站在巨人的肩膀上之牛顿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
站在巨人的肩膀上之牛顿
追求卓越,成功就会在不经意间降临。
艾萨克·牛顿毫无疑问是人类历史上出现过的最伟大、最有影响的科学家。
他在1687年7月5日发表的不朽著作《自然哲学的数学原理》里用数学方法阐明了宇宙中最基本的法则——万有引力定律和三大运动定律。
这四条定律构成了一个统一的体系,被认为是“人类智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物理界的科学观点,并成为现代工程学的基础。
牛顿是经典力学理论理所当然的开创者。
他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。
牛顿发现万有引力定律是他在自然科学中最辉煌的成就。
早在牛顿发现万有引力之前,就已经有许多科学家严肃认真的考虑过这个问题。
伽利略是第一个把实验引进力学的科学家,他利用实验和数学相结合的方法确定了一些重要的力学定律。
1582年前后,他经过长久的实验观察和数学推算,得到了摆的等时性定律。
接着在1585年因家庭经济困难辍学。
离开比萨大学期间,他深入研究古希腊学者欧几里得、阿基米德等人的著作。
他根据杠杆原理和浮力原理写出了第一篇题为《天平》的论文。
不久又写了论文《论重力》,第一次揭示了重力和重心的实质并给出准确的数学表达式,因此声名大振。
与此同时,他对亚里士多德的许多观点提出质疑。
在1589~1591年间,伽利略对落体运动作了细致的观察。
从实验和理论上否定了统治千余年的亚里士多德关于“落体运动法则”确立了正确的“自由落体定律”,即在忽略空气阻力条件下,重量不同的球在下落时同时落地,下落的速度与重量无关。
根据伽利略晚年的学生V.维维亚尼的记载,落体实验是在比萨斜塔上公开进行的:1589年某一天,伽利略将一个重10磅,一个重1磅的铁球同时抛下,几乎同时落地,在场的竞争者个个目瞪口呆,在大笑中耸耸肩走了。
但在伽利略的著作中并未明确说明实验是在比萨斜塔上进行的。
因此近年来对此存在争议。
伽利略对运动基本概念,包括重心、速度、加速度等都作了详尽研究并给出了严格的数学表达式。
尤其是加速度概念的提出,在力学史上是一个里程碑。
有了加速度的概念,力学中的动力学部分才能建立在科学基础之上,而在伽利略之前,只有静力学部分有定量的描述。
伽利略曾非正式地提出过惯性定律和外力作用下物体的运动规律,这为牛顿正式提出运动第一、第二定律奠定了基础。
在经典力学的创立上,伽利略可说是牛顿的先驱。
1609年,开普勒发表了《新天文学》一书和《论火星运动》一文,公布了两个定律:
(一)所有行星分别在大小不同的椭圆轨道上运动。
太阳的位置不在轨道中心,而在轨道的两个焦点之一。
这是行星运动第一定律(也叫轨道定律)。
(二)在同样的时间里,行星向径在其轨道平面上所扫过的面积相等。
这是行星运动的第二定律(也叫面积定律)。
行星运动第一定律认为每个行星都在一个椭圆形的轨道上绕太阳运转,而太阳位于这个椭圆轨道的一个焦点上。
行星运动第二定律认为行星运行离太阳越近则运行就越快,行星的速度以这样的方式变化:行星与太阳之间的连线在等时间内扫过的面积相等。
十年后开普勒发表了他的行星运动第三定律:行星距离太阳越远,它的运转周期越长;运转周期的
平方与到太阳之间距离的立方成正比。
开普勒定律对行星绕太阳运动做了一个基本完整、正确的描述,解决了天文学的一个基本问题。
这个问题的答案曾使甚至象哥白尼、伽利略这样的天才都感到迷惑不解。
当时开普勒没能说明按其规律在轨道上运行的原因,到17世纪后期才由艾萨克·牛顿阐明清楚。
开普勒对此运动性质的研究,我们可以看到万有引力定律已见雏形。
开普勒在万有引力的证明中已经证到:如果行星的轨迹是圆形,则符合万有引力定律。
而如果轨道是椭圆形,开普勒并未证明出来。
牛顿后来用很复杂的微积分和几何方法证出。
牛顿曾说过:“如果说我比别人看得远些的话,是因为我站在巨人的肩膀上。
”开普勒无疑是他所指的巨人之一
1659年,惠更斯从研究摆的运动中发现研究,保持物体沿圆周轨道运动需要一种向心力。
胡克等人认为是引力,并且试图推导引力和距离的关系。
胡克在力学方面的贡献尤为卓著。
他曾为研究开普勒学说作出了重大成绩。
在探讨万有引力的过程中,他首先发现了引力和距离平方成反比的规律。
在研究引力可以提供约束行星沿闭合轨道运动的向心力问题上,1662年和1666年间,胡克做了大量实验工作。
他支持吉尔伯特的观点,认为引力和磁力相类似。
1664年胡克曾指出彗星靠近太阳时轨道是弯曲的。
他还为寻求支持物体保持沿圆周轨道的力的关系而作了大量实验。
1674年他根据修正的惯性原理,从行星受力平衡观点出发,提出了行星运动的理论,在1679年给牛顿的信中正式提出了引力与距离平方成反比的观点,但由于缺乏数学手段,还没有得出定量的表示。
同时惠更斯提出了他的离心力定理,他还研究了圆周运动、摆、物体系转动时的离心力以及泥球和地球转动时变扁的问题等等。
这些研究对于后来万有引力定律的建立起了促进作用。
牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):
第一定律(惯性定律)第二定律是力的瞬时作用规律。
第三定律(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。
第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。
第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。
牛顿是万有引力定律的发现者。
他在1665~1666年开始考虑这个问题。
万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。
牛顿没有回信,但采用了胡克的见解。
在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。
牛顿说过:如果说我比别人看得更远些,那是因为我站在了巨人的肩上。
却实如此。