高等数学:第三章 第三节 泰勒公式

合集下载

第三节泰勒公式39页PPT

第三节泰勒公式39页PPT

Q
(n n

1
)
(
)

f (n1) ( )
(n 1) !
(在x0与x之间 )
Pn(n1)(x)0,Rn(n1)(x) f(n1)(x)
Rn(x)f(n(n 1)1()!)(xx0)n1
Qn(n1)(x)(n1)!
(在x0与x之间 )
证毕!
上页 下页 返回 结束
p8(x)比 p2(x)在更大的范围内更接近余弦函数.
上页 下页 返回 结束
(1) 若f(x)在x0连续 , 则有 xl im x0 f(x)f(x0) 由极限和无穷小量间的关系
f(x)f(x0)
f(x)f(x0)
用常数代替函 数误差太大
(2) 若f(x)在x0可导 , 由微分有
f(x 0 x ) f(x 0 ) f(x 0 ) x
余项 公式
Rn(x)f(n (n 1)1())!(xx0)n1
① 称为 f ( x)的 n 阶泰勒公式


.

x
0与x
之间)
公式 ② 称为n 阶泰勒公式的拉格朗日余项 .
证明: Pn(x) R n(x)f(x)P n(x)
上页 下页 返回 结束
余其项中f ( :x R ) n (x Pf n)(( xx ) 0 f() n ( n 1f )1( )( x )!0 () x x f x( (0x n )n 0 )n) ( !1 x0f)②(2((x !x0 )(x 在x0)xn x0与0)R2 xn之(x间①) )
f(x)coxs
p1(x)
y1
y=1
令:p8(0)f(0),求出a0 1
p8 (0)f(0) a1 0

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中的一个非常重要的定理,在各个领域都有广泛的应用。

它是用多项式来逼近函数的一种方法。

本文将介绍泰勒公式及其在高等数学课程中的应用。

1. 泰勒公式泰勒公式是由英国数学家泰勒于1715年发现的,它是逼近函数的一种方法。

若函数f(x)在点a处n阶可导,则在点a附近,函数f(x)可以写成一个n次多项式与余项(也称为剩余项)之和,即:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^(n)(a)(x-a)^n/n! +Rn(x)其中,Rn(x)为余项(或剩余项),满足:Rn(x) = f^(n+1)(c)(x-a)^(n+1)/(n+1)!其中,c是a和x之间的某个数。

泰勒公式可以用来求函数在某个点的近似值、函数的渐进线、优化函数等。

下面将介绍一些具体的应用。

2.1 函数的近似值通过泰勒公式,我们可以利用一个多项式来逼近函数,在一定范围内可以用这个多项式来近似表示原函数。

例如,在求解微积分中的极值时,我们需要求出函数的极点,但某些函数的极点难以求解,此时我们可以用泰勒公式来近似求解。

假设f(x)为要求的函数,那么根据泰勒公式我们可以得到f(x)的一个n次多项式,将它代入原函数中,可以求得原函数在某个点处的近似值。

2.2 函数的渐进线函数的渐进线是指在x轴两侧曲线逐渐趋近于一条直线的现象。

对于一些函数,如y=1/x,y=lnx,y=x^α等,它们的渐进线分别是y=0,y=x轴,y=0。

2.3 优化函数在数学中,优化是指在一系列可能的解中寻找最优解。

根据泰勒公式,我们可以用一个多项式来近似表示函数,然后利用它对函数进行优化。

例如,在求解函数最大值时,我们可以将函数用泰勒公式近似表示,然后将其一阶导数置为0,求得此时的x值,即为函数的最大值。

3. 结论泰勒公式在高等数学课程中是一个非常重要的概念,它可以用来逼近函数、求函数的渐进线、优化函数等,对于解决数学问题具有重要的作用。

第三节泰勒公式-PPT精选文档

第三节泰勒公式-PPT精选文档

从几何上来讲,就是在 x0 点的附近可以用曲线在该 点处的切线来拟合曲线。--------以直代曲 不足: 1、精确度不高;2、误差不能估计。
上页 下页 返回 结束
因此 对于精确度要求较高且需要估计误差时候 就必须用高次多项式来近似表达函数 同时给出 误差公式。 问:若f (x)在 x0 处二阶可导, 会不会有一个二次多项式来近似表示? 若f (x)在 x0 处 n 阶可导, 结果又会如何?
π
π
x
O
-1
p2(x)
. p8( x)比 p2(在更大的范围内更接近余弦函数 x)
上页 下页 返回 结束
lim f( x )f( x ) (1) 若 f (x )在 x 连续 , 则有 x 0 0 x
0
由极限和无穷小量间的关系
f ( x ) f ( x ) 0
f( x )f( x ) 用常数代替函 0
第三章
第三节 泰勒公式
一、问题的提出 二、泰勒公式
三、麦克劳林公式
四、泰勒公式的应用
上页 下页 返回 结束
一、问题的提出
1、关于多项式
2 n 1 n ( x ) a a x a x a x a x 多项式 P 是最 n 01 2 n 1 n
简单的一类初等函数. 由于它本身的运算仅是 有限项加减法和乘法,所以在数值计算方面, 多项式是人们乐于使用的工具. 因此我们经常用多项式来近似表达函数
O
x
上页 下页 返回 结束
八次逼近
2 8 p ( x ) a a x a x a x 八次多项式 8 逼近 0 1 2 8 y1 p y=1 1( x) f ( x ) cos x p (x) p ( 0 ) f ( 0 ) 令: ,求出a0 1 8

高数上3.3 泰勒公式

高数上3.3 泰勒公式

f ( x) f ( x0 ) f '( x0 )( x x0 )
f
(n)
(x 0
)
(x
x
)n
R
(x)
n!
0
n
用类似的证明方法,我们可以证得另外一种带有 皮亚诺余项的泰勒公式.
设 f (x (n) ) 存在,则 0
f ( x) f ( x0 ) f '( x0 )( x x0 )
例 2 求 f ( x) e x 的 n 阶麦克劳林公式.
解 f ( x) f ( x) f (n)( x) e x ,
f (0) f (0) f (0) f (n)(0) 1,
注意到 f ( (n1) x) e x 代入泰勒公式, 得
e
x
1
x
x2 2!
xn n!
ex (n 1)!
但这种近似等式存在明显不足, 首先是精度 不高,误差会比较大,其次是误差无法估计.
能否用其它较简单的曲线函数来近似替代 复杂的连续函数f(x)呢?
事实上多项式函数
Pn (x) a0 a1x a2 x2 an xn
是一种处处连续可导分析性质很好的函数, 在n>1时,它是一条连续的曲线函数。 因此在讨论较复杂的连续函数f(x)在某一个 邻域内的分析性质时,经常用多项式函数来 近似代替较复杂的连续函数。
f
(5)
(
)
6
2
.
例1 写出函数 f ( x) x3ln x 在 x0 1 处的四阶
泰勒公式.

f
(4) ( x)
6 x
,
f (4)(1) 6,
f
(5)(
x)
6 x2

《高等数学》第三章第三节

《高等数学》第三章第三节

(设 x 0)
x ex e Rn ( x ) x n 1 x n1 (0 1). ( n 1)! ( n 1)!
1 1 取x 1, e 1 1 2! n!
其误差
e 3 Rn . ( n 1)! ( n 1)!
思考:e –x=?
误差 Rn ( x ) f ( x ) Pn ( x )
首页 上页 返回 下页 结束
二、 Pn 和 Rn 的确定
分析:
近 似 程 度 越 来 越 好
1.若在 x0 点相交
y
y f ( x)
Pn ( x0 ) f ( x0 )
2.若有相同的切线
Pn( x0 ) f ( x0 )
(如下图)
首页 上页 返回 下页 结束
例如 取 x0=0, 当 x 很小时, e x 1 x , ln(1 x ) x
ye
y ex
x
y x
y ln(1 x )
y 1 x
o
首页 上页 返回
o
下页 结束
不足: 1、精确度不高; 2、误差不能估计.
问题: 寻找函数 P ( x ) ,使得 f ( x ) P ( x )
( n 1 )
( x)
f ( n1) ( ) Rn ( x ) ( x x0 )n1 (在x0与x之间) n 1!
f ( k ) ( x0 ) Pn ( x ) ( x x0 ) k k 0 k! 称为 按 的幂展开的 n 次近似多项式
n
f ( k ) ( x0 ) f ( x) ( x x 0 ) k Rn ( x ) k 0 k! 称为 按 的幂展开的 n 阶泰勒公式

高等数学-第三章-泰勒公式-同济大学

高等数学-第三章-泰勒公式-同济大学

代入⑹式, 得
ex 1 x 1 x2 2!
1 n!
xn
e x
n 1!
xn1
0 1.
因而相应的近似表达式为
ex 1 x 1 x2 2!
1 xn. n!
当 x 0 时, 相应的误差估计式为
Rn x
e x xn1
n 1!
ex xn1,
n 1!
如果取 x 1, 即得到 e的近似表达式:
2!
f n 0 xn.

n!
上式称为函数 f x的n阶麦克劳林多项式. 而相应的误
差估计式为
Rn x
M
n 1!
x
n1 .

例2 求出函数 f x ex 的n 阶麦克劳林展开式.
解 因 f x f x f x f n x ex ,
所以: f 0 f 0 f 0 f n 0 1,
来近似表示 f x 并给出误差的具体表达式.
为了使所求出的多项式与函数 f x在数值与性质方 面吻合得更好, 进一步要求 Pn x 在点 x0处的函数值以 及它的n 阶导数值与 f x在 x0处的函数值以及它的n
阶导数值分别相等. 即
Pnk x0 f k x0 k 0,1, ,n.
e 11 1 1 . 2! n!
例3

y
x
x
1

x0
2 处的三阶泰勒展开式.
解因
y x 1 1 , y2 2,
x 1 x 1
y
x
1
12
,
y2 1, y2 2,
y
2
6,
y4
x
x
4!
15
,
y4 2 24 4!

高等数学:第三节 泰勒公式

高等数学:第三节 泰勒公式

Rn( x)
f
(n1) ( )
n1 !
(
x
x0
)n1
Lagrange型余项
11
(2)n 0时,Taylor公式变为Lagrange中值公式:
f ( x) f ( x0 ) f ( )( x x0 ) (在x0与x之间)
(3)若对某固定的n,当x (a, b)时,| f ( (n1) x) | M ,则
第三节 泰勒(Taylor)公式
一、问题的提出 二、泰勒(Taylor)中值定理 三、常见函数的Taylor(Maclaurin)公式 四、简单的应用 五、小结 思考题 六、作业
1
一、问题的提出
复杂函数用简单函数逼近(近似表示) 多项式表示的函数很简单(只含有加、减、乘三种运 算,易于计算函数值,更易于在计算机上实现运算)
n k0
f
(k ) ( x0 k!
)
(x
x0 )k
.
6
当f ( x)在x0处有直到n阶的导数时,用f (k)( x0 )构造出
pn( x)的系数ak
f (k) ( x0 ) , 从而得 k!
n
pn ( x) ak ( x x0 )k ,
k0
这个多项式在x0点与f ( x)具有相同的函数值及相同 直至n阶的导数值,该多项式称为函数f ( x)在x0处的
f ( x0 )( x x0 )
f
( x0 ) ( 2!
x
x0 )2
f
(n)( x0 ) ( x n!
x0 )n
Rn ( x)
其中
Rn( x)
f (n1) ( ) (
(n 1)!
x
x0 )n1

泰勒原理知识点总结

泰勒原理知识点总结

一、泰勒公式泰勒公式是泰勒原理的重要内容之一。

对于一个光滑函数f(x),泰勒公式给出了在某一点a处的函数值和导数值的近似表达式。

泰勒公式的一般形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + R_n(x)其中,f^n(a)代表函数f在点a处的n阶导数,R_n(x)称为余项,用来表示近似值和实际值之间的误差。

当n趋向于无穷大时,余项R_n(x)趋于零,即泰勒公式能够准确地描述函数在点a附近的行为。

泰勒公式的应用范围非常广泛,它可以用来求函数值的近似解、计算函数在某一点的导数值、估计误差范围等。

泰勒公式的证明依赖于泰勒中值定理,它是微积分中的一个基本定理,用来描述函数在某一区间内的平均变化率。

泰勒中值定理的一般形式如下:f(b) - f(a) = f'(c)(b-a)其中,a和b是区间[a, b]内的两个点,c是在a和b之间的某个点,且f(x)是一个可微函数。

泰勒中值定理表明,对于一个可微函数f(x),在区间[a, b]内存在一个点c,使得区间两端的函数值的差等于该点处的导数值与区间长度的乘积。

泰勒中值定理是泰勒公式的重要基础,它为泰勒公式的推导提供了重要的支持。

二、泰勒级数泰勒级数是泰勒公式的一种特殊形式,它用无限项级数的形式来表达函数在某一点的近似值。

泰勒级数的一般形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...泰勒级数的收敛性是泰勒原理的一个重要性质,它决定了泰勒级数在某一点附近的逼近程度。

对于一个可微函数,如果它的泰勒级数在某一点收敛,那么该函数在该点附近可以用泰勒级数来近似表示。

高等数学第三章第三节泰勒公式课件.ppt

高等数学第三章第三节泰勒公式课件.ppt

当在 x0 的某邻域内 f (n1) (x) M 时
Rn (x)
M (n 1)!
x
x0
n1
Rn (x) o((x x0 )n ) (x x0 )
泰勒中值定理 :
阶的导数 , 则当
时, 有
f
(x0 )
f
(x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 n!
)
(
x
பைடு நூலகம்
x0
f
(x)
f
(x0 )
f
(x0 )(x x0 )
f
( )
2 (!
(x x0 )2
在 x0 与x
之间)
误差
( 在 x0 与x 之间) d f
在泰勒公式中若取 x0 0 , x (0 1) , 则有
f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
称为麦克劳林( Maclaurin )公式 .
2. 常用函数的麦克劳林公式 ( P140 ~ P142 )
ex , ln(1 x), sin x, cos x, (1 x)
3. 泰勒公式的应用 (1) 近似计算
(2) 利用多项式逼近函数 , 例如 sin x
(3) 其他应用
求极限.
思考与练习
计算
解: ex2 1 x2 1 x4 o(x4 ) 2!
由此得近似公式
f (x) f (0) f (0)x
若在f (公x) 式 成f (立x0的) 区f间(x上0 )(
x f
f (nx10)
()2x(!0) )fx22M(x!0,则) (x有误fx(0nn差))!(20估) 计xn式

高等数学3(6)泰勒公式课件

高等数学3(6)泰勒公式课件

)
(
x
x00
)n
f (n1) ( )
(n 1)!
(
x
x00
)n1
n阶泰勒公式 (在x0与x之间).
(5)在泰勒公式中, 若x0 0, 则介于0, x之间,故
可表为 x (0 1),这时的泰勒公式,即
按x的幂(在零点)展开的泰勒公式称为: 麦克劳林(Maclaurin,C.(英)1698-1746)公式
f (n1) ( )
(n 1)!

Rn ( x)
(x)
Rn(n) (n ) (n) (n )
R(n) n
(
n
(n) (n
) )
R(n) n
(
x0
)
(n)( x0 )
R(n1) n
(
)
(n1) ( )
(在x0与 n之间也在x0与x之间)
注意到
R ( n 1) n
(
x)
f
(n1) (x), (n1) (x) (n 1)!
注意:
Pn(k )( x0 ) f (k )( x0 )
11
泰勒公式
下面给出带皮亚诺(Peano)余项的泰勒公式. 定理1 (带皮亚诺(Peano)余项的泰勒公式) 设
1函数f (x)在x0点的某个邻域O x0 内有定义;
2 在此邻域内f (x)有直到n 1阶导数;
3 f n (x0)存在. 称为f ( x)按( x x0 )的幂展开的
应用
理论分析 近似计算
特点(1)易计算函数值;
(2)导数与积分仍为多项式;
(3)多项式由它的系数完全确定, 而其系数
又由它在一点的函数值及导数值确定.
用怎样的多项式去逼近给定的函数

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中一种常用的数学工具,它可以将一个函数在某点附近展开成无穷次幂的形式,从而方便我们进行运算和近似计算。

泰勒公式的应用非常广泛,下面将介绍一些泰勒公式的常见应用。

一、泰勒公式的定义及展开形式泰勒公式是数学中的一种近似计算方法,它是由英国数学家James Gregory和Brook Taylor独立发现的,所以又称为Gregory-Taylor公式。

对于任意可导的函数f(x),泰勒公式可以将其在某一点a附近展开成无穷次幂的形式,表示为:f(x)=f(a)+f'(a)(x-a)+f''(a) (x-a)^2/2!+f'''(a) (x-a)^3/3!+...+f^n(a)(x-a)^n/n!+Rnf'(a)表示函数f(x)在点a处的导数,f''(a)表示函数f(x)在点a处的二阶导数,f^n(a)表示函数f(x)在点a处的n阶导数,n!表示n的阶乘,Rn表示剩余项。

二、泰勒公式的应用1.函数的近似计算泰勒公式可以通过截取展开式的前几项,近似计算一个函数的极限。

特别是当函数在某点处的极限存在但不容易计算时,我们可以利用泰勒公式进行近似计算,从而得到更精确的结果。

3.函数的图像绘制由于泰勒公式将一个函数表示为一系列多项式的和,因此可以利用这个特性,将一个函数的图像近似为一系列多项式的图像的和。

如果我们截取展开式的前几项,就可以得到近似于原函数图像的图像,从而方便我们进行观察和分析。

4.误差估计剩余项Rn在泰勒公式中起到了重要的作用,它表示了使用泰勒公式近似计算的误差。

通过对剩余项的分析和估计,我们可以得到一个近似值的误差范围,从而判断近似结果的有效性,并进行误差的控制和优化。

泰勒公式是一种非常重要的数学工具,在高等数学的学习中具有广泛的应用。

它在函数的近似计算、极限计算、图像绘制和误差估计等方面都发挥着重要的作用。

高等数学同济7版精品智能课件-第3章-第3节-泰勒公式

高等数学同济7版精品智能课件-第3章-第3节-泰勒公式

第三节 泰勒公式
于是提出如下的问题:
设函数 f (x) 在含有 x0 的开区间内具有直到 (n + 1) 阶导数,试找出一个关于 (x – x0) 的 n 次多项式
pn (x) a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n 来近似表达 f (x),要求
f (x) pn (x) o((x x0 )n ) ,
第三节 泰勒公式
一、泰勒中值定理 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用
第三节 泰勒公式
一、泰勒中值定理
1. 问题的提出
在微分的应用中已经知道,当 |x – x0| 很小时,有近 似计算公式
f (x) f (x0) + f (x0)(x – x0) . 在上述近似计算公式的右边是一个 x – x0 的一次多 项式,因此其实质是用一个一次多项式来表达一个较 复杂的函数. 这种近似表达存在以下不足之处:
x0
)n
.
n 阶泰勒多项式
下面的定理将证明该多项式的确是所要找的 n 次多 项式.
第三节 泰勒公式
2. 泰勒(Taylor)中值定理
泰勒中值定理 如果函数 f (x) 在含有 x0 的某个开
区间 (a , b) 内具有直到 n + 1 阶的导数,则对任一 x
(a
,
b)
,有
f
(x)
f
(x0 )
f
所以
f (k) (0) 1 (k 0 , 1, 2 , , n).
例2 求出函数 f (x) = sin x 的 n 阶麦克劳林公式..
于是解可ex 得因1为sxinfx1(n)x(x2x)31!sxin3 1x51x!nxn5

高等数学 泰勒公式

高等数学 泰勒公式
f ( x) 0 洛必达法则:若 lim 为 或 型极限, x a g ( x ) 0 f ( x ) f ( x) f ( x ) 且 lim 存在或为无穷大,则 lim lim x a g ( x ) x a g ( x ) x a g ( x )
x 1 例:计算 lim ( ) x 1 x 1 ln x
f ( x ) f (0) f (0) x
f (0) 2 x 2! (n) f ( 0) n x Rn ( x ) n!
( x ) n 1 Rn ( x ) x ( n 1)! f
( n 1 )
f
( n)
( x) e .
2
x
f ( n 1 ) ( x ) e x
( x ) n 1 Rn ( x ) x ( n 1)! f
( n 1 )
1 3 sin x 0 x 0 x x 0 x 4 3! 1 5 1 7 x 0 x6 x 5! 7! ( 1)m 1 2 m 1 2m x 0 x R2 m ( x ) ( 2m 1)!
( 在x0与x之间) 拉格朗日中值公式.
2. Rn ( x ) o[( x x0 ) ].
n
佩亚诺型余项
Rn ( x ) lim n ? 0 x x ( x x ) 0
0
函数f(x)按x―x0的幂 展开的n阶泰勒公式: f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 )n Rn ( x ) n!
( 在 x0与x 之间) 1 2 f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( )( x x0 ) 2!

高等数学《中值定理-泰勒》课件

高等数学《中值定理-泰勒》课件

3x 4 2
1
3 4
x
2
1
1 2
(
3 4
x)
21!
1 2
(
1 2
1)
(
3 4
x)2
o(
x2
)
2
3 4
x
1 4
9 16
x2
o( x2 )
4 3x
2
3 4
x
1 4
196
x2
o( x2 )
原式
lim
x0
1 2
9 16
x2
o(
x2
)
x2
9 32
例7 证明
证明
1
1 x (1 x)2
1 x 1 1 (1 1)x2 2 2! 2 2
使其精确到0.005,试确定 x 的适用范围.
解 近似公式的误差
R3(x)
x4 cos( x)
4!
x4 24

x 4 0.005
24
解得 x 0.588
即当 x 0.588 时,由给定的近似公式计算的结果
能准确到 0.005 .
例6 求
用洛必塔法则
解 用泰勒公式将分子展到 x2 项,由于 不方便 !
由f(x)、Pn(x)的性质知,Rn(x)在(a ,b)内
有直至(n+1)阶的导数,且有
Rn(n1) (x) f (n1) (x)
而 Rn (x0) Rn(x0) Rn(n) (x0) 0
对于函数Rn(x)与(x-x0)n+1在以 x0、x 为端 点的区间上,应用柯西中值定理,则有
பைடு நூலகம்(x
x
x0
n1

《高等数学》课件第三章

《高等数学》课件第三章

07
错!
08
上面两式相比即得结论.
证: 作辅助函数
注意:
弦的斜率
切线斜率
A
B
C
柯西定理的几何意义:
例8. 设
至少存在一点
使
证: 问题转化为证


在 [0, 1] 上满足柯西中值
定理条件,
因此在 ( 0 , 1 ) 内至少存在一点 ,
使

证明
例9. 试证至少存在一点
使
证:
法1 用柯西中值定理 .
则 f (x) , F(x) 在 [ 1 , e ] 上满足柯西中值定理条件,

因此

分析:
使
1
法2 令则 f (x) 在 [ 1 , e ] 上满足罗尔中值定理条件,
2
则 f (x) 在 [ 1 , e ] 上满足罗尔中值定理条件,
3
使
4
因此存在
5
例9. 试证至少存在一点
例11.

试证存在
在 I 上为常数 .
08

09

10
拉格朗日中值定理的有限增量形式:
若函数
在区间(a , b)内每一点 x 处都有


最多相差一个常数,

(其中C为常数).
推论2:

01
证明对任意
02

03
证:
04
例5.
05
不妨设
06
证: 设
由推论可知
(常数)
令 x = 0 , 得

11
思考与练习
1. 填空题
1) 函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 泰勒公式
• 一、问题的提出 • 二、泰勒公式 • 三、简单应用
一、问题的提出
例如, 当 x 很小时, e x 1 x , ln(1 x) x
y ex
y ex
y x
y 1 x
o
y ln(1 x)
o
设 f ( x)在 x0处可导,则有 f ( x) f ( x0 ) f ( x0 )( x x0 ) o( x x0 ) 当 x x x0 较小时 f ( x) f ( x0 ) f ( x0 )( x x0 ) 若记 P1( x) f ( x0 ) f ( x0 )( x x0 ) 则 f ( x) P1( x), f ( x0 ) P1( x0 ), f ( x0 ) P1( x0 ),
f (n)( x0 ) Pn (n)( x0 )
Pn( x) a0 a1 ( x x0 ) a 2 ( x x0 ) 2 a n ( x x0 ) n
Pn'( x) a 1 2a 2 ( x x0 ) na n ( x x0 ) n1
Pn''( x) 2a 2 n (n 1)a n ( x x0 ) n2 Pn (n)( x) n!a n
, ,
因此所求 n 次多项式 Pn( x) 可表示为
Pn( x) a0 a1 ( x x0 ) a 2 ( x x0 ) 2 a n ( x x0 ) n
f (x0)
f '(x 0)( x
x0 )
f
''(x 0)( x 2!
x0 )2
f
(
n)( x n!
0)
(
x
x
0
)
n
问题2: 上述 Pn( x) 能否满足问题1 中的要求?
x n1
介于 0 与 x 之间
再令 x , 0 1
则余项又可以写成
Rn( x)
f
(n1)( x )
(n 1)!
x n1
0 1
三、简单的应用
例 1 求 f ( x) e x的 n 阶麦克劳林公式. 解 f ( x) f ( x) f (n) ( x) e x ,
f (0) f (0) f (0) f (n) (0) 1
f
''( x 2!
0)
(
x
x0
)
2
f
(n)( x 0) ( x n!
x0 )n
Rn( x)
(1)
当 x0 0 时, 泰勒公式成为
f (x)
f (0)
f '(0) x
f ''(0) x 2 2!
f
(n) (0) n!
x
n
Rn
(
x
)
称之为马克劳林公式。
其中
Rn( x)
f (n1)( )
(n 1)!
Pn( x)
f (x0) f '(x 0)( x x0 )
f
(n)( x 0) ( x n!
x0 )n
f
''(x 0)( x 2!
x0 )2
近似表达 f (x) ,产生的误差恰好是 | Rn( x) |
| Rn( x) |
|
f (n1)(
(n 1)!
)
(
x
x0
)
n1
|
(n
M 1)!
|
不足: 1、精确度不高; 2、误差不能估计.
问题1:试找一个关于 ( x x0 ) 的 n 次多项式 Pn( x) a 0 a 1 ( x x 0 ) a 2 ( x x 0 ) 2 a n ( x x 0 ) n 来近似表达 f (x) ,要求:
(1)误差 | Rn( x) | | f ( x) Pn( x)| 当 x x0 是比 ( x x0 ) n 高阶的无穷小
n!
f ' ( x0 ) ,
a2
f '' ( x0 ) 2
, ,
Pn( x) a0 a1 ( x x0 ) a 2 ( x x0 ) 2 a n ( x x0 ) n
a0 an
f ( x0 ) , a1 f (n) ( x0 ) ,
n!
f ' ( x0 ) ,
a2
f '' ( x0 ) 2
Pn( x0 ) a0 f ( x0 ) , Pn'( x0 ) a1 f '( x0 ) ,
Pn''( x0 ) 2a 2 f ''( x0 ) ,
Pn (n)( x0 ) n!a n f (n)( x0 ) 所以可求得
a0 an
f ( x0 ) , a1 f (n) ( x0 ) ,
注意到 f (n1) (x) e x
x
x0
|
n1
0
|
(
Rn( x) x x0 )
n
|
M | x x0 | (n 1)!
lim Rn( x) 0 x x0 ( x x0 ) n
即当 x x0时 Rn( x) 是比 ( x x0 ) n 高阶的无穷小
我们称公式
f (x)
f (x0)
f '(x 0)( x x0 )
f
''( x 2!
0)
(
x
x0
)
2
f
(n)( x 0) ( x n!
x0 )n
Rn( x)
(1)
为泰勒公式, 而称余项
Rn( x)
f (n1)(
(n 1)!
)
(xx0源自)n1为拉格朗日型余项。 而称
(2)
Rn( x) [o( x x0 )n]
为佩亚诺(Peano) 余项
f (x)
f (x0)
f '(x 0)( x x0 )
(2)具体给出误差 | Rn( x) | | f ( x) Pn( x)| 的表达式 (3) Pn( x) 与 f (x) 在 x0 处的函数值以及直到
n 阶的导数值依次相等,即
f ( x0 ) Pn( x0 ) , f '( x0 ) Pn '( x0 ) , f ''( x0 ) Pn ''( x0 )
二、泰勒(Taylor)中值定理
定理(泰勒中值定理)如果函数 f (x) 在含有点 x0 的区间 ( a , b ) 内有直到 n + 1 阶的连续导数,
则当 x 在 ( a , b ) 内取任何值时,f (x) 可以表示为
( x x0 ) 的一个 n 次多项式 Pn( x) 与一个余项 Rn( x)
之和,即 f ( x) Pn( x) Rn( x), 其中
Pn( x)
f (x0)
f '(x 0)( x x0 )
f
''( 2
x !
0)
(
x
x
0
)
2
f
(n)( x 0) ( x n!
x0 )n
Rn( x)
f (n1)(
(n 1)!
)
(
x
x0
)
n1
介于 x 与 x0 之间
由泰勒中值定理可知,若以 n 次多项式
相关文档
最新文档