高中数学复习专题讲座:求解函数解析式的几种常用方法

合集下载

高中数学-求函数解析式的六种常用方法

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。

高中求函数解析式方法

高中求函数解析式方法

高中求函数解析式方法
高中求函数解析式的方法有以下几种:
1. 列方程法:根据已知条件设置等式,然后解方程得到函数解析式。

这种方法适用于一些简单的函数问题,如线性函数、二次函数等。

2. 求导法:如果已知函数的导函数和一个点上的函数值,可以通过求导得到函数解析式。

这种方法适用于一些需要通过求导来确定函数解析式的问题,如最小值、最大值等。

3. 已知特殊点法:如果已知函数经过某个特殊点,可以通过该特殊点的信息来确定函数解析式。

例如,如果已知函数经过原点,则可以确定函数的截距。

4. 已知导函数法:如果已知函数的导函数,可以通过积分来确定函数解析式。

这种方法适用于一些需要通过积分来确定函数解析式的问题,如定积分、不定积分等。

总之,求函数解析式的方法取决于已知条件和问题的性质,需要根据具体情况选择合适的方法。

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。

待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。

(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。

[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。

若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。

[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。

高三数学第二轮专题讲座复习 求解函数解析式的几种常用方法 试题

高三数学第二轮专题讲座复习 求解函数解析式的几种常用方法 试题

卜人入州八九几市潮王学校望城区白箬高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法高考要求求解函数解析式是高考重点考察内容之一,需引起重视本节主要帮助考生在深入理解函数定义的根底上,掌握求函数解析式的几种方法,并形成才能,并培养考生的创新才能和解决实际问题的才能重难点归纳求解函数解析式的几种常用方法主要有1待定系数法,假设函数解析式的构造时,用待定系数法;2换元法或者配凑法,复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3消参法,假设抽象的函数表达式,那么用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法典型题例示范讲解例1(1)函数f (x )满足f (log a x )=)1(12x x a a --(其中a >0,a ≠1,x >0),求f (x )的表达式(2)二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式此题主要考察函数概念中的三要素定义域、值域和对应法那么,以及计算才能和综合运用知识的才能知识依托利用函数根底知识,特别是对“f 〞的理解,用好等价转化,注意定义域错解分析此题对思维才能要求较高,对定义域的考察、等价转化易出错技巧与方法(1)用换元法;(2)用待定系数法解(1)令t=log a x (a >1,t >0;0<a <1,t <0),那么x =a t因此f (t )=12-a a (a t -a -t) ∴f (x )=12-a a (a x -a -x)(a >1,x >0;0<a <1,x <0)(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a 并且f (1)、f (-1)、f (0)不能同时等于1或者-1,所以所求函数为f (x )=2x 2-1或者f (x )=-2x 2+1或者f (x )=-x 2-x +1或者f (x )=x 2-x -1或者f (x )=-x 2+x +1或者f (x )=x 2+x -1例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一局部是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象此题主要考察函数根本知识、抛物线、射线的根本概念及其图象的作法,对分段函数的分析需要较强的思维才能因此,分段函数是今后高考的热点题型知识依托函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线错解分析此题对思维才能要求很高,分类讨论、综合运用知识易发生混乱技巧与方法合理进展分类,并运用待定系数法求函数表达式解(1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0)∴0=-2+b 即b =2,∴f (x )=x +2(2)当-1<x <1时,设f (x )=ax 2+2∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2(3)当x ≥1时,f (x )=-x +2综上可知f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成例3f (2-cos x )=cos2x +cos x ,求f (x -1)解法一(换元法〕∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),那么cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4)解法二(配凑法〕f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x 〕+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4)学生稳固练习1假设函数f (x )=34 x mx (x ≠43)在定义域内恒有f [f (x )]=x ,那么m 等于() A 3B 23C -23 D -32设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,那么x >1时f (x )等于()A f (x )=(x +3)2-1B f (x )=(x -3)2-1C f (x )=(x -3)2+1D f (x )=(x -1)2-13f (x )+2f (x1)=3x ,求f (x )的解析式为_________ 4f (x )=ax 2+bx +c ,假设f (0)=0且f (x +1)=f (x )+x +1,那么f (x )=_________5设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式6设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x-3)2+4,求当x ∈[1,2]时f (x )的解析式假设矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值7动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示PA 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图8函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数获得最小值,最小值为-5(1)证明f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式; (3)试求y =f (x )在[4,9]上的解析式参考答案1解析∵f (x )=34-x mx ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3答案A 2解析利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1答案B3解析由f (x )+2f (x 1)=3x 知f (x 1)+2f (x )=3x1 由上面两式联立消去f (x 1)可得f (x )=x 2-x 答案f (x )=x2-x4解析∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b 〕x +a +b =bx +x +1故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x 答案21x 2+21x 5解f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x 6解设x ∈[1,2],那么4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4(2)设x ∈[0,1],那么2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1〕可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0〕,(1+t ,0)(0<t ≤1),那么|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764, 当且仅当2t 2=2-t 2,即t =36时取等号∴S 2≤27864⨯即S ≤9616,∴S max =96167解(1)如原题图,当P 在AB 上运动时,PA =x ;当P 点在BC 上运动时,由Rt △ABD可得PA =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得PA =2)3(1x -+;当P 点在DA 上运动时,PA =4-x ,故f (x )的表达式为f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43( 4)32( 106)21( 22)10( 22x x x x x x x x x x(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进展分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0; 当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1〕; 当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x )故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x8(1)证明∵y =f (x )是以5为周期的周期函数,1124321oyxDPCDPCA∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0(2)解当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)(3)解∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0, 又y =f (x )(0≤x ≤1)是一次函数, ∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,f (1)=k ·1=k ,∴k =-3∴当0≤x ≤1时,f (x )=-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15, 当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5∴f (x )=⎩⎨⎧≤<--≤≤+-)96( 5)7(2)64( 1532x x x x。

函数解析式求解常用的方法

函数解析式求解常用的方法

函数解析式求解常用的方法1. 根据已知点的坐标求解:这是最常见的方法之一,假设已知函数通过点(x1, y1)、(x2, y2)、(x3, y3)等,可以根据这些点的坐标关系列出方程组,然后通过求解方程组的方法得到函数解析式。

例如,已知函数通过点(1, 3)和(2, 5),可以列出方程y=mx+b,然后代入已知点的坐标求解出m和b的值,从而得到函数的解析式。

2. 根据已知函数特点求解:有些函数具有特定的性质和规律,可以通过观察和推导来求解函数解析式。

例如,对于线性函数y=kx+b,可以通过观察斜率k和截距b的特点来确定函数的解析式。

类似地,对于二次函数、指数函数、对数函数等,也可以通过观察其特点来求解函数解析式。

3. 根据函数的定义域和值域求解:定义域是指函数的自变量的取值范围,值域是指函数的因变量的取值范围。

通过分析函数的定义域和值域的特点,可以得到函数解析式的一些限制条件。

例如,对于反三角函数y=sin^(-1)x,其定义域为[-1, 1],值域为[-π/2,π/2],因此函数的解析式必须满足这些条件。

4.根据已知函数的导数求解:导数是函数在其中一点的变化率,通过求解函数的导数可以得到函数的变化趋势和特点。

对于已知函数的导数,可以通过积分的方法求解出函数的解析式。

例如,对于导数为f'(x)的函数f(x),可以通过积分来求解出函数f(x)的解析式。

这是一种比较常用的方法,尤其对于复杂的函数,通过求导和求积分可以得到函数的解析式。

总之,求解函数解析式的方法有很多种,根据不同的函数特点和已知条件选择合适的方法可以更快地得到函数的解析式。

在实际应用中,还可以结合数值计算和图形分析等方法来求解函数解析式,以便更加全面地了解函数的性质和特点。

函数解析式的求解及常用方法-高中数学知识点讲解

函数解析式的求解及常用方法-高中数学知识点讲解

函数解析式的求解及常用方法1.函数解析式的求解及常用方法【知识点的认识】通过求解函数的解析式中字母的值,得到函数的解析式的过程就是函数的解析式的求解.求解函数解析式的几种常用方法主要有1、换元法;2、待定系数法;3、凑配法;4、消元法;5、赋值法等等.【解题方法点拨】常常利用函数的基本性质,函数的图象特征,例如二次函数的对称轴,函数与坐标轴的交点等;利用函数的解析式的求解方法求解函数的解析式,有时利用待定系数法.例 1:已知曲线y=x2+2x 在点(1,f(1))处的切线为l.求l 的方程.解:∵y=x2+2x,∴y'=2x+2,当x=1 时,y'=4 得切线的斜率为 4,所以k=4;所以曲线在点(1,3)处的切线方程为:y﹣3=4×(x﹣1),即 4x﹣y﹣1=0.故l 的方程为:4x﹣y﹣1=0我们从这个题当中可以发现求直线方程的一般规律,第一:求出函数的斜率,切线的斜率就是该点的导数,如果是两个点的情况则可以用两点法求出斜率;第二:找到直线必过的一个点,用点斜式即可求出.(当然还有其他的,比方说截距式)例 2:若函数y=f(x)与y=e x+1 的图象关于直线y=x 对称,则f(x)=解:函数y=e x+1 的图象与函数y=f(x)的图象关于直线y=x 对称,所以f(x)是y=e x+1 的反函数,x=lny﹣1(y>0)即f(x)=lnx﹣1,(x>0)故答案为:lnx﹣1,(x>0)本例题体现了根据函数图象或者两条曲线的关系来求另一条直线的途径,这里面根据关于y=x 对称,推知要求的是该函数的反函数,这也是常考的题型,望重视.【命题方向】求解函数解析式是高考重点考查内容之一,在三角函数的解析式中常考.是基础题.1/ 1。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。

以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。

函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。

明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。

二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。

例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。

又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。

三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。

在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。

例如,求解经济学中的需求函数、生长模型等。

四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。

例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。

又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。

五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。

通过列方程并求解,可以得到函数解析式中的一些未知系数。

例如,可以通过建立差分方程求解离散函数的解析式。

六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。

通过逐项求和,可以得到函数解析式的形式。

例如,可以利用幂级数展开来确定一些特殊函数的解析式。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。

函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。

常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。

一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。

例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。

这些函数可以根据已知的系数和常数来确定解析式。

例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。

例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。

对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。

例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。

三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。

通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。

例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。

四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。

例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。

例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。

综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。

通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式是用数学语言描述数学函数的一种方法。

它可以方便地表示函数的定义域、值域、性质等,并且能够通过函数图像和方程表达式等形式直观地展现函数的特征。

下面将介绍六种常用的方法来求函数的解析式。

1.常函数法:常函数法是求解常函数的一种简单方法。

常函数表示所有的输入值都对应着相同的输出值。

常函数的解析式通常形如"f(x)=c",其中c是常数。

常函数的定义域和值域都是全体实数值。

例如,函数f(x)=3就是一个常函数,它的输出始终为32.幂函数法:幂函数是一种具有形如y=x^a的解析式的函数。

幂函数法是通过给定了函数的一些特定点来推导出整个函数的解析式。

常见的幂函数包括正幂函数、负幂函数和倒数函数。

例如,给定函数f(x)通过点(1,2)和(2,4),我们可以通过观察得出f(x)=2^x。

3.分段函数法:分段函数是一种具有不同解析式在不同区间上的函数。

分段函数法是通过将函数的定义域按照不同的区间划分,然后在每个区间上分别确定函数的解析式来得到函数的解析式。

例如,函数f(x)=,x,在x<0时取值为-x,在x≥0时取值为x,这就是一个分段函数。

4.复合函数法:复合函数是通过使用一个函数的输出结果作为另一个函数的输入来得到的函数。

复合函数法是通过将两个或多个函数的定义域和值域相互组合,然后确定新函数的解析式来求解函数的解析式。

例如,给定函数f(x)=x+1和g(x)=2x,我们可以求得f(g(x))=2x+15.反函数法:反函数是指一个函数的自变量和因变量对换后得到的新函数。

反函数法是通过将一个函数的自变量和因变量交换位置,然后求解得到函数的解析式。

例如,给定函数f(x)=2x,我们通过交换x和y的位置,可以求得反函数f^(-1)(x)=x/26.曲线拟合法:曲线拟合法是通过已知函数的一些点来找到一个与这些点最接近的函数的解析式。

它可以应用于实验数据分析和模型建立等领域。

高中数学《求函数解析式常用的方法》

高中数学《求函数解析式常用的方法》

求函数解析式常用的方法求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。

以下主要从-----待定系数法和换元法进行分析一、待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。

小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。

类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x(k≠0);f(x)为二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③两根式:f(x)=a(x-x1)(x-x2)(a≠0)二、换元法换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例2:已知1)1,f x =+求()f x 的解析式。

小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。

注意:换元后要确定新元t 的取值范围。

1.已知二次函数)(x f 满足(1)1f =,(1)5f -=,图像过原点,求()f x 的解析式2.若x x x f 2)1(+=+,求()f x 的解析式3.若2(1)2f x x x +=+,求()f x 的解析式4.设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f5. 已知()21252f x x x +=++,求()f x 的解析式6. 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f 的解析式7. 已知(0)1,()()(21),f f a b f a b a b =-=--+ 求)(x f 的解析式8.设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y轴上的截距为1,2求f(x)的解析式被x轴截得的线段长为29.已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a,b为常数,求f(ax+b)的解析式10.已知a、b为常数,函数22()=求的值+++=++-x f ax b x x a bf x4x3,()1024,5。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法求函数解析式的四种常用方法: 1、设法化成一元一次方程,再通过检验判断一元一次方程的解的存在性;2、利用函数图像和单调性求函数解析式; 3、利用函数奇偶性来求解;4、利用“韦达定理”来求解。

2、根据图像的变化,利用“特殊值”求解。

例题:求抛物线的方程。

(1)已知抛物线y=mx+c的图象过点(-5, 5),且过原点(0, 0)。

(2)求y的最大值和最小值(3)若将抛物线y=mx+c上的点代入y=mx+c=x+m中,可得y的值为7,求x的取值范围。

例题:求圆的方程(1)已知直线y=4/x+6/y的图象与直线y=-3/2在坐标平面内的截距相等,且图象过点(0, 3)。

(2)求y的最大值。

(3)若将y=4/x+6/y上的点代入y=-3/2-x-8/3中,可得y的值为9,求x的取值范围。

3、利用奇偶性求解。

例题:已知函数y=5/6+12/13,当x=1时, y=-2/13;当x=5/6时, y=-7/23;当x=9时, y=-11/22。

试求y的解析式,并说明奇偶性。

4、利用“韦达定理”来求解。

例题:已知f(x) = x**2-12x+30.(1)若f(x) =0,求x的值; (2)已知f(x)的图象与y=8/5有两个不同的交点,且图象在y轴的第一、二象限,试求x的取值范围。

解析:(1)由f(x) =x**2-12x+30,即f(x)的图象为双曲线。

可设y=8/5;解得-6/5<y<-3/5,即-4/5≤y≤-3/5,由题意得-6/5≤y≤-3/5;解得-6/5≤y≤-3/5,则0<y≤-3/5;(2)将f(x)的图象移到(0, -1)之间,得到双曲线y=-1/4-4/3;在(-1, 1)内画出y=-1/4-4/3的图象,从而得到函数y=-1/4+4/3的图象;解得x≤1/3。

高中数学:求函数解析式的10种常见方法

高中数学:求函数解析式的10种常见方法

高中数学:求函数解析式的10种常见方法一、配凑法:给定$f(x+1)=x-3x+2$,求$f(x)$。

练1:设函数$f(x)=2x+3$,$g(x+2)=f(x)$,求$g(x)$。

练2:设$f(f(x))=x^2+2$,求$f(x)$。

练3:设$f(x+2)+f(x)=x^3+x$,求$f(x)$。

二、待定系数法:例1:如果反比例函数的图像经过点$(1,-2)$,那么这个反比例函数的解析式为$\frac{-2}{x-1}$,求$f(x)$。

练1:在反比例函数$y=\frac{k}{x}$的图像上有一点P,它的横坐标$m$与纵坐标$n$是方程$t^2-4t-2=0$的两个根,求$k$。

练2:已知二次函数$f(x)$满足$f(x+1)=f(x)+2x+8$,求$f(x)$的解析式。

练3:已知$f(x-2)=2x-9x+13$,求$f(x)$。

三、换元(或代换)法:例1:已知函数$f(\frac{1-x}{1+x})=\frac{1+x}{1-x}$,求:(1)$f(2)$的值;(2)$f(x)$的表达式。

练1:已知$f(x+1)=x+2x$,求$f(x)$及$f(x^2)$;练2:已知$f(x)=\frac{1}{2}x+\frac{1}{x}$,求$f(x+1)$.四、消去法:例1:设函数$f(x)$满足$f(x)+2f(\frac{1}{x})=x$,求$f(x)$.练1:已知$f(x)-2f(-x)=3x+2$,求$f(x)$.练2:已知定义在R上的函数$f(x)$满足$f(-x)+2f(x)=x+1$,求$f(x)$.练3:已知$f(x)+3f(-x)=2x+1$,求$f(x)$.练4:设函数$f(x)$满足$af(x)+bf(\frac{1}{x})=cx$(其中$a,b,c$均不为$0$,且$a\neq\pm b$),求$f(x)$.五、反函数法:例1:已知$f(a^2-x^2)=x$,求$f(x)$。

高中数学-求函数解析式的六种常用方法

高中数学-求函数解析式的六种常用方法

高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。

下面分别介绍这六种方法。

一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。

例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。

设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。

二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。

首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。

三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。

例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。

设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。

四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。

把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法

题目高中数学复习专题讲座求解函数解析式的几种常用方法高考要求求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有1 待定系数法,如果已知函数解析式的构造时,用待定系数法;2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解例1 (1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错技巧与方法 (1)用换元法;(2)用待定系数法解 (1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t因此f (t )=12-a a (a t -a -t ) ∴f (x )=12-a a (a x -a -x )(a >1,x >0;0<a <1,x <0) (2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a并且f (1)、f (-1)、f (0)不能同时等于1或-1, 所以所求函数为f (x )=2x 2-1 或f (x )=-2x 2+1 或f (x )=-x 2-x +1或f (x )=x 2-x -1 或f (x )=-x 2+x +1 或f (x )=x 2+x -1例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象 命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型 知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线 错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱 技巧与方法 合理进行分类,并运用待定系数法求函数表达式 解 (1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0) ∴0=-2+b 即b =2,∴f (x )=x +2(2)当-1<x <1时,设f (x )=ax 2+2∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2(3)当x ≥1时,f (x )=-x +2 综上可知 f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成例3已知f (2-cos x )=cos2x +cos x ,求f (x -1) 解法一 (换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4) 解法二 (配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4) 学生巩固练习1 若函数f (x )=34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A 3 B 23 C -23 D -3 2 设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( ) A f (x )=(x +3)2-1 B f (x )=(x -3)2-1 C f (x )=(x -3)2+1 D f (x )=(x -1)2-1 3 已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________ 4 已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________ 5 设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式 6 设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式 若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值 7 动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图 8 已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5(1)证明 f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式;(3)试求y =f (x )在[4,9]上的解析式 参考答案 1 解析 ∵f (x 34-x mx ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3 答案 A2 解析 利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1 答案 B 3 解析 由f (x )+2f (x 1)=3x 知f (x 1)+2f (x 1 由上面两式联立消去f (x 1)可得f (x )=x 2-x 答案 f (x )= x 2-x 4 解析 ∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0 又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1 故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x 答案 21x 2+21x 5 解 利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x 6 解 (1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1), 则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764, 当且仅当2t 2=2-t 2,即t =36时取等号 ∴S 2≤27864⨯即S ≤9616,∴S max =9616 7 解 (1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32( 106)21( 22)10( 22x x x x x x x x x x (2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1); 当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时, 即3<x ≤4时,S △ABP =21(4-x ) 故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x 8 (1)证明 ∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0(2)解 当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)(3)解 ∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3, f (1)=k ·1=k ,∴k =-3∴当0≤x ≤1时,f (x ) =-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15,当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5∴f (x )=⎩⎨⎧≤<--≤≤+-)96(5)7(2)64( 1532x x x x 课前后备注。

求函数解析式的6种方法

求函数解析式的6种方法

求函数解析式的6种方法函数解析式是描述函数行为的一种数学表示方法,可以通过不同的方法得到。

以下是六种常见的方法:1.点斜式:如果已知函数通过一点(x1,y1)且斜率为m,则可以使用点斜式来表示函数解析式。

点斜式的一般形式为y-y1=m(x-x1)。

例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=4(x-2)。

2.两点式:如果已知函数通过两个点(x1,y1)和(x2,y2),则可以使用两点式来表示函数解析式。

两点式的一般形式为(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

例如,如果已知函数通过点(1,2)和(3,4),则函数解析式可以表示为(y-2)/(4-2)=(x-1)/(3-1)。

3. 斜截式:如果已知函数通过y轴截距b且斜率为m,则可以使用斜截式来表示函数解析式。

斜截式的一般形式为y = mx + b。

例如,如果已知函数通过y轴截距为2且斜率为3,则函数解析式可以表示为y =3x + 24.一般式:一般式是一种通用的函数解析式表示方法,用Ax+By+C=0的形式表示。

其中A、B、C为常数。

一般式的选择通常取决于特定问题或需要。

例如,已知函数为3x+2y-6=0,则可以将其表示为一般式。

5.法线式:如果已知函数通过一点(x1,y1),则可以使用法线式来表示函数解析式。

法线式与点斜式类似,但斜率的倒数与点斜式斜率相反。

法线式的一般形式为y-y1=(-1/m)(x-x1),其中m为函数的斜率。

例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=(-1/4)(x-2)。

6.函数图形:通过观察函数的图形,可以得到函数的一些特征和规律,从而推断出函数解析式。

例如,通过观察函数图形的对称性、零点、极值点等,可以得到函数解析式的一些重要信息。

这种方法通常适用于简单的函数图形,对于复杂的函数图形可能需要借助计算机软件进行分析。

这些方法不是互斥的,可以根据具体问题和已知条件选择合适的方法来得到函数解析式。

高考数学复习考点题型解题技巧专题讲解05 函数解析式

高考数学复习考点题型解题技巧专题讲解05 函数解析式

高考数学复习考点题型解题技巧专题讲解第5讲函数解析式专项突破高考定位函数的表示有三种图像法、列表法、解析法,在高考中每年都会考察,解析式的考察一直是高考的重点,既有常规的求解析式求法融合在函数综合题中,也有新高考中的新形式,比如给图写式,给性质写式等,考察学生的多维的思维能力,对函数的整体把握。

考点解析(1)换元法求解析式(2)方程组求解析式(3)利用对称性周期性求解析式(4)给图辨析解析式(5)开放试题中的解析式(6)目标量(式)的函数解析式化分项突破类型一、换元法求解析式例1-1.(2022·全国·高三专题练习)已知函数f(x2+1)=x4,则函数y=f(x)的解析式是()A.()()21,0f x x xf x x x=-≥=-≥B.()()21,1C.()()21,0f x x x=+≥=+≥D.()()21,1f x x x【答案】B【分析】利用凑配法求得()f x解析式.【详解】()()()2242211211f x x x x +==+-++,且211x +≥, 所以()()22211,1f x x x x x =-+=-≥.故选:B.练.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .()2f x x =B .()2f x x =C .(cos )f x x =D .()x f e x = 【答案】AD【解析】对于A.令()2(0),t t t x f ===≥符合函数定义;对于B,令()2(0),t x f t t ==≥,设()2,4t f t ==±,一个自变量对应两个函数值,不符合函数定义;对于C,设cos ,t x =当2,1t =则x 可以取包括3π±等无数多的值,不符合函数定义;对于D.令())ln (0,x t e t f t t >==,符合函数定义.故选AD练(2022秋•渝中区校级月考)对任意x ∈R,存在函数f (x )满足( )A .f (cos x )=sin2xB .f (sin2x )=sin xC .f (sin x )=sin2xD .f (sin x )=cos2x【分析】根据函数定义,每个自变量只能对应唯一一个函数值.对于A 、B 、C 可采用取特殊值来排除,对于D 选项可利用换元法来求函数的解析式即可判断.【解答】解:对于A ,取x ,则cos x ;sin2x =1,∴f ()=1;若取x,则cos x;sin2x=﹣1,∴f()=﹣1;则f()=1又f()=﹣1,与函数的定义,“每个自变量x只能对应唯一一个函数值y”矛盾,故A错误;同理,对于B,取2x,则sin2x;sin x,∴f();若取2x,则sin2x;sin x,∴f(),故B错误;同理,对于C,取x,则sin x;sin2x,∴f();若取x,则sin x;sin2x,∴f(),故C错误;对于D,令sin x=t,cos2x=1﹣2sin2x=1﹣2t2,∴f(t)=1﹣2t2,满足函数定义.故选:D.类型二、方程组求解析式例2-1(2021·湖南·高三月考)已知函数()f x满足22()()326f x f x x x+-=++,则()A.()f x的最小值为2 B.x R∃∈,22432()x xf x++>C.()f x的最大值为2 D.x R∀∈,22452()x xf x++>【答案】D 【分析】先求得()f x ,然后结合二次函数的性质确定正确选项.【详解】因为22()()326f x f x x x +-=++(i ),所以用x -代换x 得22()()326f x f x x x -+=-+(ii ).(i )×2-(ii )得23()366f x x x =++,即22()22(1)1f x x x x =++=++,从而()f x 只有最小值,没有最大值,且最小值为1.()2222222221243243122()222222x x x x x x f x x x x x x x ++-++++===-<++++++, ()2222222221245245122()222222x x x x x x f x x x x x x x +++++++===+>++++++. 故选:D.练.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲()y f x =在点()()1,1f 处的切线方程是()A .21y x =-B .y x =C .32y x =-D .23y x =-+【答案】A【分析】先根据2()2(2)88f x f x x x =--+-求出函数()f x 的解析式,然后对函数()f x 进行求导,进而可得到()y f x =在点(1,(1))f 处的切线方程的斜率,最后根据点斜式可求切线方程.【详解】2()2(2)88f x f x x x =--+-,2(2)2()(2)8(2)8f x f x x x ∴-=--+--.2(2)2()441688f x f x x x x ∴-=-+-+--.将(2)f x -代入2()2(2)88f x f x x x =--+-,得22()4()28888f x f x x x x x =--+-+-,2()f x x ∴=,()2f x x '=,()y f x ∴=在(1,(1))f 处的切线斜率为2y '=,∴函数()y f x =在(1,(1))f 处的切线方程为12(1)y x -=-,即21y x =-.故选:A.练.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359x f x g x x x +=-++,则()()13f g -+=______. 【答案】223 【分析】先用列方程组法求出()f x 和()g x 的解析式,代入即可求解.【详解】因为()()224359x f x g x x x +=-++……① 所以()()224359x f x g x x x -+-=+++ 因为()f x 为偶函数,()g x 为奇函数,所以()()224359x f x g x x x -=+++……② ①②联立解得:()235f x x =+,()249x g x x =-+, 所以()()()22431331532392f g ⨯-+=-+-=+. 故答案为:223.练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又y=f(x)关于x=1对称,
故在x>1上,f(x)的对称轴为x=3且最小值为-1
答案 B
3 解析 由f(x)+2f( )=3x知f( )+2f(x)=3
由上面两式联立消去f( )可得f(x)= -x
答案 f(x)= -x
4 解析 ∵f(x)=ax2+bx+c,f(0)=0,可知c=0 又f(x+1)=f(x)+x+1,
题目 高中数学复习专题讲座:求解函数解析式的几种常用方法
高考要求
求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 k+s-5#u
重难点归纳
求解函数解析式的几种常用方法主要有 k+s-5#u
1、换元法:已知 的表达式,欲求 ,我们常设 ,从而求得 ,然后代入 的表达式,从而得到 的表达式,即为 的表达式。k+s-5#u
2、待定系数法
若已知 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得 的表达式。k+s-5#u
3、凑配法
若已知 的表达式,欲求 的表达式,用换元法有困难时,(如 不存在反函数)可把 看成一个整体,把右边变为由 组成的式子,再换元求出 的式子。k+s-5#u
例5 已知 ,且 求 的表达式。
解:令 ,由已知得: k+s-5#u
例6 (1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式
(1)证明 f(1)+f(4)=0;
(2)试求y=f(x),x∈[1,4]的解析式;
(3)试求y=f(x)在[4,9]上的解析式
参考答案
1 解析 ∵f(x)=
∴f[f(x)]= =x,整理比较系数得m=3
答案 A
2 解析 利用数形结合,x≤1时,
f(x)=(x+1)2-1的对称轴为x=-1,最小值为-1,
∴a(x+1)2+b(x+1)+0=ax2+bx+x+1,即(2a+b)x+a+b=bx+x+1
故2a+b=b+1且a+b=1,解得a= ,b= ,∴f(x)= x2+ x
答案 x2+ x
5 解 利用待定系数法,设f(x)=ax2+bx+c,然后找关于a、b、c的方程组求解,f(x)=
所以所求函数为
f(x)=2x2-1 或f(x)=-2x2+1 或f(x)=-x2-x+1
或f(x)=x2-x-1 或f(x)=-x2+x+1 或f(x)=x2+x-1
例7设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图像是经过点(-2,0),斜率为1的射线,又在y=f(x)的图像中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图像
4、消元法
若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
5、赋值法
在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法k+s-5#u
A f(x)=(x+3)2-1 B f(x)=(x-3)2-1
C f(x)=(x-3)2+1 D f(x)=(x-1)2-1
3 已知f(x)+2f( )=3xபைடு நூலகம்求f(x)的解析式为_________ k+s-5#u
4 已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_________
5 设二次函数f(x)满足f(x-2)=f(-x-2),且其图像在y轴上的截距为1,在x轴上截得的线段长为 ,求f(x)的解析式
6 设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式 若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图像上,求这个矩形面积的最大值 k+s-5#u

∴f(x)=-x2+2 k+s-5#u
(3)当x≥1时,f(x)=-x+2
综上可知 f(x)= 作图由读者来完成 k+s-5#u
例8已知f(2-cosx)=cos2x+cosx,求f(x-1)
解法一 (换元法)
∵f(2-cosx)=cos2x-cosx=2cos2x-cosx-1
∴f(4)=f(4-5)=f(-1),
又y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0
(2)解 当x∈[1,4]时,由题意,可设
f(x)=a(x-2)2-5(a≠0),由f(1)+f(4)=0
得a(1-2)2-5+a(4-2)2-5=0,
∴当0≤x≤1时,f(x)=-3x,
当-1≤x<0时,f(x)=-3x,
当4≤x≤6时,-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15,
当6<x≤9时,
1<x-5≤4,f(x)=f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5
∴f(x)=
7 解 (1)如原题图,当P在AB上运动时,PA=x;当P点在BC上运动时,由Rt△ABD可得PA= ;当P点在CD上运动时,由Rt△ADP易得PA= ;当P点在DA上运动时,PA=4-x,故f(x)的表达式为
f(x)=
(2)由于P点在折线ABCD上不同位置时,△ABP的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P点的位置进行分类求解
命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图像的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型
知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线
错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱
设A、B坐标分别为(1-t,0),(1+t,0)(0<t≤1 ,
则|AB|=2t,|AD|=-2t2+4,S矩形=2t(-2t2+4)=4t(2-t2),令S矩=S,
∴ =2t2(2-t2)?(2-t2)≤( )3= ,
当且仅当2t2=2-t2,即t= 时取等号
∴S2≤ 即S≤ ,∴Smax=
命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力
知识依托 利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域
错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错
技巧与方法 (1)用换元法;(2)用待定系数法 k+s-5#u
如原题图,当P在线段AB上时,△ABP的面积S=0;
当P在BC上时,即1<x≤2时,
S△ABP= AB?BP= (x-1);
当P在CD上时,即2<x≤3时,
S△ABP= ?1?1= ;当P在DA上时,
即3<x≤4时,S△ABP= (4-x)
故g(x)=
8 (1)证明 ∵y=f(x)是以5为周期的周期函数,
令u=2-cosx(1≤u≤3),则cosx=2-u
∴f(2-cosx)=f(u)=2(2-u)2-(2-u)-1=2u2-7u+5(1≤u≤3)
∴f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+4(2≤x≤4)
解法二 (配凑法)k+s-5#u
f(2-cosx)=2cos2x-cosx-1=2(2-cosx)2-7(2-cosx)+5 k+s-5#u
6 解 (1)设x∈[1,2],则4-x∈[2,3],
∵f(x)是偶函数,∴f(x)=f(-x),
又因为4是f(x)的周期,∴f(x)=f(-x)=f(4-x)=-2(x-1)2+4
(2)设x∈[0,1],则2≤x+2≤3,f(x)=f(x+2)=-2(x-1)2+4,
又由(1)可知x∈[0,2]时,f(x)=-2(x-1)2+4,
∴f(x)=2x2-7x-5(1≤x≤3),
即f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+14(2≤x≤4)
学生巩固练习
1 若函数f(x)= (x≠ )在定义域内恒有f[f(x)]=x,则m等于( )
A 3 B C - D -3
2 设函数y=f(x)的图像关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于( )
典型题例示范讲解
例1 如果 ,那么f(x)=______________________.
例2 设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y轴上的截距为1,被x轴截得的线段长为 ,求f(x)的解析式。
相关文档
最新文档