地球化学复习资料要点

合集下载

地球化学复习重点最新

地球化学复习重点最新

绪论:1.地球化学的定义:地球化学是研究地球及其子系统(含部分宇宙体)的化学组成、化学机制和化学演化的科学。

¥2.地球化学研究的基本问题:(1)地球系统中元素及同位素的组成问题(2)元素的共生组合和赋存形式问题(3)元素的迁移和循环(4)地球的历史与演化。

第一章:¥1.陨石的分类:陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成。

按成份分为三类:(1)铁陨石:主要由金属Ni-Fe(98%)和少量其它矿物如磷铁镍古矿[(Fe,Ni,Co)3P]、陨硫铁(troilite)(FeS)、镍碳铁矿(Fe3C)和石墨(graphite)等组成。

(2)石陨石:主要由硅酸盐矿物silicate minerals组成。

根据它是否含有细小而大致相近的球状硅酸盐结构而进一步分为球粒陨石和无球粒陨石。

球粒主要是橄榄石和辉石,有时为玻璃;无球粒陨石缺乏球粒结构,成分上与前者也有差异。

(3)石-铁陨石:由数量大体相等的Ni-Fe和硅酸盐(主要是橄榄石,偶尔辉石)组成。

2.地壳、地球和太阳系元素丰度组成特征及其差异的原因:太阳系:H>He>O>C>Ne>N>Fe>Si>Mg>S;特征规律:1.原子序数较低的范围内,元素的丰度随原子序数增大而呈指数递减,而在原子序数较大的范围内(Z>45)个元素丰度值很接近;2.原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素;3.H和He的丰度最高的两种元素;4.与He向邻近的Li和Be、B具有很低的丰度,属于强亏损的元素;5.在元素丰度曲线上O和Fe 呈明显的峰,它们是过剩元素;6.质量数为4的倍数的核素和同位素具有较高丰度;地球:Fe>O>Mg>Si>Ni>S>Ca>Al>Co>Na;特征:1.地球物质的90%由Fe、O、Si和Mg四纵元素组成;2.含量大于1%的元素有Ni、Ca、Al、和S;3.Na、K、Cr、Co、P、Mn和Ti的含量均在0.01%-1%扥范围;地壳:O>Si>Al>Fe>Ca>Na>K>Mg>Ti>H ;特征:①与地球和太阳系相比,最丰富的十种元素是O-Si-Al-Fe-Ca-Na-K-Mg-Ti-H;②不均匀性:前13种元素占地壳总重的99.7%;其余只占0.3%。

环境地球化学考试复习重点

环境地球化学考试复习重点

1. 环境背景值:指在不受污染的情况下,环境要素的平均化学成分。

2. 地球化学障:元素迁移过程中,物理-化学条件的急剧改变所引起的元素沉淀。

3. 等电pH值:当矿物颗粒不能带电荷时的PH值。

4. 生物地球化学循环:生物体所需要的营养元素在生物圈内不断地运转,他们沿着特定的途径,从非生物环境到生物有机体内,再从生物体回到非生物环境中去,从而构成元素的循环,这种循环叫做"生物地球化学循环",5. 弥散现象:在多空的介质中,当两种流体相接触,某种物质从含量较高的物体中箱含量较低的物体迁移,是两种流体分界面处形成过度混合带,混合带不断扩大,趋向于成为均质的混合物质,这种现象称为弥散现象。

6.地下水的自净过程:污染物进入地下水,通过同周围的介质发生物理化学和生物化学等一系列的反应,使污染物质的组成发生变化,最终被净化,是地下水部分或完全恢复到原来的状态,这样的过程,称为地下水的自净过程。

7.浓缩作用:当水蒸发时,其中含盐分的量不减,则其浓度相对增大,这种作用称为浓缩作用8.CO2的温室效应:二氧化碳可以让太阳辐射的可见光部分透过,但是能吸收地球在13-17um之间的再辐射,组织了热量向外层空间的散逸,保持了大气的温度,这就是所谓的CO2的温室效应。

9.化学需氧量(COD):在一定条件下,用一定的强氧化剂处理水样对所消耗的氧化剂量。

10.光化学烟雾:排入大气中的CO、NO等一次性污染物在光的作用下形成二次污染物,这两种的混合物所形成的烟雾污染现象。

11.混合作用:当两种或数种成分或矿化不同的地下水相遇时,新形成的地下水在成分与矿化度上与混合前不同,这种作用称为.混合作用。

12. 酸雨:是指PH值小于5.65的雨雪或其他形式的降水13..生物半衰期:有毒物质降到最初摄入量一半所需要的时间14. 溶质径流:地壳风化产物受水流溶蚀和冲刷并以真溶液和胶体溶液状态随水流前一的行为称为溶质径流。

1. 生命起源的前提条件有哪些?(8分)(1)在大气圈-水圈体系中必须没有游离的氧(2)必须存在有对产生有机分子所必须的元素和催化剂2. 在土壤样品采集中,一般采取哪几种方式? (8分)答:(1)对角线法适用于污水灌溉或被废水污染的田块,由进水口倒出水口引对角线,按均匀间隔取3-5个点,并根据田块形状做适当修改。

地球化学复习资料(二)2024

地球化学复习资料(二)2024

地球化学复习资料(二)引言概述:地球化学是研究地球及其组成部分的化学性质和过程的学科。

它对于理解地球内部构造、岩石和矿物的形成、地球生态系统以及地球表面和大气层的化学变化非常重要。

本文是地球化学复习资料系列的第二篇,主要介绍地球中元素的分布、地球化学循环、地球化学分析技术等内容。

正文内容:1. 地球元素分布a. 大地构造带来的地球元素差异b. 地壳、地幔和核的元素组成c. 元素富集与稀缺性的原因d. 地球元素的地球化学周期表2. 地球化学循环a. 生物地球化学循环i. 元素在生物圈中的循环过程ii. 包括生物体内和生物体间的循环b. 地球物质循环i. 土壤中的元素循环ii. 水循环、碳循环、氮循环等c. 平衡和非平衡地球化学循环3. 地球化学分析技术a. 主要的地球化学分析方法i. 光谱分析ii. 质谱分析iii. X射线衍射分析iv. 原子吸收光谱分析b. 地球化学样品的采集和准备c. 地球化学数据的处理和解释4. 岩石和矿物的地球化学特征a. 岩石的成分和分类b. 矿物的成分和分类c. 岩石和矿物的地球化学特征对地球演化的指示作用5. 环境地球化学a. 土壤污染的地球化学特征b. 矿物对环境中污染物的吸附和解毒作用c. 环境地球化学的应用与挑战总结:地球化学研究通过对地球元素的分布、地球化学循环、地球化学分析技术以及岩石、矿物的地球化学特征的探索,为我们深入了解地球的内部构造、地球表面和大气层的化学变化以及生态系统的环境问题提供了重要参考。

进一步发展地球化学研究不仅可以更好地了解地球的起源和演化,还能够支持环境保护、资源开发等领域的科学决策和实践。

地球化学复习资料

地球化学复习资料

第一章太阳系元素丰度和元素起源1)类地行星Terrestrial Planets(地球,水星,金星,火星)质量小、密度大体积小、卫星少,以岩石为主,富含Mg, Si, Fe等,亲气元素低2)类木行星Jovian Planets:(木星,土星,天王星,海王星)质量大、密度小体积大、卫星多H,He。

3)行星的化学成分特征随与太阳距离增加1.Fe,Co,Ni,Cr等行星核的元素减少。

2.REE,Ti,V,Th,U,Zr,Hf,Nb,Ta,W,Mo,Re,Pt增多(相对于核)。

3.形成壳-幔的元素Si,Mg,Al,Ca增多。

4.亲铜和碱金属元素Cu,Zn,Pb,Tl,Bi,Ga,Ge,Se,Te,As,Sb,In,Cd,Ag在1.5AU范围内有增多趋势,后减少。

5.氧有向外增多趋势,铁的价态有Fe o=>Fe2+=>Fe3+4)月海无水5)月海——玄武岩或显微辉长岩、钙质斜长石、单斜辉石和钛铁矿---大洋拉斑玄武,但是钛铁的含量高6)月球高地——高地斜长石富铝斜长石高地玄武岩基性斜长石、单斜辉石和钛铁矿石;铁和不透明矿物含量偏低7)克里普岩KREEP: a rock rich in P,REE and K.8)陨石是从星际空间降落到地球表面上来的行星物体的碎片。

9)陨石是空间化学研究的重要对象,具有重要的研究意义:①它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;②也是认识地球的组成、内部构造和起源的主要资料来源;③陨石中的60多种有机化合物是非生物合成的“前生物物质”,对探索生命前期的化学演化开拓了新的途径;④可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素)。

10)陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成,按成份分为三类:1)铁陨石(siderite)主要由金属Ni, Fe(占98%)和少量其他元素组成(Co, S, P, Cu, Cr, C 等)。

地球化学复习概要

地球化学复习概要

1、地球化学:就是地球的化学,它是研究地球(广义的也包括部分天体)的化学组成、化学作用及化学演化的学科,它是地学和化学的边缘学科。

2、丰度:一种化学元素在某个自然体中的重量占这个自然体的全部化学元素总重量的相对份额,元素丰度是化学元素在一定自然体中的相对平均含量。

3、类质同象:某种物质在一定外界条件下结晶时,晶体中的部分构造位置被介质中的其他元素(如原子、离子、络离子、分子)所占据而只引起晶格常数的微小改变,晶格构造类型、化学键类型、离子正负电荷的平衡保持不变或相近,这种现象称为类质同象。

4、稀土元素:指原子序数从57到71的15个镧系元素,在周期表中属ⅢB族,同族中的39号元素钇一般也看做稀土元素。

5、分配系数:分为简单分配系数、复合分配系数、对数分配系数、总分配系数,总分配系数D又称岩石分配系数,是矿物的简单分配系数和岩石中矿物的百分含量乘积的代数和。

// 总分配系数:又称为岩石的分配系数,它是用来讨论微量元素在岩石(矿物集合体)和与之平衡的熔体之间的分配关系的。

6、地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选择的与某种阴离子结合的特性;主要有亲氧性元素、亲硫性元素、亲铁性元素。

7、微量元素(?):又称痕量元素,指研究体系中元素含量小于0.1%的元素。

8、环境地球化学:是介于环境科学和地球化学之间的一门新兴边缘交叉学科,研究人类赖以生存的地球环境的化学组成、化学作用、化学演化与人类相互关系的科学。

9、不相容元素(ICE):D小于1的元素, 随着结晶程度的增长而逐步在残余岩浆中富集.如Rb、Cs、Ba、Sr、Zr、Nb、Th、REE、P等10、相容元素(CE):D大于1的元素,倾向在矿物晶体中富集,并随这些矿物的晶出而逐步在残余岩浆中贫化.如Fe、Co、Ni、Cr、Mg等11、生物标志化合物:指沉积有机质、原油、油页岩、煤中那些来源于活的生物体,在有机质演化过程中具有一定稳定性,没有或较少发生变化,基本保存了原始生化组分的碳骨架,记载了原始生物母质的特殊分子结构信息的有机化合物。

地球化学复习要点

地球化学复习要点

地球化学复习要点1太阳系的元素丰度特征答:①原子序数较低的元素区间,元素丰度随原子序数增大呈指数递减,而在原子序数较大的区间(Z>45)各元素丰度值很相近;②原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。

具有偶数质子数(P)或偶数中子数(N)的核素丰度总是高于具有奇数P或N的核素,这一规律称为Oddo-Harkins(奥多--哈根斯)法则,亦即奇偶规律;③H和He是丰度最高的两种元素,这两种元素几乎占了太阳中全部原子数目的98%;④与He相邻近的Li、Be和B具有很低的丰度,属于强亏损的元素,而O和Fe呈现明显的峰,为过剩元素;⑤质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度。

此外还有人指出,原子序数(Z)或中子数(N)为“幻数”(2、8、20、50、82和126等)的核素或同位素丰度最大。

例如,4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)和140Ce(Z=58,N=82)等都具有较高的丰度。

2为什么碳质球粒陨石可以作为太阳系的初始物质的代表答:因为阿伦德(Allende)碳质球粒陨石(1969年陨落于墨西哥,CⅢ型)以及其他碳质球粒陨石(尤其是CⅠ型)中的非挥发性元素丰度几乎与太阳气中观察到的非挥发性元素丰度完全一致。

3地壳元素丰度的研究方法都有哪些答:目前应用比较广泛的有:①陨石类比法;②地球模型和陨石的类比法;③地球物理类比法等。

4地球体系中元素的赋存形式都有哪些答:(1)独立矿物。

指形成能够用肉眼或显微镜下进行矿物学研究的颗粒,粒径大于0.001mm,并且可以用机械的或物理的方法分离出单矿物。

(2)类质同象形式。

也称结构混入物,由于参加主要元素矿物晶格,用机械的或化学的方法不易使二者分离,欲使其分离,只有破坏原矿物的晶格。

(3)超显微非结构混入物。

也称超显微包体或机械混入物等,颗粒小于0.001mm,其主要物征是不占据矿物的晶位置,因此是独立化合物,但又不形成可以进行矿物学研究的颗粒。

地球化学总复习(复习要点加习题)

地球化学总复习(复习要点加习题)
1
地球化学总复习
1.温度的增加
2.压力的降低
3.体系由无水转变为含水条件
六、其它基本概念
胶体、地球化学障、造网元素、变网元素
第四章 放射性同位素地球化学
一、同位素的概念 原子核内质子数 Z 相同而中子数 N 不同的一类核素称为同位素。
二、同位素定年的基本原理
三、母体、子体的概念(銣-锶、钐-钕、铀-铅)
地球化学总复习
8.举例说明元素存在形式研究对环境、找矿或农业问题的意义。 对找矿:如在超基性岩中镍的含量一般较高,如果镍存在于硅酸盐中,其基本不能被利
用,但如果镍以硫化物形式存在,就有良好的利用价值了。 对农业:元素 赋存形式的研究,可了解土壤中有益元素是否能够为植物吸收,而有害
2.林伍德提出对戈氏法则(更适于非离子键化合物)对于二个价数和离子半径相似的阳 离子,具有较低电负性者将优先被结合,因为它们形成一种较强的离子键成分较多的化学键。 第三章 自然体系中元素的地球化学迁移 一、元素地球化学迁移的定义
当元素发生结合状态变化并伴随有元素的空间位移时,称元素发生了地球化学迁移。 二、元素地球化学迁移能力的影响因素
4 自结晶以来,每个样品都符合定年的基本条件—呈封闭体系。
五、同位素测年的计算
铷—锶衰变体系பைடு நூலகம்年方法
铀-铅衰变体系定年方法
钐-钕模式年龄的表达
第五章 稳定同位素地球化学
一、基本概念
同位素效应、同位素分馏系数、δ值、同位素分馏值(包括它们之间的相关换算)
二、同位素地质温度计的原理及应用
三、大气降水的氢、氧同位素组成特点
母体:放射性核素
子体:母体衰变的产物
四、銣-锶等时线定年需满足的条件
1 一套岩石系列的不同岩石,由于岩浆结晶分异作用造成不同岩石的 Rb/Sr 比值有差异。

地球化学复习资料

地球化学复习资料

地球化学复习资料绪论1.地球化学:地球化学研究地壳(尽可能整个地球)中的化学成分和化学元素及其同位素在地壳中的分布、分配、共生组合associations、集中分散enrichment-dispersion及迁移循徊migration cycles规律、运动形式forms of movement和全部运动历史的科学。

2.研究对象:地球(minerals、rocks、atomsphere、water bodies、crust、mantle、core)太阳系3.研究内容:①元素的分布、分配②元素集中、分散、共生组合、迁移规律----核心:元素的化学作用和变化。

4.学科特点(1)对象:地球、地壳等及地质作用---用地球化学方法研究以认识自然作用。

(2)以化学等为基础,着重于化学作用。

矿物岩石学:由结构构造了解成因构造地质学:由物理运动了解过程古生物学:由形态获得信息(3)理论性与应用性理论性:从化学角度查明过程、原因应用性:生态环境及治理、农业。

矿产资源勘探、开发5.地球化学的研究方法I.野外工作方法(1).现场宏观观察:①地质现象的时空结构②查明区内各种地质体的岩石-矿物组成及相关作用关系③由此提供有关地球化学作用的空间展布、时间顺序和相互关系(2)地球化学取样:①代表性②系统性(空间、时间、成因)③统计性.II.室内研究方法(1)精确灵敏的测试方法(2)研究元素的结合形式和赋存状态(3)作用过程物理化学条件的测定(e.g.pH、Eh、ƒo2、salinity、concentration、ionization strength)(4)自然作用的时间参数(5)实验室模拟自然过程(6)多元统计计算和建立数学模型6.地球化学的发展趋势经验性→理论化定性→定量单学科研究→多学科结合研究理论和方法的发展使其参与和解决重大科学问题的能力不断增强。

第一章太阳系和地球系统元素的丰度1.太阳系元素组成的研究方法直接采样分析(地壳岩石、陨石等)光谱分析(太阳)由物质的物理性质与成分的对应关系推算(行星)利用飞行器观察、直接测定或取样分析测定气体星云或星际间物质分析研究宇宙射线2.陨石:落到地球上的行星物体碎块,即从行星际空间穿越大气层到达地表的星体残骸3. 陨石的分类4.陨石的化学成分(1)铁陨石:主要由金属Ni-Fe(98%)和少量其它矿物如磷铁镍古矿[(Fe,Ni,Co)3P]、陨硫铁(FeS)、镍碳铁矿(Fe3C)和石墨等组成。

地球化学复习资料

地球化学复习资料

地球化学复习资料地球化学复习资料地球化学是研究地球上各种元素及其在地球内外圈层中的分布、迁移和转化规律的科学。

它不仅是地球科学的重要分支,也是研究地球演化和资源勘探的基础。

在地球化学的学习过程中,我们需要掌握一些重要的知识和概念,下面将对其中的一些内容进行复习。

一、地球的成分和结构地球是由各种元素组成的,主要包括铁、氧、硅、镁等。

这些元素在地球内部以不同的方式分布,形成了地球的结构。

地球可以分为地壳、地幔和地核三个主要部分。

地壳是地球最外层的一层,主要由硅酸盐矿物组成。

地幔是地壳与地核之间的一层,主要由硅、镁、铁等元素组成。

地核是地球的内核,主要由铁和镍等重金属元素组成。

二、地球化学循环地球化学循环是指地球上各种元素在地球内外圈层之间的迁移和转化过程。

地球化学循环可以分为大气圈、水圈、岩石圈和生物圈等几个部分。

大气圈是指地球上的气体层,其中包括氧气、二氧化碳等。

水圈是指地球上的水资源,包括海洋、河流、湖泊等。

岩石圈是指地球上的岩石层,其中包括地壳和地幔。

生物圈是指地球上的生物体,包括植物、动物等。

三、地球化学元素地球化学元素是指地球上各种元素的种类和含量分布。

地球上的元素可以分为常量元素、痕量元素和微量元素等几个类别。

常量元素是地球上含量最丰富的元素,主要包括氧、硅、铝等。

痕量元素是地球上含量较少但对地球化学过程有重要影响的元素,主要包括锰、铜、锌等。

微量元素是地球上含量非常少的元素,主要包括金、银、铂等。

四、地球化学过程地球化学过程是指地球上各种元素在地球内外圈层中的迁移和转化过程。

地球化学过程可以分为地球化学风化、沉积作用、岩浆活动等几个环节。

地球化学风化是指地球上岩石和矿物受到气候、水文等因素的作用而发生分解和溶解的过程。

沉积作用是指地球上岩石和矿物在水体中沉积和沉淀的过程。

岩浆活动是指地球上岩浆从地幔上升到地壳的过程,形成火山和岩浆岩等地质现象。

五、地球化学资源地球化学资源是指地球上含有有用元素和化合物的矿石和矿床。

地球化学复习重点

地球化学复习重点

绪论:1. 地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学.2. 地球化学研究的基本问题:①元素(同位素)在地球及各子系统中的组成②元素的共生组合和存在形式③研究元素的迁移④研究元素(同位素)的行为⑤元素的地球化学演化3. 地球化学的研究思路:"见微而知著"。

通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。

4. 简述地球化学的研究方法:A. 野外工作方法:①宏观地质调研②运用地球化学思维观察、认识地质现象③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品B.室内研究方法:④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值⑤质的研究,也就是元素结合形态和赋存状态的研究⑥动的研究,地球化学作用过程物理化学条件的测定和计算。

包括测定和计算两大类。

⑦模拟地球化学过程,进行模拟实验。

⑧测试数据的多元统计处理和计算。

第一章:基本概念1. 地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P 等)2. 丰度:一般指的是元素在这个体系中的相对含量(平均含量)。

3. 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。

4. 分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。

5. 研究元素丰度的意义:①元素丰度是每一个地球化学体系的基本数据以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。

是研究地球、研究矿产的重要手段之一。

②研究元素丰度是研究地球化学基础理论问题的重要素材之一。

宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。

地球化学知识点整理

地球化学知识点整理

地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

即“见微而知著”。

第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。

这种不均一性在地球的一定深度表现为突变性质。

由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。

界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。

上地壳又叫做硅铝层,下地壳又叫做硅镁层。

大陆地壳由上、下地壳,而大洋地壳只有下地壳。

【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。

它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。

地球化学复习资料要点

地球化学复习资料要点

绪论地球化学学科的研究内容1)元素及同位素在地球及各子系统中的组成2)元素的共生组合及赋存形式3)元素的迁移和循环4)研究元素(同位素)的行为5)元素的地球化学演化。

简述地球化学学科的研究思路和研究方法:研究思路:见微而知著,即通过观察原子之微,以求认识地球和地质过程之著。

研究方法:一)野外阶段: 1)宏观地质调研。

明确研究目标和任务,制定计划2)运用地球化学思维观察认识地质现象3)采集各种类型的地球化学样品二)室内阶段:1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。

元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其次是高灵敏度;第三是快速、成本低2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究3)地球化学作用的物理化学条件的测定和计算4)归纳、讨论:针对目标和任务进行归纳、结合已有研究成果进行讨论。

第一章1.克拉克值:元素在地壳中的丰度,称为克拉克值。

元素在宇宙体或地球化学系统中的平均含量称之为丰度。

丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。

指所研究元素在其中的含量大大超过它在岩石总体平:富集矿物2. 均含量的那种矿物。

3.载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。

4. 浓集系数 =工业利用的最低品位/克拉克值。

为某元素在矿床中可工业利用的最低品位与其克拉克值之比。

5.球粒陨石:是石陨石的一种。

(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。

基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。

划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石;LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。

为研究生命起源提供重要信息。

地球化学复习要点及答案

地球化学复习要点及答案

绪论1.地球化学定义、研究对象、学科性质、研究的基本任务√定义:韦尔纳茨基(苏)于1922年提出:地球化学科学地研究地壳中的化学元素,即地壳的原子,在可能的范围内也研究整个地球的原子。

地球化学研究原子的历史、它们在空间上和时间上的分配和运动,以及它们在地球上的成因关系。

费尔斯曼(苏)在同年也提出了定义:地球化学科学地研究地壳中的化学元素—原子的历史及其在自然界各种不同的热力学与物理化学条件下的行为。

德国著名的地球化学家戈尔德施密特于1933年认为:地球化学的主要目的,一方面是定量地确定地球及其各部分的成分,另一方面要发现控制各种元素分配的规律。

美国地球化学委员会于1973年对地球化学的定义为:地球化学是关于地球和太阳系的化学成分及化学演化的一门科学,它包括了与它有关的一切科学的化学方面。

1985年涂光炽提出的地球化学定义为:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。

研究对象:地球化学以地球及其子系统为直接研究对象。

性质:地球系统和太阳系的物质运动可以表现为力学的、物理学的、化学的和生物学的运动形式,而且各种运动形式相互作用,构成综合、复杂的高级运动。

对地球及各子系统中各类基础运动形式的综合研究,是地球科学的目标和任务。

地球物质的各种运动形式可互相依存、互相制约和互相转化。

寓于地球物质运动中的不同运动形式总是相互依存、相互影响和相互制约,有着不可分割的联系。

地球化学同地球物理学和地质学同为地球科学支持学科,他们均应考虑多种形式运动的因素,从而需要寓于地球系统物质运动中的某种形式基础运动的学科作为支撑。

地球化学实质是研究地球物质化学运动的学科,他的产生与发展也是应地球科学为了实现自身的现代化,精确而重视吸收现代自然基础学科成果的表现之一。

基本任务:地球化学的基本任务为研究地球的化学组成、化学作用及化学演化。

2.地球化学体系3.地球化学与其他地质类学科的联系与区别地球化学的实质是研究地球物质化学运动的学科,是以地球物质运动和地质运动中客观存在的化学运动形式为依据,将地学需要与化学结合的边缘学科,并不断吸收现代自然基础科学,使之实现自身的现代化和精确化。

地球化学知识点整理

地球化学知识点整理

地球化学知识点整理地球化学是研究地球的化学组成、化学作用和化学演化的科学。

它涉及到地球的各个圈层,包括岩石圈、水圈、大气圈和生物圈,以及地球内部的各种地质过程和现象。

以下是对地球化学一些重要知识点的整理。

一、元素的分布1、地球的元素丰度地球的元素丰度是指各种元素在地球中的相对含量。

研究表明,氧、硅、铝、铁、钙、钠、钾、镁这八种元素占了地球总质量的绝大部分。

2、元素在不同圈层的分布岩石圈中,硅、铝、铁等元素较为丰富;水圈中,氢、氧以及一些溶解的离子如钠、氯等常见;大气圈中,氮、氧是主要成分。

3、元素分布的控制因素元素的分布受到多种因素的影响,如原子结构、地球的形成过程、地质作用等。

二、同位素地球化学1、同位素的概念同位素是指质子数相同而中子数不同的同一元素的不同原子。

2、稳定同位素和放射性同位素稳定同位素在自然界中不发生衰变,如碳的同位素 C-12 和 C-13;放射性同位素会自发地发生衰变,如铀-238 衰变为铅-206。

3、同位素分馏由于物理化学过程中同位素的质量差异,会导致同位素在不同物质中的相对丰度有所不同,这就是同位素分馏。

4、同位素地质年代学通过测定岩石或矿物中放射性同位素的衰变产物和剩余量,可以计算出岩石或矿物的形成年龄。

三、地球化学热力学1、热力学基本概念包括内能、焓、熵等,它们用于描述体系的能量状态和变化。

2、地球化学平衡在地质过程中,各种化学反应达到平衡状态,通过热力学原理可以判断反应的方向和限度。

3、相平衡研究不同相(如固相、液相、气相)之间的平衡关系,对于理解岩石的形成和演化具有重要意义。

四、微量元素地球化学1、微量元素的定义在地质体系中含量较低的元素。

2、分配系数微量元素在不同矿物或相之间的分配比例,它反映了微量元素在地质过程中的行为。

3、微量元素的示踪作用通过分析微量元素的含量和比值,可以推断岩石的成因、源区特征以及地质过程的条件。

五、有机地球化学1、有机化合物的来源和分布有机化合物可以来源于生物遗体和分泌物,在沉积岩中广泛分布。

地球化学复习重点

地球化学复习重点

一 名词解释1、同位素值:指原子核内质子数相同而中子数不等的一些原子。

2、稳定沉积学:是以沉积物和沉积岩为对象,研究其在成岩过程中所含元素及稳定同位素的迁移、聚集和分布规律的一门学科。

3、干酪根:沉积岩中不溶于有机溶剂的集合体。

4、生烃强度:只有效烃源岩分布范围内单位面积的生烃量。

5、稳定同位素:原子能稳定存在的时间大于1017a 的就是稳定同位素。

6、稳定同位素地层学:稳定同位素地层学是同位素地层学的基本内容,是利用稳定同位素组成在地层中的变化特征进行地层的划分和对比,确定地层的相对时代,并探讨地质历史中发生的重大事件。

7、烃源岩:具备了生烃条件,已经生成并能排出具有工业价值的石油和天然气的岩石。

又称生油气岩、生油气母岩。

8、克拉克值:每一种化学元素在地壳中所占的平均比值。

9、同位素丰度:元素中某种同位素的含量。

指 某(稳定)同位素 占所属元素 的含量百分比。

同位素丰度是指某一元素的各种同位素在自然界或某种物质中所占的百分含量。

10、同位素△值的表示:样品中某元素的同位素比值(R 样)相对于标准样品的同位素比值(R 标)的千分偏差,称为δ值。

写成表达式即:二 简答题1、 如何判断沉积物的沉积环境?①古盐度(a.硼法→相当硼 b.元素比值法 c 磷酸法)②氧化还原条件的判断(a.铁矿物的组合 b.Fe 2+/Fe 3+比值 c.Kfe 系数 d.Cu/Zn Cu+Mo/Zn)③离岸距离的标志(a.元素组合 b 元素比值)④构造背景的判别(a 判别函数分析b.Sio 2/Al 2O 3分析 c 根据氧化物的比值判别构造背景 d 根据砂岩的平均化学成分 e 根据稀土元素含量的比值)⑤判别硅质岩的成因(a Al-Fe 元素分区 b 氧化物散点图)2 、如何通过稳定同位素来判断海平面升降?①δC 13 、δO 18 与海平面呈负相关关系,即δC13 、δO18含量增大,全球海平面就降低,反之升高②δS 34与海平面呈正相关关系,即δS34含量增大,全球海平面也随之升高,反之降低3 、影响沉积岩元素分布的因素有哪些?①母岩的成分与风化强度。

地球化学知识点整理

地球化学知识点整理

地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

即“见微而知著”。

第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。

这种不均一性在地球的一定深度表现为突变性质。

由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。

界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。

上地壳又叫做硅铝层,下地壳又叫做硅镁层。

大陆地壳由上、下地壳,而大洋地壳只有下地壳。

【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。

它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。

(完整版)地球化学期末复习资料

(完整版)地球化学期末复习资料

一.名词解释。

1常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和大类划分。

2微量元素:物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素.其浓度一般低于0.1%,在大多数情况下明显低于0.1%而仅达到ppm乃至ppb数量级。

3稀有元素:在低壳中分布量较低,但易于在自然界高度富集形成较常见的矿物和独立工业矿床的的化学元素。

如REE、Nb、Ta、Be、Li、(W)等。

4元素的丰度:元素在宇宙体或较大的地球化学系统中的平均含量.元素在地壳中的丰度又称为克拉克值。

5陨石:从星际空间降落到地球表面上来的行星物体的碎片。

6类质同象:元素相互结合过程中,性质相似的元素发生代换起到性质相同的作用,按概率占据相同的位置,而不引起晶格常数过大的改变的现象.7晶体场稳定能(CFSE-crystal field stabilization energy):d轨道电子能级分裂后的d 电子能量之和,相对于未分裂前d电子能量之和的差值,称为CFSE。

8八面体择位能(Octahedral site preference energy )OSPE = CFSEo – CFSEt O-八面体配位场 t—四面体配位场9离子电位(π): 是离子大小和离子电荷的综合作用效果,决定了离子吸引价电子的能力,π值为离子电价与离子半径(单位为10nm)的比值。

10核素:由不同数量的质子和中子按一定结构组成各种元素的原子核称为核素,任何一个核素都可以用A=P+N这三个参数来表示.11同位素:具有相同质子数,不同数目中子数所组成的一组核素称为同位素。

12亲石元素:离子的最外电子层具有8电子(s2p6)稳定结构,氧化物的形成热大于FeO的形成热,与氧的亲和力强,易熔于硅酸盐熔体,主要集中在岩石圈。

13亲铜元素:离子的最外电子层具有18电子(s2p6d10)的铜型结构,氧化物的形成热小于FeO 的形成热,与硫的亲和力强,易熔于硫化铁熔体。

(完整word版)地球化学知识点整理

(完整word版)地球化学知识点整理

地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

即“见微而知著”。

第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。

这种不均一性在地球的一定深度表现为突变性质。

由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。

界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。

上地壳又叫做硅铝层,下地壳又叫做硅镁层。

大陆地壳由上、下地壳,而大洋地壳只有下地壳。

【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。

它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。

地球化学复习资料讲解

地球化学复习资料讲解

地球化学复习资料绪论1.地球化学:地球化学研究地壳(尽可能整个地球)中的化学成分和化学元素及其同位素在地壳中的分布、分配、共生组合associations、集中分散enrichment-dispersion及迁移循徊migration cycles规律、运动形式forms of movement和全部运动历史的科学。

2.研究对象:地球(minerals、rocks、atomsphere、water bodies、crust、mantle、core)太阳系3.研究内容:①元素的分布、分配②元素集中、分散、共生组合、迁移规律----核心:元素的化学作用和变化。

4.学科特点(1)对象:地球、地壳等及地质作用---用地球化学方法研究以认识自然作用。

(2)以化学等为基础,着重于化学作用。

矿物岩石学:由结构构造了解成因构造地质学:由物理运动了解过程古生物学:由形态获得信息(3)理论性与应用性理论性:从化学角度查明过程、原因应用性:生态环境及治理、农业。

矿产资源勘探、开发5.地球化学的研究方法I.野外工作方法(1).现场宏观观察:①地质现象的时空结构②查明区内各种地质体的岩石-矿物组成及相关作用关系③由此提供有关地球化学作用的空间展布、时间顺序和相互关系(2)地球化学取样:①代表性②系统性(空间、时间、成因)③统计性.II.室内研究方法(1)精确灵敏的测试方法(2)研究元素的结合形式和赋存状态(3)作用过程物理化学条件的测定(e.g.pH、Eh、ƒo2、salinity、concentration、ionization strength)(4)自然作用的时间参数(5)实验室模拟自然过程(6)多元统计计算和建立数学模型6.地球化学的发展趋势经验性→理论化定性→定量单学科研究→多学科结合研究理论和方法的发展使其参与和解决重大科学问题的能力不断增强。

第一章太阳系和地球系统元素的丰度1.太阳系元素组成的研究方法直接采样分析(地壳岩石、陨石等)光谱分析(太阳)由物质的物理性质与成分的对应关系推算(行星)利用飞行器观察、直接测定或取样分析测定气体星云或星际间物质分析研究宇宙射线2.陨石:落到地球上的行星物体碎块,即从行星际空间穿越大气层到达地表的星体残骸3. 陨石的分类4.陨石的化学成分(1)铁陨石:主要由金属Ni-Fe(98%)和少量其它矿物如磷铁镍古矿[(Fe,Ni,Co)3P]、陨硫铁(FeS)、镍碳铁矿(Fe3C)和石墨等组成。

地球化学(复习资料)要点

地球化学(复习资料)要点

第一章1.克拉克值:元素在地壳中的丰度,称为克拉克值。

元素在宇宙体或地球化学系统中的平均含量称之为丰度。

丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。

2.富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。

3.载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。

4. 浓集系数=工业利用的最低品位/克拉克值。

为某元素在矿床中可工业利用的最低品位与其克拉克值之比。

5.球粒陨石:是石陨石的一种。

(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。

基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。

划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。

为研究生命起源提供重要信息。

分Ⅰ型、Ⅱ型和Ⅲ型。

Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。

6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。

1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。

○1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。

○2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加 5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。

(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。

(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论地球化学学科的研究内容1)元素及同位素在地球及各子系统中的组成2)元素的共生组合及赋存形式3)元素的迁移和循环4)研究元素(同位素)的行为5)元素的地球化学演化。

简述地球化学学科的研究思路和研究方法:研究思路:见微而知著,即通过观察原子之微,以求认识地球和地质过程之著。

研究方法:一)野外阶段: 1)宏观地质调研。

明确研究目标和任务,制定计划2)运用地球化学思维观察认识地质现象3)采集各种类型的地球化学样品二)室内阶段:1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。

元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其次是高灵敏度;第三是快速、成本低2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究3)地球化学作用的物理化学条件的测定和计算4)归纳、讨论:针对目标和任务进行归纳、结合已有研究成果进行讨论。

第一章1. 克拉克值:元素在地壳中的丰度,称为克拉克值。

元素在宇宙体或地球化学系统中的平均含量称之为丰度。

丰度通常用重量百分数(%),(百万分之一)或表示。

2. 富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。

3. 载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。

4. 浓集系数=工业利用的最低品位/克拉克值。

为某元素在矿床中可工业利用的最低品位及其克拉克值之比。

5.球粒陨石:是石陨石的一种。

(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。

基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。

划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石;亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。

为研究生命起源提供重要信息。

分Ⅰ型、Ⅱ型和Ⅲ型。

Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。

6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。

7.地球化学省:在一个区域内不仅一两种元素丰度很高,对应矿床成群出现,而且在历史演化中,矿产产出率也特别高,这一区段叫地球化学省。

8.对角线规律:元素周期表内位于一条对角线的元素,相互之间容易发生类质同象。

9.地球化学异常:一个富含矿的区段,地球化学特征明显不同于无矿区域的现象称为地球化学异常,常常反应矿产分布的异常。

1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。

陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。

地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。

(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。

(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。

这种设想成为推测地球内部结构和化学成分的重要依据之一。

(三)碳质球粒陨石的有机化合物成分是研究地球早期生命系统的化学演化及来源的重要依据和信息,在碳质球粒陨石中已发现有机化合物60多种。

有人认为地球早期生命系统的化学演化不一定来源于行星的大气,而有可能来自太阳星云凝聚时已合成的有机质。

2比较太阳系、地球、地壳主要化学元素丰度特征的异同点,说明自然界元素丰度的基本特征和决定自然体系中元素丰度的最基本因素:(1)特征的异同:太阳系:H>>O>N>C>>>S地球>O>>>>S>>>>地壳:O>>>>>>K>>>H硅酸盐在地球表层富集,较难熔的镁铁硅酸盐和金属铁下沉。

(2)自然界元素丰度的基本特征:个元素丰度随原子序数的增大而呈指数下降;在Z>45之后丰度值又相近。

原子序数为偶数的同位素丰度大于奇数者(中子数、质量数同)——奥多-哈根斯法则;四倍原则:如O(16),质子数为4的倍数、P、B丰度很低,为亏损元素(核子结合能低,形成后易分解)和O过量(核子结合能最高,核子稳定)原子序数(质子数或中子数)是“幻数”的元素丰度高(氦、氧、钙等:2、8、14、20、2850、82、126)(3)决定自然体系中元素丰度的最基本因素:及原子结构有关具有最稳定原子核的元素分布最广,当中子数和质子数比例适当时核最稳定。

如在原子序数<20的轻核中,中子∕质子等于一是,核最稳定,由此可以说明O、、、的丰度较大的原因;随原子序数增大,核内质子间的斥力大于核力,核子的结合能降低,原子核就趋于不稳定,所以元素同位素的丰度就要降低;偶数元素或同位素的原子核内,核子倾向成对,他们自旋力矩相等,而方向相反,量力力学证明:这种核的稳定性最大,因而这种元素或同位素在自然界分布最广;中子数等于幻数的同位素,其原子核中的壳层为核子所充满,形成最为稳定的原子核,因而具有高的丰度。

及元素起源、形成过程及元素形成后的化学分异有关。

在恒星的高温条件下。

可以发生有质子参加的热核反应,这使、、B迅速的转变为4的同位素,因此,、、B丰度明显偏低就同他们在恒星热核反应过程中被消耗的历史有关;在内行星和陨石物质中气态元素(H、等)的丰度极大的低于太阳系中各该元素的丰度,造成这种差别的原因为这些元素在行星和陨石母体形成或存在过程中逃逸到宇宙空间所致。

3.元素克拉克值的意义:(1)元素克拉克值确定着地壳作为一个物理化学体系的总特征以及地壳中各种地球化学过程的总背景;它为地球化学提供了衡量元素集中分散及其程度的标尺;是影响元素地球化学行为的重要因素,支配着元素的地球化学行为。

(2)研究地壳的化学成分可以用来推测地球内部成分,用来及其它星球比较.(3)克拉克值是影响元素地球化学性质的重要因素(4)生物体内,克拉克值高的元素丰度大对生物生长有益,克拉克值小的元素丰度也小,甚至有害。

(5)克拉克值是确定区域地球化学异常和地球化学省的背景值。

4.克拉克值对元素富集和元素地球化学意义的因素有哪些?(1)克拉克值高的元素易形成独立矿床2)克拉克值高的元素形成矿物种类也多:例如:O、、、元素的矿物种类非常多;而克拉克值低的元素形成矿物种类也少,例如:、等不形成独立矿物。

所以,自然界仅3000种矿物,而实验室可有数十万种化合物。

第二章1.元素地球化学亲和性:1)定义:指元素形成阳离子的能力及阳离子在自然体系中有选择地及某阴离子化合的倾向性。

2)亲和性包括: ①亲氧性(亲石性)阳离子和氧结合成离子键为主的氧化物和硅酸盐的性质。

亲氧元素离子最外层具有S2P6惰性气体型的8电子结构,电负性小,多为顺磁性,氧化物生成热>的生成热,集中分布于岩石圈;及氧亲和力强。

亲氧元素主要有碱金属、碱土金属、稀土元素、稀有元素等、、K 、、、、、、、、、、、、等。

亲氧元素主要熔于硅酸盐熔体;②亲硫性(亲铜性) 阳离子和硫结合成共价键为主的硫化物和硫盐的性质。

亲硫元素其离子最外层具有S2P6d10的铜型18电子结构,具较大的电负性和离子半径、较低的电价;多为逆磁性,氧化物生成热<的生成热,集中分布于硫化物-氧化物过渡圈。

主要熔于硫化铁熔体;亲硫元素主要有成矿元素、、、、等。

③亲铁性指元素以金属状态产出的一种倾向性。

亲铁元素离子最外层有818过渡型电子结构,多为强磁性,氧化物生成热最小,及氧和硫的亲合力均弱,易熔于熔铁,集中分布于铁镍核。

在O和S缺乏的体系中,一些金属不能及阴离子形成化合物,只能以自然金属形式存在,它们以金属键结合,及铁共生。

亲铁元素有、、、、、、、、等 .④亲气性原子最外层8电子, 原子容积最大,熔点、沸点低, 以气体形式存在,具挥发性,集中在大气圈. 如2 、 N2 、H2 、、、等。

⑤亲生物性:这些元素富集在生物圈,组成或进入生物体。

如: C 、 O 、N 、H 、 P 、 B 等。

2.化学反应制动原理:在氧不足的体系中, 元素及氧化合按自由能Δ由高负值低负值顺序进行(结合顺序按-Δ的大小决定),到铁由于其丰度高,可以消耗掉全部剩余的氧,以致使多余的铁和硫化合或呈自然铁存在,而使排在铁后面的元素不能及氧化合.铁起到化学反应的“制动剂”作用,这一现象称为~3.若两种离子半径相似而电价不同, 则较高价离子优先进入晶格,集中于较早期结晶的矿物中,称为“捕获”;而较低价离子集中于较晚期结晶的矿物中,称为“容许”。

如3+(角闪石、辉石,基性岩中)及(黑云母及电气石,酸性岩或伟晶岩中)3+(磷灰石、榍石、和萤石)及(斜长石)4.内潜同晶:两种离子浓度大致相等,而一种元素以分散量进入另一元素的晶格内,可以分出主要元素和次要元素时,这时次要元素就隐蔽在主要元素之中,称为内潜同晶.5.残余富集:指类质同象影响微量元素的集中和分散的一种情况,在岩浆结晶分异过程中,能够及主量元素发生类质同象的微量元素会“晶体化学分散”,例如因及K类质同象而分散;不能及主量元素发生类质同象的微量元素,则在残余熔体中富集,有可能在适当的条件下形成副矿物,或者转入岩浆期后热液中富集成矿,即“残余富集”。

6.补偿类质同象:指组分浓度不同影响元素类质同象置换规律的情况。

一种熔体或溶液中如果缺乏某种成分,则从中晶出包含此种组分的矿物时,熔体或溶液中及之性质相似的其它元素就可以类质同象混入物的形式加以补充,称为“补尝类质同象”.如钒钛磁铁矿2+()234,当2O3浓度过小时,不形成磁铁矿2O32O3补偿2O3进入磁铁矿晶格中而形成.7. 类质同象的意义在于:类质同像是自然界化合物中一种十分普遍的现象,它是支配地壳中元素共生组合的一个重要因素,特别是对一些微量元素,是决定它们在自然界活动状况的主要因素1)确定了元素的共生组合(包括微量元素和常量元素间的制约、依赖关系)2)决定了元素在共生矿物间的分配3)支配微量元素在交代过程中的行为4)类质同象的元素比值可作为地质作用过程和地质体成因的标志5)标型元素组合6)影响微量元素的集中或分散(晶体化学分散或残余富集)7)为地质找矿及环境研究服务。

相关文档
最新文档