动量与角动量守恒
动量守恒与角动量守恒
动量守恒与角动量守恒动量守恒和角动量守恒是物理学中两个重要的守恒定律,它们是描述宇宙运行规律的基础。
它们解释了为什么我们可以看到各种不同的物体在相互作用之后能够保持稳定。
在这篇文章中,我们将探讨动量守恒和角动量守恒的意义以及它们在现实生活中的应用。
动量守恒是指在一个封闭系统中,总动量保持不变。
动量是物体的质量乘以其速度,因此当一个物体改变速度或方向时,它的动量也会相应地改变。
然而,根据动量守恒定律,一个物体的动量改变必须与其他物体的动量改变相互平衡。
例如,当两个物体发生碰撞时,它们之间的相互作用会导致它们的速度和方向发生变化,但两者的动量之和仍然保持不变。
动量守恒定律有许多重要的应用。
在汽车碰撞实验中,我们可以看到当两辆车相撞时,它们之间的动量转移导致了速度和方向的变化,但总动量保持恒定。
这就是为什么我们需要安全带和气囊来保护我们的身体,因为它们可以减缓碰撞时动量转移的速度,从而减少损伤。
另一个重要的守恒定律是角动量守恒。
角动量是物体的质量乘以其角速度,它描述了物体绕着某一点旋转的力量。
角动量是一个矢量量,有大小和方向。
根据角动量守恒定律,在一个封闭系统中,总角动量保持不变。
当一个物体改变自身的转动速度或转动方向时,它的角动量也会改变。
然而,根据角动量守恒定律,物体的角动量改变必须与其他物体的角动量改变相互平衡。
角动量守恒定律在许多领域都有应用。
例如,在体育比赛中,棒球运动员投掷球时,球的旋转速度会影响球的飞行轨迹。
这是因为球的角动量在飞行过程中保持不变,而角动量的改变会导致飞行轨迹的变化。
此外,角动量守恒也解释了为什么滑冰选手在做旋转动作时可以加快旋转速度,通过调整身体的姿势来改变角动量。
综上所述,动量守恒和角动量守恒是物理学中重要的守恒定律。
它们描述了在封闭系统中物体的运动规律,并给出了物体如何保持稳定的解释。
在实际生活中,动量守恒和角动量守恒定律的应用不胜枚举,从碰撞实验到运动比赛,都可以看到这两个守恒定律的影响。
理解动量守恒和角动量守恒定律
适用范围不同:动量守恒适用于质点、质点系等一维运动;角动量守恒适用于质点、刚体、质点系等三维运动。
守恒条件不同:动量守恒的条件是系统不受外力作用或所受外力矢量和为零;角动量守恒的条件是系统不受外力 矩作用或所受外力矩矢量和为零。
日常生活和科技领域中的应用
日常生活:动量守恒定律可以解释为什么车辆在撞击时会发生变形,从而提高安全性能。
科技领域:角动量守恒定律在航天工程中应用广泛,例如卫星轨道的设计和稳定控制。
日常生活:利用动量守空。
科技领域:角动量守恒定律在机器人设计中也得到了广泛应用,例如平衡机器人的设计和控制。
稻壳学院
理解动量守恒和角动量守恒定律
单击添加副标题
汇报人:XX
目录
01
动量守恒定律
02
动量守恒与角动量守恒的联系与区
03
别
04
深入理解动量守恒和角动量守恒定
05
律的意义
角动量守恒定律 应用场景和实例分析
01
动量守恒定律
定义和公式
动量守恒定律的定义:一个封闭系统在没有外力作用的情况下,其总动量 保持不变。 动量守恒定律的公式:p = mv,其中p表示动量,m表示质量,v表示速度。
深空探测:深入理解动量守恒和角动量守恒定律,推动深空探测技 术的发展。
对人类生活的影响和改变
促进科技发展: 动量守恒和角动 量守恒定律在物 理学、天文学等 领域的应用,推 动了科技的发展 和进步。
提高安全性:在 航空航天、交通 运输等领域,动 量守恒和角动量 守恒定律的应用 有助于提高设备 和系统的安全性 和稳定性。
角动量守恒定律和动量守恒定律
角动量守恒定律和动量守恒定律角动量守恒定律和动量守恒定律是物理学中两个重要的守恒定律,它们在描述物体运动过程中起着关键作用。
我们来了解一下角动量守恒定律。
角动量是描述物体旋转状态的物理量,它与物体的转动惯量和角速度有关。
当一个物体不受外力或外力矩的作用时,其角动量守恒。
简单来说,这意味着物体的角动量在运动过程中保持不变。
例如,在没有外力作用下,一个旋转的陀螺会保持自己的角动量,即使它的方向和速度发生改变。
接下来,我们来了解一下动量守恒定律。
动量是描述物体运动状态的物理量,它与物体的质量和速度有关。
当一个系统不受外力作用时,其总动量守恒。
简而言之,这意味着系统中各个物体的动量之和在运动过程中保持不变。
例如,在碰撞过程中,两个物体之间的动量可以相互转移,但总动量保持不变。
角动量守恒定律和动量守恒定律是基于牛顿力学的基本原理推导而来的。
牛顿第一定律指出,当一个物体受到的合力为零时,物体将保持静止或匀速直线运动。
而牛顿第二定律则表明,物体的加速度与作用在其上的力成正比,与物体的质量成反比。
基于这两个定律,我们可以推导出角动量守恒定律和动量守恒定律。
在物理学中,守恒定律是描述自然界中一些重要物理量保持不变的规律。
角动量守恒定律和动量守恒定律是这些守恒定律中的两个重要的例子。
它们不仅在经典力学中有广泛应用,而且在其他领域,如量子力学和相对论中也有重要的意义。
角动量守恒定律和动量守恒定律的应用非常广泛。
在物理学中,它们被用于解释各种运动现象,如行星的运动、天体的自转、杠杆原理等。
在工程学中,它们被用于设计和优化各种机械系统,如汽车发动机、航天器姿态控制系统等。
在生物学中,它们被用于研究动物的运动机制和人体的运动生理学。
在化学和物理化学中,它们被用于解释分子反应和化学平衡等现象。
角动量守恒定律和动量守恒定律是描述物体运动过程中重要的守恒定律。
它们在物理学的各个领域都有广泛的应用。
通过研究和理解这两个定律,我们可以更好地理解和解释自然界中的各种现象。
线性动量与角动量的守恒
线性动量与角动量的守恒动量是物体运动的重要属性,描述了物体运动的量和方向。
在物理学中,线性动量和角动量分别描述了物体在直线运动和旋转运动中的运动状态。
线性动量和角动量都是守恒的,意味着在特定条件下,它们的总量保持不变。
本文将详细介绍线性动量与角动量的守恒以及相关的原理和实例。
一、线性动量守恒线性动量是物体在直线运动中的运动状态的量度,可以用物体的质量和速度来描述。
线性动量的守恒原理是根据牛顿第三定律以及动量定义得出的。
根据牛顿第三定律,作用力和反作用力之间是相互作用的,它们的大小相等,方向相反。
线性动量的守恒意味着在一个系统中,所有物体的总动量在相互作用过程中保持不变。
线性动量守恒的数学表达式如下:总动量 = 物体1的动量 + 物体2的动量 + ... + 物体n的动量例如,当两个物体发生弹性碰撞时,假设物体1的质量为m1,初速度为v1,物体2的质量为m2,初速度为v2。
在碰撞之后,物体1的速度变为v1',物体2的速度变为v2'。
根据线性动量守恒的原理,我们可以得到以下方程:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'这个方程意味着碰撞前和碰撞后的总动量是相等的,线性动量在碰撞过程中得到守恒。
二、角动量守恒角动量是物体在旋转运动中的运动状态的量度,可以用物体的质量、速度和距离来描述。
角动量的守恒原理是根据角动量定义和转动惯量的概念推导出来的。
角动量的守恒意味着在一个系统中,物体绕某个固定轴旋转时,总角动量在相互作用过程中保持不变。
角动量守恒的数学表达式如下:总角动量 = 物体1的角动量 + 物体2的角动量 + ... + 物体n的角动量例如,当一个旋转的物体突然改变形状,缩小半径或转动速度变化时,根据角动量守恒的原理,总角动量保持不变。
这个原理可以应用于理解陀螺、滑冰运动员的旋转等现象。
三、线性动量与角动量守恒的关系线性动量与角动量守恒是物体运动的基本规律,它们之间存在着密切的关系。
质点的动量守恒与角动量守恒的条件
质点的动量守恒与角动量守恒的条件动量守恒与角动量守恒是物理学中重要的守恒定律之一,它们描述了质点在运动过程中的特定物理性质守恒的条件。
本文将分别介绍质点的动量守恒和角动量守恒的条件,并探讨它们在实际运用中的意义。
一、质点的动量守恒质点的动量是描述质点运动状态的一个重要物理量,它是质点质量与质点速度的乘积。
根据动量守恒定律,当一个质点在一个封闭系统中运动时,其动量在运动过程中保持不变。
即质点受到的合外力为零时,质点的动量守恒。
要满足质点的动量守恒,需要满足以下条件:1. 封闭系统:质点的动量守恒条件只适用于封闭系统,即系统内外没有外力作用。
在封闭系统中,质点的动量在运动过程中保持不变。
2. 合外力为零:质点在运动过程中,受到的合外力为零。
这意味着没有外部力对质点产生作用,质点的动量不会发生改变。
质点的动量守恒条件在实际应用中具有重要意义。
例如,在碰撞问题中,根据动量守恒定律可以计算出碰撞前后质点的速度和质量,从而研究碰撞过程中的能量转化和动量转移。
此外,在火箭发射、导弹飞行等领域,动量守恒定律也被广泛应用于动力学分析和设计中。
二、质点的角动量守恒角动量是描述质点绕某一固定轴旋转的特定物理性质,它是质点质量与质点相对于轴的距离的乘积。
根据角动量守恒定律,当一个质点绕一个固定轴旋转时,其角动量在旋转过程中保持不变。
即质点受到的合外力矩为零时,质点的角动量守恒。
要满足质点的角动量守恒,需要满足以下条件:1. 固定轴:质点的角动量守恒条件只适用于绕一个固定轴旋转的情况。
在固定轴旋转的过程中,质点的角动量保持不变。
2. 合外力矩为零:质点在旋转过程中,受到的合外力矩为零。
这意味着没有外部力矩对质点产生作用,质点的角动量不会发生改变。
质点的角动量守恒条件在实际应用中也具有重要意义。
例如,在天体运动中,行星、卫星等绕恒星或者行星旋转,根据角动量守恒定律可以推导出行星的轨道半径和角速度之间的关系,从而研究天体运动的规律。
动量守恒定律和角动量守恒定律辨析
动量守恒定律和角动量守恒定律辨析
牛顿动量守恒定律:牛顿动量守恒定律认为,物体对外力的作用与动量的变化之间有一定的联系,也就是说,动量守恒定律要求物体作用外力时,物体的动量平衡不变。
角动量守恒定律:角动量守恒定律认为,物体受到外力作用时,可能会受到旋转扭转影响,产生角动量,角动量的总量也是不变的。
牛顿动量守恒定律和角动量守恒定律之间具有明显的不同:
1、它们所涉及的物理量不同:牛顿动量守恒定律涉及的物理量是物体的动量,而角动量守恒定律涉及的是物体的角动量。
2、它们的守恒的内容不同:牛顿动量守恒定律要求物体作用外力时,物体的动量平衡不变,而角动量守恒定律则要求物体受到外力作用时,可能会受到旋转扭转影响,产生角动量,角动量的总量也是不变的。
3、它们的应用领域不同:牛顿动量守恒定律可以用来描述物体作用外力后的运动状态,而角动量守恒定律则可以用来描述物体在受到外力作用后,受到正好用来反作用外力的转动情况。
从上面的对比可以看出,牛顿动量守恒定律和角动量守恒定律各有其适用的范围,牛顿动量守恒定律适合于物体作用外力后的线性运动学状态,而角动量守恒定律则可以描述物体受到外力
作用后受到旋转变形的状态,能够更好地说明物体之间的相互作用状态。
动量和角动量守恒定律
动量和角动量守恒定律动量和角动量守恒定律是物理学中两个重要的守恒定律,它们在描述物体运动过程中起到了关键作用。
本文将对动量和角动量守恒定律的概念、原理以及应用进行详细的讲解。
一、动量守恒定律动量是物体运动的核心概念,它定义为物体质量与其速度的乘积。
动量的守恒定律表明,在一个系统中,如果没有外力作用,系统的总动量将保持恒定不变。
动量守恒定律可以用数学公式表示为:Σmv = 常数,其中Σ表示对系统中所有物体的动量求和,m为物体的质量,v为物体的速度。
例如,考虑一个闭合系统,系统中有两个物体A和B,它们分别具有动量m₁v₁和m₂v₂。
根据动量守恒定律,如果没有外力作用,则系统的总动量为m₁v₁ + m₂v₂,即系统动量守恒。
动量守恒定律的应用非常广泛。
在交通事故中,当两车相撞后,虽然车辆的速度和方向可能发生了改变,但整个系统的总动量保持不变,这可以解释为车辆之间的动量传递。
二、角动量守恒定律角动量是描述物体旋转运动的重要物理量,它定义为物体的转动惯量与其角速度的乘积。
角动量的守恒定律表明,在一个系统中,如果没有外力矩作用,系统的总角动量将保持恒定不变。
角动量守恒定律可以用数学公式表示为:ΣIω = 常数,其中Σ表示对系统中所有物体的角动量求和,I为物体的转动惯量,ω为物体的角速度。
例如,考虑一个旋转的物体系统,系统中有多个物体,它们分别具有角动量I₁ω₁、I₂ω₂等。
根据角动量守恒定律,如果没有外力矩作用,则系统的总角动量为I₁ω₁ + I₂ω₂,即系统角动量守恒。
角动量守恒定律的应用也非常广泛。
例如,在天体运动中,行星绕太阳旋转的过程中,由于没有外力矩作用,它们的角动量保持不变。
三、动量和角动量守恒定律的应用动量和角动量守恒定律在解决物体运动问题时具有广泛的应用。
1. 弹性碰撞在弹性碰撞中,两个物体在碰撞过程中会发生能量和动量的交换,但整个系统的动量守恒。
通过运用动量守恒定律,可以计算出碰撞前后物体的速度和动量的变化。
动量守恒和角动量守恒定律——清华大学物理
质点系动量守恒
ac 0 vc const .
vcx 分动量守恒;
const .
15
质点系动量守恒和质心匀速运动等价!
例 由质心运动定理重解前斜面退行距离例
解:地面参考系,对(m+M)
m M
F 0, v v 0
mx MX x 0 mM
x x
由相对运动 v x v Vx x
3.3 质心和质心运动方程
一. 质心(center of mass)
概念的提出:研究质点系总体的运动 定义:质量中心(简称质心)的位矢
rc
m r m r
i 1 N i i
N
N
质心坐标:
m
i 1
i 1
i i
m
i
xc
mi xi
i 1
由牛顿第三定律,再加已有部分重力,得
N 3gh
*
10
例2 已知:M,m,θ,L,各接触面光滑 初始静止 求: m自顶滑到底, M的位移 解:建坐标如图
m
M L θ
Fix 0, MV x mvx p0 x 0
i
x
“-”表明位移 m v 解得 V 与x轴反向。 mM t m t ' mLcos X Vx d t dt v x 0 m M 0 m M 11
一. 力的冲量 impulse 定义: d I f d t f 的元冲量 (t ) I ( t ) f d t f 的冲量 是过程量,反映力的时间积累。 SI: N· s
2 1
二. 质点的动量定理
dp F F dt d p dt
动量和角动量守恒的条件(一)
动量和角动量守恒的条件(一)动量和角动量守恒的条件一、动量守恒的条件动量,简单来说就是物体在运动过程中的惯性。
动量守恒是指在一个封闭系统中,如果没有外力作用,系统内各个物体的动量总和保持不变。
在一个完全封闭的系统中,动量守恒可以用以下条件来描述: - 系统内所有物体的质心不受外力作用,即系统内的惯性系内质心速度为常数。
- 系统内的物体之间不存在外力和内力的作用。
二、角动量守恒的条件角动量指的是物体围绕某一轴心旋转时的性质。
角动量守恒是指在没有外力矩作用的情况下,系统的总角动量保持恒定。
在一个封闭系统中,角动量守恒可以用以下条件来描述: - 系统内没有外力矩作用,即系统内的惯性系内角动量为常数。
- 系统内的物体之间不存在外力矩和内力矩的作用。
三、动量和角动量守恒的联系动量守恒和角动量守恒是两个基本的物理定律,它们有着密切的联系。
在一个封闭系统中,当除了运动的物体外还存在旋转的物体时,同时满足动量守恒和角动量守恒的条件的话,我们可以得到以下结论:- 系统内物体的质心速度和角速度是恒定的。
- 系统内物体的质心加速度和角加速度为零。
这样的结论告诉我们,在某些情况下,动量和角动量守恒是同时存在的。
通过研究动量和角动量守恒的条件,我们可以更好地理解自然界中的物理规律,为我们的创作和研究提供了重要的理论依据。
四、总结动量守恒和角动量守恒是物理学中非常重要的概念,它们分别描述了物体在运动过程中的惯性和旋转过程中的性质。
在封闭系统中,当没有外力作用或外力矩作用时,系统的总动量和总角动量分别保持不变。
通过深入研究动量和角动量守恒的条件,我们可以更好地理解自然界中的物理规律,并在创作和研究中应用这些规律。
同时,动量和角动量守恒也为我们解释了许多自然现象和工程应用提供了重要的理论基础。
因此,对于每一位资深的创作者来说,深入理解和应用动量和角动量守恒的条件是非常重要的。
五、动量和角动量守恒的应用动量和角动量守恒的条件在日常生活和工程领域中有许多实际应用,下面列举几个重要的例子:1. 飞行器的稳定在设计飞行器时,动量和角动量守恒的条件被广泛应用。
动量守恒角动量守恒动能守恒牛顿第三定律
动量守恒动量守恒,是最早发现的一条守恒定律,它渊源于十六、七世纪西欧的哲学思想,法国哲学家兼数学、物理学家笛卡儿,对这一定律的发现做出了重要贡献。
如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来。
简介动量守恒定律,是最早发现的一条守恒定律,它渊源于十六、七世纪西欧的哲学思想,法国哲学家兼数学、物理学家笛卡儿,对这一定律的发现做出了重要贡献。
观察周围运动着的物体,我们看到它们中的大多数终归会停下来。
看来宇宙间运动的总量似乎在养活整个宇宙是不是也像一架机器那样,总有一天会停下来呢?但是,千百年对天体运动的观测,并没有发现宇宙运动有减少的现象,十六、七世纪的许多哲学家都认为,宇宙间运动的总量是不会减少的,只要我们能够找到一个合适的物理量来量度运动,就会看到运动的总量是守恒的,那么,这个合适的物理量到底是什么呢?法国的哲学家笛卡儿曾经提出,质量和速率的乘积是一个合适的物理量。
速率是个没有方向的标量,从第三节的第一个实验可以看出笛卡儿定义的物理量,在那个实验室是不守恒的,两个相互作用的物体,最初是静止的,速率都是零,因而这个物理量的总合也等于零;在相互作用后,两个物体都获得了一定的速率,这个物理量的总合不为零,比相互作用前增大了。
后来,牛顿把笛卡儿的定义略作修改,即不用质量和速率的乘积,而用质量和速度的乘积,这样就得到量度运动的一个合适的物理量,这个量牛顿叫做“运动量”,现在我们叫做动量,笛卡儿由于忽略了动量的矢量性而没有找到量度运动的合适的物理量,但他的工作给后来的人继续探索打下了很好的基础。
线性动量与角动量的守恒定律
线性动量与角动量的守恒定律在物理学中,我们经常会遇到线性动量和角动量的概念。
线性动量通常与物体的质量和速度有关,而角动量则与物体的转动和转动惯量有关。
这两个概念都有一个共同的特点,即它们在某些情况下是守恒的,即它们的值不会改变。
首先来看线性动量的守恒定律。
线性动量可以简单地理解为物体运动的“动力”大小。
根据牛顿第二定律,物体的动量变化率与施加在物体上的力成正比。
当物体所受力为零时,其动量不会发生改变,即它的动量保持守恒。
在日常生活中,我们可以通过一个简单的实验来说明线性动量的守恒定律。
如果我们用一个弹簧射击一枚小球,当弹簧松开时,小球会向前弹出,而弹簧会向后弹回。
从能量守恒的角度来看,当小球获得能量时,弹簧失去了相同大小的能量。
根据动能和势能的转化,小球获得了一定的动量,而弹簧获得了相同大小且方向相反的动量。
由于系统总动量守恒,小球和弹簧的动量之和在整个过程中保持不变。
接下来我们来看角动量的守恒定律。
角动量可以简单地理解为物体的转动能力大小。
当物体所受力矩为零时,其角动量不会发生改变,即它的角动量保持守恒。
一个典型的例子是滑冰运动员的旋转动作。
当运动员做旋转动作时,他们的身体会迅速转动起来。
由于转动惯量的不同,他们的转动速度和转动半径也不同。
然而,在旋转过程中,旋转运动员的角动量保持守恒。
这是因为旋转运动员在旋转的过程中并不受到外力的作用,所以不存在力矩。
根据角动量守恒定律,角动量的大小和方向保持不变。
线性动量和角动量的守恒定律不仅在经典力学中成立,在更高级的物理理论中也得到了广泛的应用。
例如,根据量子力学的基本原理,线性动量和角动量都与物质的波动性质有关。
在粒子级别上,它们仍然保持守恒。
线性动量和角动量的守恒定律对于我们的日常生活和科学研究具有重要的意义。
它们帮助我们理解物体的运动和旋转,指导我们设计更高效的机械系统,解释各种自然现象。
同时,它们也为我们提供了一种准确测量物体运动和旋转的工具。
动量,机械能,角动量守恒的条件
角动量守恒,动量守恒,机械能守恒,冲量守恒条件
动量守恒的条件:外力可以存在,但合外力为零;系统内力可以存在,但是他们合内力零。
机械能守恒条件:重力、弹力等势能性质的力以外的合力为零。
但是重力和弹力势能可以与动能相互转换。
角动量守恒条件:有名动量矩守恒,合外力矩为零,合外力不一定为零。
描述物体运动状况的有2条路线,牛顿发展的是动量变化等于合外力与时间乘积。
莱布尼兹发展的动能的变化是合外力与位移乘积。
2条发展路线争论了好多年,最后才知道2条路线都可以描述物体运动状态。
但是,后来发现动量不能描述旋转物体的状态,一个静止的圆盘和一个旋转圆盘,他们动量都为0,但是一个物体静止一个物体旋转无法区分,所以用角动量来描述物体的状态。
产生角动量守恒定律。
但是“系统所受合冲量为零”就是指整个过程总冲量和为零,不一定是每个微小的时间里都冲量为0,所以一般不说冲量守恒哦~。
动量与角动量守恒
阳沿椭圆轨道运动,太阳在此椭圆的一个 焦点上。行星受力为有心力,取力心太阳 为坐标原点,则行星相对于原点的角动量 守恒
dr
rdt
0
r
在dt时间内,
扫过的面积为
d A 1 rdr sin
2
1
r
dr
2
单位时间扫过面积为
d A 1 r dr 1 r
dt 2 dt 2
2)M , I , 应是对同一轴而言的
例4、一轴承光滑的定滑轮,质量M,半径 R,一根不可伸长的轻绳,一端固定在定 滑轮上,另一端系有质量为m的物体,求 定滑轮的角加速度。
T T
选择轴承为参照系。
对定滑轮
TR I 1 mR2
2
对物块
mg T ma
a R 轻绳不可伸长,物块的加速
度等于轮缘的切向速度
2gR sin
2g sin
R
L Rm Rm 2gR sin
(3)法3. 角动量定理
mgRcos dL dL dt d
dL L
d mR2 LdL m2gR3 cosd
L
LdL
m2 gR3 cosd
0
0
L mR 2gR sin
L mR2
2g sin
R
例2、证明绕太阳运动的一个行星,在相同 的时间内扫过相同的面积。
§4.2 刚体的定轴转动
个质转元轴都位以置相不同变的,角刚速体度上的和每角
加速度绕定轴作圆周运动。
一、 角速度矢量:
O’
O
角速度 d
dt
角加速度
d d2
dt dt2
距轴r处的质元
速度 v r
圆周运动中的动量守恒和角动量守恒定律
圆周运动中的动量守恒和角动量守恒定律在物理学中,圆周运动是指物体沿着一个圆形轨道运动。
当物体进行圆周运动时,存在着动量守恒和角动量守恒的定律。
动量守恒和角动量守恒是物理学中的基本原理之一,也是研究运动规律和力学原理的重要工具。
一、动量守恒定律动量守恒定律是指在没有外力作用的情况下,物体的总动量保持不变。
对于圆周运动而言,动量守恒定律可以适用于各个时刻。
动量是物体的质量乘以速度,即p=mv,其中p表示物体的动量,m 表示物体的质量,v表示物体的速度。
在圆周运动中,物体沿着圆形轨道做运动,速度的方向会不断改变,但动量的大小保持不变。
这是因为当物体在圆周运动中改变速度方向时,速度的变化会导致动量方向的改变,从而使得总动量保持不变。
二、角动量守恒定律角动量守恒定律是指在没有外力矩作用的情况下,物体的总角动量保持不变。
对于圆周运动而言,角动量守恒定律同样适用。
角动量是物体的转动惯量乘以角速度,即L=Iω,其中L表示物体的角动量,I表示物体的转动惯量,ω表示物体的角速度。
在圆周运动中,物体围绕圆心旋转,角速度的大小和方向会随着物体位置的变化而改变,但角动量的大小保持不变。
这是因为当物体在圆周运动中改变角速度时,角速度的变化会导致角动量的方向的改变,从而使得总角动量保持不变。
三、动量守恒和角动量守恒的应用动量守恒和角动量守恒定律在物理学中有着广泛的应用。
在圆周运动中,这两个定律具有重要的意义。
首先,动量守恒定律可以用来分析各个时刻物体的速度和动量之间的关系。
当物体进行圆周运动时,可以根据动量守恒定律计算物体在不同位置处的速度,从而探究物体在圆周运动中的动态变化。
其次,角动量守恒定律可以用来解释物体的稳定性和旋转运动的特点。
在圆周运动中,当物体的角动量守恒时,可以得出物体旋转的稳定性条件,进一步推导出绕心轴转动的物体的运动规律。
此外,动量守恒和角动量守恒还可以应用于机械装置和工程设计中。
通过分析物体在圆周运动中的动力学特性,可以优化设计并提高装置的效率和稳定性。
第2章 动量和角动量
L
质点的动量p和 矢径r不互相垂直
L
O
m r
2
p
O
90
0
r
90 0
p
m
d
L pr mvr mr
L pd pr sin mvr sin 2 mr sin
用叉积定义
角动量
v
L
m r
p
r
方向用右手螺旋法规定 角动量方向
一、质点的动量定理
1、动量 (描述质点运动状态,矢量)
P=m v
大小:mv 单位:kgm/s
方向:速度的方向 量纲:MLT-1
2、冲量 (力的作用对时间的积累,矢量) I 方向:速度变化的方向 单位:Ns
(1) 常力的冲量
量纲:MLT-1
I Ft
(2) 变力的冲量
F1 t1
F2 t 2
Mv ( M dM )(v dv) dM(v u) Mv vdM Mdv dMdv vdM udM
Mdv udM 0 v M dM M0 v v0 u ln dv u M v0 M0 M
§3.5 质心**
n 个质点组成质点系的质量中心
Fz dt
t1
t2
4、质点的动量定理的应用
例:逆风行舟 f u
m
v
p1
p
p2
例1、质量为2.5g的乒乓球以
10 m/s 的速率飞来,被板推
v2 30o 45o n
挡后,又以 20 m/s 的速率飞
出。设两速度在垂直于板面 的同一平面内,且它们与板 面法线的夹角分别为 45o 和
动量与角动量
注:质心位矢rc 与坐标系的选择有,
其相对于质点系内各质点的相对位 置是不会随坐标系的选择而变化的, 即质心是相对于质点系本身的一个 特定位置。
i
m
二. 质心的计算
z
C
rC
y x
图3.4 N个质点组成的质点系
质量连续分布的物体 (微元?)
xdm xC m ydm yC m zdm zC m
y
dm
0
x
y
b
xC
xdm
m
O
x dx
动力学30
a
x
例3.9一段均匀铁丝弯成半圆形,其半 径为R,求半圆形铁丝的质心。
作业:3.12
3.5 质心运动定理
一、质心运动定理
rC
mi ri
i
m
dri mi drc dt i vc dt m
mi vi
矢量法
I F t (mv1 ) 2 (mv2 ) 2 2mv1mv2 cos120 3mv
3mv 3 0.14 40 F 8.1103 N t 1.2 103
例3.3一辆装煤车以v=3m/s的速率从煤斗下面通过,每秒 落入车厢的煤为△m=500kg。如果使车厢的速率保持 不变,应用多大的牵引力拉车厢?
以F 表示喷出气体对火箭体推力
根据动量定理: Fdt ( M dm) (v dv) v Mdv
又由 udM Mdv 0 可得Mdv udM udm dm F u dt 上式表明,火箭发动机的推力与燃料燃烧速率
(dm / dt )及喷出气体的相对速度u成正比。
系统动量与角动量的守恒
系统动量与角动量的守恒动量是物体运动的重要物理量,描述了物体运动的速度和质量之间的关系。
在物理学中,动量被定义为物体的质量乘以其速度。
而系统动量则是指一个系统中所有物体动量的矢量和。
在一个封闭系统中,系统动量是守恒的,即系统内的物体之间的相互作用不会改变系统的总动量。
系统动量的守恒可以通过牛顿第三定律来解释。
牛顿第三定律指出,对于每一个物体所受到的力,都存在一个与之大小相等、方向相反的作用力。
这意味着,在一个封闭系统中,物体之间的相互作用力总和为零。
因此,系统动量在相互作用过程中保持不变。
例如,考虑一个由两个物体组成的系统,一个质量为m1,速度为v1,另一个质量为m2,速度为v2。
在相互作用之前,两个物体的动量分别为p1=m1v1和p2=m2v2。
根据动量守恒定律,相互作用之后,两个物体的动量之和仍然保持不变。
即p1'+p2'=p1+p2,其中p1'和p2'分别是相互作用之后两个物体的动量。
系统动量的守恒在许多实际应用中起着重要作用。
例如,在碰撞过程中,系统动量的守恒可以用来预测碰撞后物体的速度和方向。
根据动量守恒定律,可以通过测量碰撞前物体的质量和速度,来计算碰撞后物体的运动状态。
除了系统动量的守恒外,角动量的守恒也是物理学中的重要概念。
角动量是描述物体旋转运动的物理量,定义为物体的质量乘以其旋转速度和旋转半径的乘积。
在一个封闭系统中,角动量是守恒的,即系统内的物体之间的相互作用不会改变系统的总角动量。
角动量的守恒可以通过角动量守恒定律来解释。
根据角动量守恒定律,一个物体的角动量可以通过改变其旋转速度或旋转半径来改变。
然而,系统内的物体之间的相互作用力总和为零,因此系统的总角动量保持不变。
在实际应用中,角动量的守恒常常用于解释物体的旋转运动。
例如,考虑一个旋转的陀螺。
在没有外力作用下,陀螺的角动量保持不变。
当陀螺开始旋转时,它的角动量增加,但由于没有外力作用,陀螺的角动量保持守恒。
动量和角动量守恒原理
动量和角动量守恒原理一、动量守恒原理动量是描述物体运动状态的物理量,它等于物体的质量乘以速度,用数学公式表示为:动量= 质量× 速度。
动量守恒原理指的是,在一个孤立系统中,系统的总动量在相互作用过程中保持不变。
动量守恒原理可由牛顿第二定律推导得到。
根据牛顿第二定律,物体的加速度与施加在物体上的合外力成正比,与物体的质量成反比。
当物体的质量不变时,可以得到物体的加速度与物体受到的合力成正比。
根据牛顿第三定律,物体受到的合力等于其他物体对它施加的力的矢量和。
因此,在相互作用过程中,物体受到的合力等于其他物体对它施加的力的矢量和,根据物体的加速度与物体受到的合力成正比的关系,可以得到物体的加速度等于其他物体对它施加的力的矢量和除以物体的质量。
将物体的加速度代入动量的定义式中,可以得到物体的动量在相互作用过程中保持不变。
动量守恒原理在物理学中有广泛的应用。
例如,在碰撞过程中,根据动量守恒原理可以计算物体碰撞前后的速度和质量。
在火箭发射过程中,根据动量守恒原理可以计算火箭推进剂的质量和速度,以及火箭的推力。
在运动中的摩擦力、阻力等问题中,也可以利用动量守恒原理进行分析和计算。
二、角动量守恒原理角动量是描述物体旋转状态的物理量,它等于物体的惯性力矩乘以角速度,用数学公式表示为:角动量= 惯性力矩× 角速度。
角动量守恒原理指的是,在一个孤立系统中,系统的总角动量在相互作用过程中保持不变。
角动量守恒原理可由角动量定理推导得到。
根据角动量定理,物体的角动量的变化率等于物体所受的力矩。
当物体受到的合力矩为零时,物体的角动量保持不变。
在一个孤立系统中,由于没有外力矩的作用,因此系统的总角动量保持不变。
角动量守恒原理同样在物理学中有广泛的应用。
例如,在刚体的旋转运动中,根据角动量守恒原理可以计算刚体旋转的角速度和惯性力矩。
在天体运动中,根据角动量守恒原理可以计算行星的轨道半径和角速度。
在自行车、滑板等运动装置的稳定性问题中,也可以利用角动量守恒原理进行分析和计算。
动量守恒角动量守恒机械能守恒三者之间的关系
动量守恒、角动量守恒和机械能守恒三者之间的关系概述在物理学中,动量、角动量和机械能是三个重要的物理量,它们分别描述了物体的运动状态、旋转状态和能量状态。
这三个物理量都有一个共同的特点,就是在一定的条件下,它们都是守恒的,即不随时间变化。
这些条件通常是指系统不受外力或外力矩的作用,或者外力或外力矩对系统做的功或做的角功为零。
这些条件也可以称为系统是孤立的或封闭的。
动量守恒、角动量守恒和机械能守恒是物理学中最基本和最普遍的定律之一,它们反映了自然界中存在的一种对称性和不变性。
这些定律可以用来分析和解决许多物理问题,例如碰撞、转动、振动、轨道运动等。
在这篇文章中,我们将介绍这三个定律的含义、推导和应用,并探讨它们之间的关系。
动量守恒定义动量是一个矢量物理量,表示物体运动状态的大小和方向。
动量的定义公式为:→p=m→v其中,→p是动量,m是质量,→v是速度。
根据定义,可以看出动量与质量和速度都有关,如果物体的质量或速度发生变化,那么动量也会发生变化。
动量守恒定律是指,在一个孤立系统中,系统内各个物体之间相互作用时,系统总动量不随时间变化,即:→P=n∑i=1→p i=常数其中,→P是系统总动量,→p i是第i个物体的动量,n是系统内物体的个数。
根据定义,可以看出动量守恒定律要求系统内没有外力作用,或者外力对系统做的功为零。
推导动量守恒定律可以从牛顿第二定律推导出来。
牛顿第二定律是指,在一个惯性参考系中,物体所受合外力与其质量乘以加速度成正比,即:→F=m→a其中,→F是合外力,→a是加速度。
根据定义,可以看出合外力与加速度都是矢量物理量,方向相同。
对于一个孤立系统中的任意两个物体A和B,根据牛顿第三定律(作用力与反作用力大小相等、方向相反),我们有:→FAB=−→F BA其中,→F AB是A对B的作用力,→F BA是B对A的反作用力。
由于系统内没有其他外力作用,所以这两个力就是系统内各个物体所受的合外力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
i 1 n
n
ix
0时
m v
i 1 n
n
i ix
Px 常量;
当 当
F
i 1 n
iy
0时 0时
m v
i 1 n
i iy
Py 常量; Pz 常量。
F
i 1
iz
m v
i 1
i iz
某方向所受合外力为零,则此方向的总动 量的分量守恒。
(2)当外力远小于内力,且可以忽略不计时(如 碰撞、爆炸等),可近似应用动量守恒定律;
第二章 动量与角动量守恒
2.1 动量定理 动量守恒定律
2.1.1 动量 冲量和质点动量定理
d mv dP 根据牛顿第二定律F dt dt
改写为
Fdt dP
冲量
dJ Fdt
当作用时间为 t0 t ,合外力的冲量为
t I Fdt P P0
单位: 牛顿 米N m
有心力 : r // F , 作用线穿过定点 对力心的力矩总是为零。
SI
2.2.3 质点角动量定理
dL d d mv dr r mv r mv dt dt dt dt r F v mv
t0
即
I mv mv0
质点在运动过程中,所受合外力的冲量等于
质点动量的增量。——质点动量定理
说明:
(1)冲力、平均冲力
当两个物体碰撞时,它们相互 作用的时间很短,相互作用的力很 大,而且变化非常迅速,这种力称 F 为冲力。
F
F t
平均冲力
F
1 t t0
t
t0
t t0
t
Fi fi dt mvi mvi 0
对所有质点求和,得
n n n n Fi f i dt mi vi mi vi 0 t0 i 1 i 1 i 1 i 1
因为
i 1
n
fi 0
L r mv
由于
于是得
v mv 0, r F M dL M dt
质点所受的合外力矩等于它的角动量对时间的变化率。
2.2.4
质点系角动量定理
dL M dt
质点系对某点的角动量对时间的变化率等 于质点系中各质点所受外力对同一点的力矩的 矢量和。——质点系角动量定理
t
t0
Fi dt P P0 P
n i 1
系统所受合外力的冲量等于系统总动量的增 量。——质点系动量定理
2.1.3
如果
动量守恒定律
Fi 0
mi vi 常矢量
i 1 n
则有
当系统所受合外力为零时,系统的总动量保持
不变。
——动量守恒定律
说明: (1)直角坐标系中的分量式:
R
O
N
m A mB
v
mg
r
解 小球受到重力和圆 环对其支撑力, 但支撑 力对圆心的力矩为零. 选圆心为参考点, 由质 点角动量定理
dL dL d dL mgR cos dt d dt d
小球对环心的角动量为
L mR 2
代入上式可得 两边积分
g d cos d R
0
d
0
g cos d R
2g sin , L mR 2 m R 2 gR sin R
N
x
l
T
m
T P
dm
dP
x
重力
M P xg l
M xg T N 0 l M N xg T l
N
m
(1)
得
T
P
求 T :取 dt 内落至桌面的 dx 为 研究对象,受力如图所示:
T
dm
dP
M 重力 dP dxg l
由动量定理: 得
若 M 0,
L 常矢量 质点系角动量守恒
例1 如图所示,一半径为R 的光滑圆环置于铅直平 面内。有一质量为 m 的小球穿在圆环上,并可在圆 环上滑动。开始时小球静止于圆环上的 A 点,该点 在通过环心的水平面上,然后从点 A 开始下滑。设 小球与圆环间的摩擦略去不计,求小球滑到 B点时对 环心的角动量和角速度。
(2)当质点作圆周运动时,
2
, L rP rmv
(3)单位(SI): 千克 米2 秒1 kg m 2 s 1
L
O
v
r
m
2.2.2
定义: 大小:
力矩
M r F
M Fr sin M来自Od r
F
方向: 右手螺旋法则。
(3)是最普遍、最重要的定律之一。适用于宏观 和微观领域。
例 一质量均匀的柔软细绳铅直地悬挂着,绳的下端刚
好触到水平桌面上。如果把绳的上端放开,绳将落到桌面上。 试证明,在绳下落的过程中任意时刻作用于桌面上的压力等 于已落到桌面上绳重量的三倍。
证
O 如图建立坐标系 假定 t 时刻,已落到桌面上 的绳长为 x ,质量为 m=M x / l, 以此为研究对象。受力如图所示:
Fdt
o
t0
t
t
(2)只适用于惯性系。
(3)SI制中,冲量的单位
牛顿 秒N s
动量的单位是 千克 米 秒1 kg m s 1
F n 个质点质点系,第 i 个质点受合外力为 i ,受
合内力为
2.1.2
质点系的动量定理
fi 。
根据质点动量定理,对第 i 个质点,有
即
M T dt 0 vdx l M dx M 2 T v v l dt l M M 2 gx 2 xg l l M T T 2 xg l
2
将(2)式代入(1)式得
即
M M M N xg 2 xg 3 xg l l l M N N 3 xg l
2.2 角动量定理
2.2.1 质点的角动量
质点对惯性参考系中某一 固定点O 的角动量。
角动量守恒
L
O
L r P r mv
大小:
P
m
r
L rP sin mrvsin
方向 : 右手螺旋法则。
说明:
(1)角动量必须指明对那一个固定点而言。