5.3平行线的性质.ppt

合集下载

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

人教版七年级数学下册《平行线的性质》PPT教学课件

人教版七年级数学下册《平行线的性质》PPT教学课件

c
1
a
2 b
∵ a∥b, ∴ ∠1 = ∠2.
例1 如图,a∥b,∠1 = 60°,则∠2 的度数为 ( D)
A.90°
B.100°
C.110°
D.120°
分析:
a∥b
∠1 = ∠3 ∠2+∠3 = 180°
∠2 = 120°
1a 23
b
能否利用两条直线平行来证明内错角、同旁内角之间 的数量关系呢?
交,标出如图所示的角. 任选一组同位角度量,把结果
填入下表:
c
角 ∠1 ∠2 ∠3 ∠4 度数 角 ∠5 ∠6 ∠7 ∠8 度数
21 a 34
65 b 78
如果改变截线位置,你发现的结论是否还成立?
c 21 a 34 65 b 78
总结 性质1 两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
1. 如图,如果 AB∥CD∥EF ,那么 ∠BAC +
∠ACE + ∠CEF = ( C )
A. 180°
B. 270°
C. 360°
D. 540°
2. 如图,一条公路两次拐弯的前后两条路互相平行. 若第一次拐弯时∠B 是 142°,则第二次拐弯时∠C 是多少度?为什么? C B
解:∠C = 142°. 两直线平行,内错角相等.
两直线平行, 同旁内角互补.
3
4 2
a b
所以∠2+∠4 =
180°.
总结 性质3:两条平行线被第三条直线所截,同旁内角
互补.
简单说成:两直线平行,同旁内角互补.
c 1
3 42
a
b
请尝试转化 成几何语言.

新人教版七年下《5.3平行线的性质》(命题)ppt课件

新人教版七年下《5.3平行线的性质》(命题)ppt课件
( 2 )假命题中“结论不成立”是指“不能保 证 1 结论总是正确的” 如:“a的倒数一定是 ”, 显然,当a=0时 命题不正确,所以也是假命题。
a
(3)命题是一个判断,判断的结果就有对错 之分。因此就要引入真假命题,判断真、假命 题的大前提,首先是命题。 如:“延长直线AB”, 这本身不是命题,也不是假命题。
2.两个角的和等于平角时,这两个角互补。 3.等式两边加上同一个数或同一个整式,所 得的结果仍是等式。 4. 用直尺画一条线段.
5.同号两数相加,和的符号不变。 如果是同号两数相加,那么它们和的符 号不变。 6.能被5整除的数,末位一定是0。 如果一个数能被5整除,那么这个数的 末位一定是0。 7. 没有公共点的两条直线是平行线. 如果两条直线没有公共点,那么这两条直 线平行.
请判断以下命题的真假, 练习4: 如果是假命题,举出一个反例。 1.邻补角是互补的角。 2.互补的角是邻补角。 3.如果一个数能被2整除,那么这个数也 能被4整除。 4.在平面内,经过一点有且只有一条直线垂 直于已知直线 。
请判断以下命题的真假, 练习4: 如果是假命题,举出一个反例。 5.两个锐角的和是锐角。 6.同旁内角不互补,两直线不平行。 7.不相等的两个角不是对顶角。
判断下列语句是否是命题. (1)对顶角相等。 (2)等角的余角相等。 (3)邻补角互补吗? (4)画线段AB=CD。 (5)小于直角的角一定是锐角。 (6)2与3的和是4。
判断下列语句是否是命题. (7)当∠A是直角时,∠A没有余角。 (8)如果AB垂直于CD,那么组成的四个 角都是直角。 (9)延长线段AB到点C,使BC=AB。 (10)画∠AOB的平分线OC
8.垂直于同一直线的两直线平行。
9.平行于同一条直线的两条直线平行。

平行线的性质 优秀课件ppt

平行线的性质    优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a

七年级数学下册教学课件《平行线的判定与性质的综合运用》

七年级数学下册教学课件《平行线的判定与性质的综合运用》

(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).

《平行线的性质》相交线与平行线PPT免费课件(第2课时)

《平行线的性质》相交线与平行线PPT免费课件(第2课时)

课堂检测 拓广探索题
如图,AB∥CD,猜想∠A、∠P 、∠PCD的数
量关系,并说明理由.
解法一:作∠PCE =∠APC,交AB于E.
A
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
C
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD.
A
B
A
B
A E1
B
E
E1
E2
E2
E3
C
D
C
D
C
D
当有一个拐点时: ∠A+∠E+∠C= 360°
当有两个拐点时: ∠A+∠ E1 + ∠ E2 +∠C = 540° 当有三个拐点时: ∠A+∠ E1 + ∠ E2 +∠ E3 +∠C = 720°
探究新知 若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
【思考】在填写依据时要注意什么问题?
巩固练习
如图,AB∥EF,∠ECD=∠E,则∠A=∠ECD.
理由如下:
B
A
∵∠ECD=∠E, ∴CD∥EF( 内错角相等,两直线平行 又AB∥EF,
D
C
)E
F
∴CD∥AB(平行于同一直线的两条直线互相__平__行_ ).
∴∠A=∠ECD( 两直线平行,同位角相等 __ ).
= ∠ E1 +∠ E2
探究新知
若左边有n个角,右边有m个角,你能找到规律吗?
A
F1 F2 Fn-1
B E1

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等
2.在解题过程中,首先要根据所给图形正确判断截线与被截线,才
能准确地得到角与角之间的关系,从而正确地作出解答.
轻松达标
1.如图5.3-2,//.∠1 = 58∘ ,则∠2的度数为( A ) .
图5.3-2
A.58∘
B.112∘
C.120∘
D.132∘
2.如图5.3-3所示,直角三角尺的直角顶点放在直线
图5.3-6
6.如图5.3-7,已知//,直线分别交,于,,平分∠,
若∠1 = 62∘ ,求∠2的度数.
解:∵ //,
∴ ∠1 + ∠ = 180∘ .
又∵ ∠1 = 62∘ ,
∴ ∠ = 118∘ .
∵ 平分∠,
∴ ∠ = 59∘ .
人教版七年级数学下册课件
第五章 相交线与平行线
5.3.1 平行线的性质
(3课时)
第1课时 两直线平行,同位角相等
自主学习
自主导学
同位角
平行线的性质1:两条平行线被第三条直线所截,________相等.
简单说成:两直线平行,同位角相等.
典例分享
例 如图5.3-1所示,在三角形中,∠ = 70∘ ,
图5.3-4
4.如图5.3-5,若∠1 = ∠3,则下列结论一定成立的是( C ) .
图5.3-5
A.∠1 = ∠4
B.∠3 = ∠4
C.∠1 + ∠2 = 180∘
D.∠2 + ∠4 = 180∘
5.如图5.3-6,直线,被直线所截,已知//,
50 ∘ .
∠1 = 130∘ ,则∠2 =____
∴ ∠2 =
180∘
− ∠ =
180∘

35∘

数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

如图:已知a//b, 那么2与 3有什么关系呢?
c
a
2
3
b
1
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质 (1)两条平行线被第三条直线所截,同位角相等; (2)两条平行线被第三条直线所截,内错角相等; (3)两条平行线被第三条直线所截,同旁内角互补。
平行线的性质
:

授 者
路 井


王 杰
中 学
问题1:判定两条直线平行,我们学过 的方法有哪几种?
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.
问题2:根据同位角相等可以判定两 直线平行,反过来如果两直线平行同 位角之间有什么关系呢?内错角,同 旁内角之间又有什么关系呢?
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月2021/8/112021/8/112021/8/118/11/2021
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/8/112021/8/11August 11, 2021
得到
判定
得到
两直线平行
性质 已知
小结
平行线的性质
图形
同 位
a
角b
1 2 c
内 错
a3
角b
2
c
同 旁
a

42
角b
c

认识平行线ppt优秀课件

认识平行线ppt优秀课件

平行线理论的发展历程
随着数学的发展,人们对平行线 理论的认识逐渐深入。
中世纪欧洲数学家进一步探索了 平行线的性质和定理,并尝试解
决一些关于平行线的难题。
19世纪,非欧几里德几何学的 出现对平行线理论产生了深远影 响,人们开始认识到平行线并非
总是相交于无穷远点。
平行线在现代数学中的应用
01
02
03
02 平行线的应用
CHAPTER
几何作图中的应用
平行线在几何作图中具有重要作用, 可以用于确定图形的基本形状和尺寸 。
平行线还可以用于解决几何作图问题 ,例如通过平行线将一个复杂图形分 解为简单图形,便于分析和计算。
通过平行线,可以绘制出各种几何图 形,如三角形、四边形、圆形等,为 进一步研究几何性质和定理奠定基础 。
03 平行线的历史与发展
CHAPTER
平行线理论的起源
平行线理论最早可以追溯到古 希腊时期,当时数学家们开始 研究几何学,并探索了平行线 的性质和定义。
欧几里德在《几何原本》中首 次给出了平行线的定义,并研 究了它们的性质和定理。
古希腊数学家还发现了一些关 于平行线的有趣定理,如“平 行线间的角相等”和“同位角 相等”。
平行线具有传递性、同位角相等、内 错角相等、同旁内角互补等性质。
平行线的表示方法
用平行符号“//”表示两条直线平行 。
平行线的性质
同位角相等
内错角相等
两条平行线被一条横截线所截,同位角相 等。
两条平行线被一条横截线所截,内错角相 等。
同旁内角互补
平行线的性质的应用
两条平行线被一条横截线所截,同旁内角 互补,即两个同旁内角之和为180度。
在线性代数中,向量空间中的子空间可以由平行线定义,而线性变换可以用来研究平行线的 性质和行为。

人教版平行线的性质 PPT

人教版平行线的性质 PPT

基础巩固
随堂演练
1. 如图,由AB∥CD可以得到( C )
A.∠1=∠2
B.∠2=∠3
C.∠1=∠4
D.∠3=∠4
2. 如图,如果 AB∥CD∥EF ,那么∠BAC + ∠ACE + ∠CEF =( C )
A.180° B.270° C.360° D.540°
课堂小结
c
两直线平行,
1 2 43
课后作业
1. 从课后习题中选取; 2. 完成练习册本课时的习题。
1. 如图,已知直线 a,b 被直线 c 所截,以下 结论正确的有( )
①∠1 =∠2;②∠1 =∠3; ③∠2 =∠3;④∠3+∠4 = 180°. A.1个 B.2个 C.3个 D.4个
错解 D
正解 A
误区二 不能正确利用平行线的性质解题 2. 如图所示,AB∥CD,∠1=∠2. 试说明:
BE∥PF .
的内角和是180°吗?
解:(1)∠DAB = 44°. ∵DE∥BC, ∴∠DAB =∠B = 44° (两直线平行,内错角相等). (2)∠EAC = 57°. ∵DE∥BC,∴∠EAC =∠C = 57°(两直线 平行,内错角相等). (3)∠BAC = 180°-∠DAB -∠EAC = 180°- 44°- 57°= 79°.
简单说成:两直线平行,同旁内角互补.
例1 如图,是一块梯形铁片的残余部分,量 得∠A = 100º,∠B = 115º,梯形的另外两个角 分别是多少度?
解:因为梯形上、下两
底 AB∥CD ,根据“两直
线平行,同旁内角互补”, 可得∠A与∠D 互补,∠B 与∠C 互补.
于是∠D = 180º-∠A = 180º-100º= 80º,

人教版七年级数学下册《平行线的性质》公开课PPT

人教版七年级数学下册《平行线的性质》公开课PPT

判断下列说法是否正确 1.两直线被第三条直线所截,同位角相等。 2.两直线平行,同旁内角相等。 3.“内错角相等,两直线平行”是平行线的性质。 4.“两直线平行,同旁内角互补”是平行线的性质。
A1
D
B
C
1、如果AD//BC,根据___________
可得∠B= _______
2、如果AD//BC,根据___________
为∠1=85º
1
如图,梯子的各条横档互相 平行,∠1=1000,求∠2的度 数。
A
2 B
C
1D
如图,在汶川大地震当 中,一辆抗震救灾汽车 经过一条公路两次拐弯 后,和原来的方向相同, 也就是拐弯前后的两条 路互相平行.第一次拐的 角∠B等于1420,第二次 拐的角∠C是多少度?为 什么?
1420
AB
C
D

如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=100°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
已知:直线a∥b, ∠1=115°. 则: ∠2=___,理由:________.
若∠3= 115°,则:直线c与d有
把下列句子颠倒一下前后顺序,能得到 怎样的一句话?这句话正确吗?
1.对顶角相等;
2.如果两个数的和为0,那么这两个数互 为相反数; 3.我爱我的学生;
• 同位角相等,两直线平行 • 内错角相等,两直线平行 • 同旁内角互补,两直线平行
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补
何位置关系?并说明理由.
c

平行线的性质(一).教学课件

平行线的性质(一).教学课件

3、整理归纳: 平行线的性质:
性质1:两直线平行,同位角相等.
∵ a∥b ( 已知 )
∴ ∠1=∠2(两直线平行,同位角相等)
性质2:两直线平行,内错角相等.
∵a∥b( 已知 ) ∴ ∠1=∠3(两直线平行,内错角相等)
性质3:两直线平行,同旁内角互补.
∵a∥b( 已知 ) ∴ ∠1+∠4=180° (两直线 平行,同旁内角互补)
C
C
例2、如图,一条公路两次拐弯前后两条 路互相平行。第一次拐的角∠B是142゜, 第二次 拐的角∠C是多少度?为什么? ╯C B╭
解∵AB∥CD ∴∠B=∠C
又∵∠B=142° ∴∠B=∠C=142°
例3.如图:已知
1= 2
求证: BCD+ D=180 证明:如图 ∵ 1= 2(已知)
5.3.1 平行线的性质(一)
执教:南昌一中
罗文英
复习引入
1、已知直线AB 及其外一点P,画出 过点P的AB 的平行线。
P
A
B
2、回答:如图 (1)∠3=∠B,则EF∥AB,依据是 同位角相等,两直线平行 (2)∠2+∠A=180°,则DC∥AB,依据是 同旁内角互补,两直线平行 (3)∠1=∠4,则GC∥EF,依据是 内错角相等,两直线平行 (4)GC ∥ EF,AB ∥ EF,则GC∥AB,依据是 如果两条直线都与第三条直线平行,那么这两条 直线也互相平行.
BC ∴AD∥_____( 内错角相等,两直线平行 ) BC ∵AD ∥_____(已证)
∴ BCD+ D=180 (两直线平行,同旁内角互补 )
判定:已知角的关系得平行的关系. 推平行,用判定. 性质:已知平行的关系得角的关系. 知平行,用性质.

5.3.1平行线的性质优质课公开课一等奖课件省赛课获奖课件

5.3.1平行线的性质优质课公开课一等奖课件省赛课获奖课件
5.3.1
问题1
平行线的鉴定办法有哪三种?它 们是先懂得什么……、 后懂得什么?
同位角相等 内错角相等 同旁内角互补
两直线平行
问题2
根据同位角相等能够鉴定两直线 平行,反过来如果两直线平行同位角之 间有什么关系呢? 内错角,同旁内角之间又有什么关系呢?
观察两条平行直线被第三条直线所截 所形成的同位角的数量关系,从中你能发 现什么?
∴∠B=∠C ( 两直线平行,内错角相等 )
又∵∠B=142° (已知)
∴ ∠C= ∠B=142°( 等量代换)
例1
如图是梯形上底的一部分。 已经量得 A= 115°, D=100°,梯形另外两个角各是多少度?
A
D
B
C
解:∵AD//BC (已知) ∴ A + B=180° D+ C=180 °(两直线平行,同旁内角互补) ∴ B= 180 °- A =180 ° -115 ° =65 ° C=180 °- D =180 ° -100 ° =80 °
演示
结论
平行线的性质1(公理):
1 a 2
b
两条平行线被第三条直线所截,同位角相等。 简朴说成:两直线平行,同位角相等。
【应用格式】
∵ a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等.)
平行线的性质1(公理):两直线平行,同位角相等。
如图,已知:a// b
思考
那么2与3有什么关系?
回答 例如:如右图
∴ ∠3= 180°- ∠2= 180° -54°=126°
∴ ∠4=∠1=54°_(_两_直__线__平_行__,同__位_角__相_等)
2.如图,D是AB上一点,E是AC上一点,∠ADE=60 °, ∠B=

人教版初一数学 5.3.1 平行线的性质PPT课件

人教版初一数学 5.3.1 平行线的性质PPT课件

探究新知 两直线平行,内错角相等吗?
探究新知
已知:如图,直线l1//l2,∠1和∠2是直线l1,l2被 直线l3 截出的内错角.
求证:∠1=∠2. 证明:∵l1//l2(已知), ∴∠1=∠3(两直线平行,同位角相等). 又∵∠2=∠3(对顶角相等), ∴∠1=∠2(等量代换).
探究新知 两直线平行,同旁内角有什么关系?
课后作业
1.教材第20页 练习第1,2题,第22, 23页习题5.3第2,4,5题. 2.七彩作业.
探究新知
学生活动三【典例精讲】 例 如图,已知平行线AB,CD 被直线AE 所截. (1)从∠1=110°可以知道∠2是多少度吗?为什么? 解:∠2=110°. 理由:两直线平行,内错角相等.
探究新知
例 如图,已知平行线AB,CD 被直线AE 所截. (2)从∠1=110°可以知道∠3是多少度吗?为什么? 解:∠3=110°. 理由:两直线平行,同位角相等.
回顾复习
通过上题可知平行线的判定方法有什么? 1.同位角相等,两直线平行. 2.内错角相等,两直线平行. 3.同旁内角互补,两直线平行.
反过来,如果两条直线平行,那么同位角、内错 角、同旁内角各有什么关系呢?
探究新知
学生活动一【一起探究】 我们知道,同位角相等,两直线平行;反过来,
若两直线平行,同位角会有什么关系?
探究新知
例 如图,已知平行线AB,CD 被直线AE 所截. (3)从∠1=110°可以知道∠4是多少度吗?为什么? 解:∠4=70°. 理由:两直线平行,同旁内角互补.
拓展应用
如图,将一个三角尺的直角顶点放在直尺的一
边上,当∠1=35°时,∠2的度数为( C )
A.35°
B.45°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、归纳性质
性质1 两条平行线被第三条直线 所截,同位角相等.
简单说成:两直线平行,同位角相等。
3.练习
1 2
45° 60°
1
2
小结 平行四边形性质1:
两直线平行,同位角相等
请同学们思考 两条平行线的内 错角,同旁内角 之间有什么关系? 怎么验证?
3.推出,证明 如图,直线a ∥ b , c为截线, 能推出∠2和∠3的关系吗?
a 3 b 2 1
解:∵ a ∥ b (已知) ∴∠1=∠2( 两直线平行,同位角相等 ) ∵ ∠1=∠3( 对顶角相等)
∴∠2=∠3( 等量代换 )
3.推出,证明
性质2 两条平行线被第三条直线
所截,内错角相等.
简单说成:两直线平行,内错角相等。
3.推出,证明 如图,直线a ∥ b , c为截线, 能推出∠2和∠4的关系吗?
角 度数 角 度数
∠1 ∠5
∠2 ∠6
∠3 ∠7
∠4 ∠8
b
115° 65°
115° 65°
115° 65°
115° 65°
哪些是同位角? 度数有什么关系?
2.量一量
如图,直线a∥b,
(1)任意画一条 截线d,同样度量并 比较各对同位角的 度数,你的猜想还 成立吗?
65° 65°
c
2 3
1
a
4 6 5 b 7 8
解:因为梯形上、下两底AB与CD互相平行 根据“两直线平行,同旁内角互补” 可得∠A与∠D互补, ∠B与∠C互补。 于是 ∠D=180°- ∠A =180°-100°=80° ∠C=180°- ∠B =180°-115°=65° 所以梯形的另外两个角分别是80°,65°
3.练习
国家要修一条铁路,前方遇到障碍铁路 拐两次弯ห้องสมุดไป่ตู้原来的方向相同,即拐弯前 后的两条路平行,若第一次拐角为 150°,则第二次拐角为多少度?
小结
(1)平行线的性质是什么? (2)说说平行线的“判定”与“性质”有什么不同?
已知
同位角相等 内错角相等 同旁内角互补
得到 判定
两直线平行
性质 已知
得到
a 3 2 1 4
b
解:∵ a ∥ b (已知) ∴∠1=∠2( 两直线平行,同位角相等 ) ∵ 1+ 4=180°( 邻补角定义) ( ) 等量代换 ∴∠2+∠4=180°
3.推出,证明
性质3 两条平行线被第三条直线 所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补。
4.做一做
例 如图所示是一块梯形铁片的残余部 分,量得∠A=100º , ∠B=115°,梯形 另外两个角各是多少度?
平行线的性质
一、旧知梳理
平行线的判定 判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
?思考
如果两条直线平行被第三条直线截得的 同位角、内错角、同旁内角 又各有什么关系呢?
2.量一量
如图,直线a∥b,
c
2 3
1
4 6 5a 7 8
相关文档
最新文档