球的体积为( )A.32π3B.205π3C.86πD.36【答案】B15. 已知AB是球O的直径,C,D为球面上的两动点,AB⊥CD,若四面体ABCD体积的最大值为9,则球O的表面积为.【答案】36π16. 三棱锥A-BCD的两条棱AB=CD=6,其余各棱长均为5,求三棱锥的内切球半径.【思路分析】法一:内切球球心O到各面的距离相等,如图,可以推断出球心在AB和CD的中点的连线的中点,求出OH即可.法二:先求四面体的体积,再求表面积,利用体积等于表面积和高乘积的13,求出内切球半径.【解析】法一:易知内切球球心O到各面的距离相等.设E、F为CD、AB的中点,则O在EF上且O为EF的中点.在△ABE中,AB=6,AE=BE=4,OH=378.法二:设球心O到各面的距离为R.4×13S△BCD×R=V A-BCD,∵S△BCD=12×6×4=12,V A-BCD=2V C-ABE=67.∴4×13×12R=67.∴R=378.【点评】正多面体与球的切接问题常借助体积求解;也可以由几何图形特征分析出球心的位置,然后解答,考查形式空间想PB CADEF O象能力,逻辑思维能力,是中档题. 【拓展提升】三棱锥A -BCD 的两条棱AB =CD =6,其余各棱长均为5,求三棱锥的外接球的表面积. 17π【解析】补成长方体,如下图,AC D A 1 D 1C 1B 16 5 6 5。

正四面体的外接球半径的求法

正四面体的外接球半径的求法

正四面体的外接球半径的求法
正四面体是一种比较灵活的多面体,而球又是高中教材中唯一保
留下来的旋转体,此两种几何的组合无疑有着特殊的意义。

现把求四
面体外接球的半径的几种方法总结如下,本人认为很有代表意义,希
望它对高三备考的师生能有启发作用。

如右图:已知正四面体A BCD -,H 为底面的中心,O 为外接球的球
心,设棱长为a,外接球半径为R,内切球半径为r,试求R .
方法一:易知R+r=AH=63a ,由等积法得: A BCD O ABC O BCD O CDA O DAB V V V V V -----=+++
所以:
11433BCD BCD AH S r S ∆∆⋅=⋅⋅ 故14r AH =,34
R AH = 所以 64
R a =.
方法二:如图AHM BNM ∆≅∆所
HM ON AM OA =,即13r R
=,又由R6可得 64R a =.
方法三:
如图设延长AH交球面上一点K,则AK=2R,在直角三角形AB K中由
射影定理得2AB AH AK =⋅ 即2623a a R =⋅ 故得64
R a =. 方法四:如图正四面体可补成一个边长为
22a 的正方体,显然正方体的外接球即为正四面体的外接球,而23()22a R =故可得64
R a =.
小结:此四种方法立体交叉,思想性、艺术性各有千秋,对培养学生的
空间想象能力以及综合解题能很有帮助。

多面体外接球问题方法总结

多面体外接球问题方法总结

多面体外接球问题方法总结
求多面体的外接球的方法有两种:
1. 利用多面体的顶点坐标求解:
a. 首先求解多面体的质心坐标。

可以通过计算多面体的顶点坐标的平均值得到质心坐标。

b. 然后,求解多面体顶点到质心的距离,取最大距离作为外接球的半径。

c. 外接球的中心坐标为质心坐标,半径为最大距离。

2. 利用多面体的边长/面积求解:
a. 首先,根据多面体的类型,求解多面体的特定的边长、面积或者角度。

b. 利用上述的边长、面积或者角度的关系,可以求解外接球的半径。

c. 外接球的中心坐标可以通过找到多面体的对称中心或者中心对称点来获取。

需要注意的是,方法一比方法二更为常用且通用,但对于某些特殊的多面体,可能需要使用方法二来求解。

同时,在实际应用中,还可以借助计算机软件来进行多面体外接球的求解,提高计算的精度和效率。

内接球和外接球公式

内接球和外接球公式

内接球和外接球公式内接球和外接球是几何学中的两个重要概念,它们分别是指一个多面体内切于多面体的最大球和一个多面体外接于多面体的最小球。

这两个球的半径和体积可以通过公式计算得出。

内接球公式对于一个正多面体,它的内接球半径r可以通过以下公式计算得出:r = a/2 * √(n/(n+2))其中a为正多面体的边长,n为正多面体的面数。

这个公式可以用于计算正四面体、正八面体、正十二面体等多面体的内接球半径。

对于一个正六面体,它的内接球半径r可以通过以下公式计算得出:r = a/2其中a为正六面体的边长。

这个公式可以用于计算正六面体的内接球半径。

对于一个球体,它的内接球半径r等于球体半径的一半,即:r = R/2其中R为球体半径。

这个公式可以用于计算球体的内接球半径。

外接球公式对于一个正多面体,它的外接球半径R可以通过以下公式计算得出:R = a/2 * √(n/(n-2))其中a为正多面体的边长,n为正多面体的面数。

这个公式可以用于计算正八面体、正十二面体等多面体的外接球半径。

对于一个正四面体,它的外接球半径R可以通过以下公式计算得出:R = a/2 * √2其中a为正四面体的边长。

这个公式可以用于计算正四面体的外接球半径。

对于一个球体,它的外接球半径R等于球体半径,即:R = r其中r为球体的内接球半径。

这个公式可以用于计算球体的外接球半径。

总结内接球和外接球是几何学中的两个重要概念,它们分别是指一个多面体内切于多面体的最大球和一个多面体外接于多面体的最小球。

这两个球的半径和体积可以通过公式计算得出。

对于不同的多面体,内接球和外接球的公式也不同。

掌握这些公式可以帮助我们更好地理解多面体的性质和特点。

多面体外接球万能公式

多面体外接球万能公式

多面体外接球万能公式
外接球意指一个空间几何图形的外接球,对于旋转体和多面体,外接球有不同的定义,广义理解为球将几何体包围,且几何体的顶点和弧面在此球上。

正多面体各顶点同在一球面上,这个球叫做正多面体的外接球
外接球万能公式=4π/3*(d/2)3,长方体一定有外接球,外接球的球心即其体对角线的交点,半径为体对角线的一半。

正方体既有内切球,也有外接球,球心都是体对角线的交点,内切球的半径为棱长的一半,外接球的半径为体对角线的一半。

正三棱锥外接球心在顶点与底面重心的连线的距底面1/4处。

长方体外接球的直径=长方体的体对角线长。

正方体外接球的直径=正方体的体对角线长。

外接球半径求法

外接球半径求法

外接球半径求法
外接球半径是指一个几何体的外接球的半径,它可以通过该几何体的某些特征来求解。

以下是几种常见的求解方法:
1. 对于正四面体、正六面体、正八面体等正多面体,其外接球半径可以直接通过公式计算得出。

例如,对于正四面体,其外接球半径R等于边长a乘以根号2除以4,即R=a√2/4。

2. 对于任意三角形ABC,其外接圆的半径R可以通过三角形的三边长度a、b、c来计算。

具体而言,可以使用海伦公式计算三角形的面积S,然后通过公式R=abc/4S求解外接圆半径R。

其中a、b、c分别为三角形的三边长度。

3. 对于任意四面体ABCD,其外接球半径可以通过四个顶点之间的距离来计算。

具体而言,假设四个顶点分别为A、B、C和D,则可以先计算出任意两个顶点之间的距离(如AB、AC等),然后使用这些距离来计算四面体各个侧面上三角形的面积,并使用这些面积来计算四面体总表面积S。

最后使用公式R=abc/4S求解出外接球半径R。

以上是几种常见的求解外接球半径的方法,不同的几何体可能需要使
用不同的方法来求解。

在实际应用中,可以根据具体情况选择合适的方法来计算外接球半径。

立体几何高考专题--外接球的几种常见求法

立体几何高考专题--外接球的几种常见求法

高三微专题:外接球一、由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.简单多面体外接球问题是立体几何中的重点,难点,此类问题实质是①确定球心的位置 ②在Rt △用勾股定理求解外接球半径(其中底面外接圆半径r 可根据正弦定理求得).二、球体公式1.球表面积S=4π2R 2.球体积公式V=334Rπ三、球体几个结论:(1)长方体,正方体外接球直径=体对角线长 (2)侧棱相等,顶点在底面投影为底面外接圆圆心 (3)直径所对的球周角为90°(大圆的圆周角) (4)正三棱锥对棱互相垂直四、外接球几个常见模型 1.长方体(正方体)模型O例1(2017年新课标Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为()答案:14练习1(2016新课标Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) 答案:12π2.正棱锥(圆锥)模型(侧棱相等,底面为正多边形)球心位置:位于顶点与底面外心连线线段(或延长线)上半径公式:222)(r R h R +-=(R 为外接球半径,r 为底面外接圆半径,h 为棱锥的高,r 可根据正弦定理r Aa2sin = (一边一对角)例2.已知各顶点都在同一个球面上的正四棱锥高为,体积为,则这个球的表面积是____. 【解析】正四棱锥的高为,体积为,易知底面面积为,底面边长为.正四棱锥的外接球的球心在它的高上,记为,,,,在中,,由勾股定理得.所以,球的表面积.练习2.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .解析:ABC ∆外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V 3. 侧棱与底面垂直锥体(直棱柱,圆柱)(1) 侧棱与底面垂直:球心位置:底面外心正上方,侧棱中垂面交汇处(高的一半处)半径公式:222)2(h r R +=,(R 为外接球半径,r 为底面外接圆半径,h 为棱锥的高,r 可根据正弦定理r Aa2sin = (一边一对角)(2) 直棱柱(圆柱)球心位置:上下底面外心连线中点处公式公式:222)2(h r R +=,(R 为外接球半径,r 为底面外接圆半径,h 为棱锥的高,r 可根据正弦定理r Aa2sin = (一边一对角)例3.在四面体中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D 解析:在ABC ∆中,7120cos 2222=⋅⋅-+=BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r , ∴310,)2(2222=+=R SA r R ,340π=S ,选D 练习3(1)直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见得5种求法如果一个多面体得各个顶点都在同一个球面上,那么称这个多面体就是球得内接多面体,这个球称为多面体得外接球、有关多面体外接球得问题,就是立体几何得一个重点,也就是高考考查得一个热点。

研究多面体得外接球问题,既要运用多面体得知识,又要运用球得知识,并且还要特别注意多面体得有关几何元素与球得半径之间得关系,而多面体外接球半径得求法在解题中往往会起到至关重要得作用.知识回顾:1、球心到截面得距离d与球半径R及截面得半径r有以下关系2、球面被经过球心得平面截得得圆叫.被不经过球心得平面截得得圆叫3、球得表面积表面积S=;球得体积V=4、球心一定在过多边形(顶点均在球面上)外接圆圆心且垂直此多边形所在平面得垂线上方法一:公式法例1一个六棱柱得底面就是正六边形,其侧棱垂直于底面,已知该六棱柱得顶点都在同一个球面上,且该六棱柱得体积为,底面周长为3,则这个球得体积为。

解设正六棱柱得底面边长为,高为,则有∴正六棱柱得底面圆得半径,球心到底面得距离.∴外接球得半径。

、小结:本题就是运用公式求球得半径得,该公式就是求球得半径得常用公式.(R—球得半径;d—球心到球截面圆得距离,注意球截面圆通常就是顶点在球上多边形得外接圆;r-顶点在球上多边形得外接圆得半径)方法二:多面体几何性质法例2已知各顶点都在同一个球面上得正四棱柱得高为4,体积为16,则这个球得表面积就是( )A. B. C。

D。

解:设正四棱柱得底面边长为,外接球得半径为,则有,解得、∴。

∴这个球得表面积就是。

选C。

小结:本题就是运用“正四棱柱体(包括正方体、长方体)对角线得长等于其外接球得直径"这一性质来求解得、方法三:补形法例3:若三棱锥得三个侧面两两垂直,且侧棱长均为,则其外接球得表面积就是、解:据题意可知,该三棱锥得三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为得正方体,于就是正方体得外接球就就是三棱锥得外接球、设其外接球得半径为,则有。

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。

多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。

解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。

多面体外接球半径的求法在解题中往往起到至关重要的作用。

一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。

解析:要求球的表面积,只需知道球的半径。

由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。

故表面积为27π。

例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。

由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。

2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为√14,故球的表面积为14π。

例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。

由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。

3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。

由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。

克列尔公式求外接球半径

克列尔公式求外接球半径

克列尔公式求外接球半径克列尔公式求外接球半径克列尔公式源于18世纪法国数学家克列尔的研究,该公式用于计算一个正四面体外接球的半径。

由于正四面体是一种重要的多面体,而外接球半径又是其重要参数之一,因此克列尔公式被广泛地应用于物理、化学、材料科学等领域。

下面将详细介绍克列尔公式的原理、推导和应用。

一、克列尔公式的原理正四面体是一种多面体,具有4个面、6条棱和4个顶点。

如果在正四面体的每个面上取一个点,那么这4个点的凸包就是该正四面体。

同时,如果在正四面体外部构造一个球,该球可以切到正四面体的每个面上且仅切到各个面的一个点上,那么这个球就是该正四面体的外接球。

在任意一个正四面体中,外接球的半径都可以由克列尔公式计算得到。

二、克列尔公式的推导设正四面体ABCD中,A点到外接球的球心O的距离为R,边长为a,则有:AB = AC = AD = aBC = BD = a√2CD = a√3设O为球心,OA = OB = OC = OD = R,则有:∠AOD = 3π/2,∠BOC = π/2,∠AOC = ∠BOD = π/3,则△AOD、△BOC、△AOC、△BOD都是等边三角形。

设M为OA的中点,则有:OM = OA/2 = R/2AD = a√3/3 = 2OM,即 AD/OM = 2∠AOD = 3π/2,∠ADO = π/6△AMO、△ADO相似,则有:AD/OA = OM/AMAD/R = R/2OM2R³ = a³ + 4OM³R³ = a³/(2√3)由此可得:R = a/√6三、克列尔公式的应用克列尔公式的应用非常广泛,特别是在物理、化学和材料科学等领域。

例如,利用克列尔公式可以计算出各种晶体的晶格常数、原子半径和空隙率等参数,进而进一步研究晶体结构和物理性质。

此外,该公式还可以用于诸如密排球堆、分子包装和天然晶体形态等问题的计算。

综上所述,克列尔公式是一种极其重要的数学工具,它不仅有着理论上的重要性,还具有广泛的实际应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多面体外接球半径常见求法
知识回顾:
左义1:若一个多而体的各顶点都在一个球的球而上,则称这个多面体是这个球的内接多而体,这个 球是这个多而体的外接球。

宦义2:若一个多而体的各面都与一个球的球而相切,则称这个多而体是这个球的外切多而体,这个 球是这个多而体的内切球。

球心到截而的距离〃与球半径尺及截而的半径『有以下关系: __________________ .
球而被经过球心的平而截得的圆叫 _________ •被不经过球心的平而截得的圆叫 ___________________ 球的表面积表面积S= __________ :球的体积9= _________ .
球与棱柱的组合体问题
1. 正方体的内切球:
球与正方体的每个而都相切,切点为每个而的中心,显然球心为正方体的中心。

设正方体的棱长 为球半径为尺。

如图3,截而图为正方形EFGH 的内切圆,得/? = -:
2
2. 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截而图,圆0 为正方形EFGH 的外接圆,易得R = —a 0
2
3. 正方体的外接球:正方体的八个顶点都在球而上,如图5,以对角面作截而图得,圆0为 一、公式 法 例1 一个六棱柱的底而是正六边形,苴侧棱垂宜于底而,已知该六棱柱的顶点都在同一个球面上,
9
且该六棱柱的体积为-,底而周长为3,则这个球的体积为
矩形AA.QC 的外接圆, 易得R = A }O = 4 ——a 2

C1
C
8 ------------------------------------
小结本题是运用公式R2=r2+ d2求球的半径的r该公式是求球的半径的常用公式.
二、多面体几何性质法
例2已知各顶点都在同一个球而上的正四棱柱的高为4,体积为16,则这个球的表面积是
A. 16兀
B. 20”
C. 24兀
D. 32龙
小结本题是运用〃正四棱柱的体对角线的长等于具外接球的直径"这一性质来求解的.
三、补形法
例3若三棱锥的三个侧而两两垂直,且侧棱长均为J5,则苴外接球的表而枳是.
小结一般地,若一个三棱锥的三条侧棱两两垂直,且具长度分别为0、b、c .则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径•设其外接球的半径为R,则有2R = yla2 +b2 +c2 .
变式1:三棱锥O-人“'中,OA.OB nc两两垂直,= 则三棱锥O-A D C
外接球的表而积为()
A. 6斤「2
B. 9方屮
C. 12示/
D. 24/7-2
四、寻求轴截面圆半径法
例4正四棱锥S - ABCD的底而边长和各侧棱长都为V2 ,
S、4、B、C、D都在同一球而上,则此球的体积为___________ .
想方而把立体几何问题转化为平面几何问题来硏究•这种等价转化的数学思
:去值得我们学习.
变式1:求棱长为a 的正四而体P-ABC 的外接球的表面积
变式I:底而边长为4的正三棱柱外接球的体积为飞’则该三棱柱的体积为 五、确定球心位置法 1:三棱锥P-A^中,底面⑷厂是边长为2的正三角形,P/.丄底而且P4・2,则此 三棱锥外接球的半径为( )
C. 2
六. 构造直三角形,巧解正棱柱与球的组合问题
正棱柱的外接球,其球心泄在上下底而中心连线的中点处,由球心、底而中心及底而一顶点构成 的直角三角形便可得球半径。

例4・已知三棱柱ABC-A^C,的六个顶点在球Q 上,又知球Q 与此正三棱柱的5个而都相切, 求球Q 与球的体积之比与表而积之比。

分析:先画岀过球心的截而图,再来探求半径之间的关系。

练习
1、球面上有三点A 、B 、C 组成这个球的一个截而的内接三角形三个顶点,其中AB=18, BC=24. AC = 30.球心到这个截而的距离为球半径的一半,求球的表面积.
2、•在球而上有四个点P 、A 、B 、C.如果PB 、PC 两两互相垂直,且PB=PC = a,
那么这个球的表面积是— 3: 一棱长为2。

的框架型正方体,内放一能充气吹胀的气球,求当球与正方体棱适好接触但又不 至于变形时的球的体积。

(答案为(屈卜
4、(2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表 3
B
Bi
面积为 ______
5、(2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三
条棱长分别为1,2,3,则此球的表面积为_____ •
6、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为()•
A. 16龙B・20兀 C. 24”D・32兀
7、(2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为靠,则其外接球的表面积是 ____ ・
8、(2003年全国卷)一个四面体的所有棱长都为血,四个顶点在同一球面上,则此球的表面积为()
A. 3龙
B. 4/r
C. 3冬兀
D. 6龙
9、(2008年浙江高考题)已知球O的面上四点A、B、C、D, DA丄平面ABC , AB丄BC, DA二AB二BC二石,则球O的体积等于 ____ .
10、已知球而上的三点月、B、G Q6, BOS, AO1Q,球的半径为13,求球心到平而磁的距离.
11、已知过球而上儿B、6•三点的截而和球心的距离等于球半径的一半,且AB=BC^CA=2,则球而而积是()
A.互
B.竺
C.4”
D.空
9 3 9。

相关文档
最新文档