第十一章压杆的稳定_工程力学
压杆稳定(工程力学课件)
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67
第11章压杆的稳定性分析与设计
d
d
2
d
2 = 0
+
令 2 =
有
d 2
这样一个二阶常系数线性微分方程,其通解为
w
= sin + cos
式中,A、B为待定常数,可以通过压杆边界条件确定
w(0) = 0, w(l) = 0
大连大学
33
11.2.1 两端铰支的压杆
将边界条件w(0) = 0和 w(l) = 0代入 = sin + cos ,可求得
FF
F
F
F
F
F
F<Fcr
Fcr
Δ
F´
临界点
F>Fcr
Δ
O
稳定
大连大学
不稳定
22
11.1 弹性平衡稳定性的基本概念——
11.1.3 三种类型的压杆的不同临界状态
大连大学
23
11.1.3 三种类型的压杆的不同临界状态
▪ 不是所有受压杆件都会发生屈曲,也不是所有发生屈曲的压杆都是弹
性的。理论分析与试验结果都表明,根据不同的失效形式,受压杆件
形,或称为临界状态(critical state)。处于临界状态的平衡构形,有
的是稳定的,有的是不稳定的,也有的是中性的。
▪ 非线性弹性稳定理论已经证明了:对于细长压杆,临界平衡构形是稳
定的。
▪ 使杆件处于临界状态的压缩载荷称为临界载荷(critical load),用Fcr
表示。
大连大学
21
11.1.2 临界状态与临界载荷
=0
sin = 0
要使 sin = 0, 或者sin 必等于零。但若等于零,且由 = 0可知此
第十一章 压杆失稳解析
例2 压缩机的活塞杆受活塞传来轴向压力F=100kN的作用,活塞杆 的长度L=1000mm,直径d=50mm,材料为45钢,σs=350MPa, σp=280MPa,E=210GPa,a=460MPa,b=2.57MPa,安全系数 [nst]=4,试进行稳定性校核。
•
解:
l
i
l
d
11000 50
80
p
l
i
1、对于粗短杆,属于强度问题,可选用高强度材料 2、对于中柔度杆,选用高强度杆可适当提高压杆的稳定性 3、对于大柔度杆,由于各种钢材的弹性模量差别不大, 选用高强度钢对于提高压杆的稳定性作用不大
压杆稳定
弹性稳定与不稳定的静力学准则
平衡—压杆的两种平衡形式:
F<Fcr : 直线平衡状态
F>Fcr :
弯曲平衡状态 (在扰动作用下)
压杆稳定
FP<FPcr :在扰动作用下,直线平 衡形式转变为弯曲平衡形式,扰 动除去后,能够恢复到直线平衡 形式,则称原来的直线平衡形式 是稳定的。
FP>FPcr :在扰动作用下,直线 平衡形式转变为弯曲平衡形式, 扰动除去后,不能恢复到直线 平衡形式,则称原来的直线平 衡形式是不稳定的。。
粗短杆: 不发生失稳,而发生 屈服(< s ) 强度问题
压杆稳定
稳定性计算
临界应力校核:
cr
nst
安全系数校核:
nst
cr
nst
• 例2 压缩机的活塞杆受活塞传来轴向压力 F=100kN的作用,活塞杆的长度L=1000mm, 直径d=50mm,材料为45钢,σs=350MPa, σp=280MPa,E=210GPa,a=460MPa, b=2.57MPa,规定压缩机活塞杆安全系数 [nst]=4,试进行稳定性校核。
第十一章压杆的稳定 - 工程力学
第十一章压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a)所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
工程力学压杆稳定ppt
0
铸铁 331.9 1.453
松木 39.2 0.199 59
3:小柔度杆(短粗压杆)只需进行强度计算。
——直线型经验公式 细长压杆。
ls
lP
临界应力总图[a]
细长杆—发生弹性屈曲 (llp) 中长杆—发生弹塑性屈曲 (ls l< lp) 粗短杆—不发生屈曲,而发生屈服 (l< ls)
——直线型经验公式
B=0 sinkl • A =0
y FN
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
若 A = 0,则与压杆处于微弯状态 的假设不符,因此可得:
sinkl = 0
(n = 0、1、2、3……)
y Fcr
临界载荷:
屈曲位移函数 :
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最 小的轴弯曲。
l=50cm,
求临界载荷 .(已知
)
F
解: 惯性半径:
柔度: A3钢:
可查得
因此
l0 l< lp 可用直线公式.
例:截面为120mm200mm的矩形木柱,长l=7m,材料的弹性模量
E=10GPa,p=8MPa。试求该木柱的临界力。
解: 在屏幕平面内(xy)失稳时柱的两端可 视为铰支端(图a);
若在垂直于屏幕平面内(xz)失稳时, 柱的两端可视为固定端(图b)。
最小临界载荷:
——两端铰支细长压杆的临界载荷 的欧拉公式
二、支承对压杆临界载荷的影响
两端铰支
一端自由 一端固定
一端铰支 一端固定
两端固定
临界载荷欧拉公式的一般形式:
工程力学压杆稳定
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第11章 压杆的稳定性问题
角钢(连结成一整体)。试确定梁与柱的工作安全因 数。
解:1.查型钢表得
习题 11-12 图
No.16aI:Iz = 1130cm4,Wz = 141cm3 2No. 63×63×5: A = 2 × 6.143 = 12.286 cm2
i y = 1.94cm I y = 2 × 23.17 = 46.34 cm
采用,欧拉公式计算临界力
FPcr = σ cr A =
轴的工作安全因数
2 π E
λ2
=
所以,轴不安全。
11-11 图示正方形桁架结构,由五根圆截面钢杆组成,
连接处均为铰链,各杆直径均为 d=40 mm,a=1 m。材料 均为 Q235 钢,E=200 GPa,[n]st=1.8。试;
网
ww w
.k hd 案
μ =1
co
界力。
m
11-5
图示 a、b、c、d 四桁架的几何尺寸、圆杆的横截面直径、材料、加力点及加力
方向均相同。关于四桁架所能承受的最大外力 FPmax 有如下四种结论,试判断哪一种是正确 的。 (A)FPmax(a)=FPmax(c)<FPmax(b)=FPmax(d); (B)FPmax(a)=FPmax(c)=FPmax(b)=FPmax(d); (C)FPmax(a)=FPmax(d)<FPmax(b)=FPmax(c);
案
对于 A3 钢, λ P = 102,
λs = 61.6 。因此,第一杆为大柔度杆,第二杆为中柔度杆,
网
i μl λ2 = 2 i μl λ3 = 3 i
λ1 =
=
ww w
FPcr = ( a − bλ ) A = (304 − 1.12 × 62.5) × 10 3 ×
《工程力学》压杆稳定
)
这类压杆将发生强度失效,而不是失稳。
cr s
2
cr s
压杆的临界应力总图
σ cr cr s
cr a b
粗短杆
中粗杆
cr
2E 2
小柔度 中柔度
细长杆
强度失效 弹塑性稳 定问题
大柔度 弹性失稳
λ2
λ1
三类不同的压杆
细长杆— 发生弹性屈曲; 中长杆— 发生弹塑性屈曲; 粗短杆— 不发生屈曲,而发生 屈服;
粗短杆在轴向压力的作用下
塑性材料的低碳钢短圆柱 被压扁; 铸铁短圆柱 脆断;
2、工程中的某些细长杆在轴向压力的作用下
表现出与强度完全不同的失效形式;
细长竹片受压时
开始轴线为直线,接着必被压弯,发生较大的弯曲变形; 最后被折断;
两端承受压力的细长杆:
当压力超过一定的数值时,压杆会由原来的直线平衡形式, 突然变弯,致使结构丧失承载力;
不稳定平衡
处于凸面的球体,当球受到 微小干扰,它将偏离其平衡 位置,而不再恢复原位;
临界平衡
物体处于平衡状态,受到干扰后 离开原来的平衡位置;
干扰撤掉后:
既不回到原来的平衡位置,也 不进一步离开;
而是停留在一个新的位置上平衡;
把物体在原来位置上和现在位置上所处的平衡状态 称为临界平衡
实际上不属稳定平衡。
l i
Fcr cr A
例1 : 图示各杆材料和截面均相同,试问哪一 根杆能承受的压力最大, 哪一根的最小?
P
P
P
a 1.3 a
1.6a
(1)
(2)
(3)
相当长度 (l)1 2a (l)2 1.3a
工程力学 第十一章 压杆稳定
2
123 kN
200
z
y
(2)计算最小刚度平面内的临界压力 (即绕 z 轴失稳)
z
200
中性轴为z轴:
Iz 200 120 12
3
y
28 . 8 10 mm 28 . 8 10 m
6 4
6
4
120
木柱两端固定,,则得:
Plj
2 EI
l
z
2
第二节
2 EI
l
2
细长压杆的临界力
一、两端铰支细长压杆的临界力
Plj
—两端铰支细长压杆的临界力计算公式(欧拉公式)
二、其他支承情况下细长压杆的临界力
2 EI min Plj 2 (l)
式中: Imin压杆横截面对中性轴的最小惯性矩; μl计算长度;
长度系数,与杆端支承有关。
C
64
;
a
B
1;
l
i
1 1000 7
142 . 9 p 123 ;
大柔度杆;
A
lj
2E
2
2 200000
142 . 9
2
96 . 7 MPa
N CB a N BA P B
Plj lj A 96 .7 615 .75 59 .6 kN N BA ;
lj
nw
— 极限应力法
[ w ] — 折减系数法
n
Plj P
[ n w ] — 安全系数法
φ—折减系数或纵向弯曲系数;一般[σ]>[σw],故φ<1。
工程力学压杆的稳定问题
稳定安全系数一般大于强度安全系数。
例题 : 1000吨双动薄板液压冲压机的顶出器杆为一
端 固 定 、 一 端 铰 支 的 压 杆 。 已 知 杆 长 l=2m , 直 径 d=65mm,材料的E=210GPa,p=288MPa,顶杆工作 时承受压力F=18.3吨,取稳定安全系数nst=3.0。试校 核该顶杆的稳定性。
①
90
②
l
解:由静力平衡条件可解得两杆的压力分别为:
N1 P cos , N 2 P sin
两杆的临界压力分别为:
2E I 2E I Pcr 1 2 , Pcr 2 2 l1 l2
要使P最大,只有 N1、 N2 都达
到临界压力,即
P
() 1 () 2
①
P cos P sin
2E cr 2 p
或写成:
2E p
令: 2 E p
p
欧拉公式的 适用范围:
p
满足该条件的杆称为细长杆或大柔度杆
如对A3钢,当取E=206GPa,σp=200MPa,则
E p p
2
2 206 109
200 106
应用欧拉公式
654 1012 2 (210 109 ) ( ) 2 EI 64 Fcr N 925.2kN 2 2 (l ) (0.7 2)
Fcr 925.2 103 5.16 n 3 18.3 10 9.8 F
该杆满足稳定性要求
> nst 3.0
x l时:v 0
sin kl 0
kl n (n 0,1, 2,)
n k l
工程力学11-压杆的稳定性分析与设计解析
11.1.3 三种类型压杆的临界状态 压杆的分类:
细长杆 ——当F >Fcr时容易发生弹性屈曲 当F≤Fcr时不发生屈曲
中长杆 ——当F >Fcr时发生屈曲,但不再是弹性的
粗短杆 ——不会发生屈曲,失效属于强度破坏
《工程力学》
11.2
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
长细比概念三类不同压杆判断
11.3.2 三类不同压杆的区分
ห้องสมุดไป่ตู้
因,屈曲在弹性范围内导出
故有:
scr =
Fcr A
≤[sp]
在比例极限内有效
稳定平衡构形到屈曲(不稳定平衡构形)是一个 过程。
介于这个过程之间的平衡构形——临界平衡构形
或称:“临界状态” 临界载荷
处于临界状态时,杆件所受的施压载荷
称:“临界载荷”,或临界力,Fcr
《工程力学》
11.1
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
令:当材料达到比例极限时的长细比为“lp” 当材料屈服极限时的长细比为“ls”
细长杆 中长杆 粗短杆
—— l ≥ lp —— lp >l ≥ ls —— l < ls
细长压杆的临界载荷
工程力学精品课程压杆稳定.ppt
压杆稳定
Stability of columns
一。稳定性概念
细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象, 即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为 屈曲失效。
内燃机配气机构中的挺杆
磨床液压装置的活塞杆
细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的 临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是 压杆保持微曲平衡的最小值。
b
经验公式: cr a b
其中,a,b是由杆件材料决定的常数
2)小柔度杆的临界应力
小柔度杆或短杆: λ < λ2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即
cr s
或
b
3) 临界应力总图
σ σcr=σs
σs σp
σcr=a-bλ σcr=π2E/λ2
O
λ2
λ1
可以明显地看出,短杆的临界应力与柔度λ无关,而中、长杆的临界应力则随柔度 λ的增加而减小。
例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F=12kN,其
外径D=45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模 量E=210 GPa, σp=200 MPa, σs=235 MPa,
1m A
1m B
F 解:(a) 受力分析。以梁AC为研究对象,由静力
1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承 载能力。 2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。 3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I, 从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。
山东建筑大学期末工程力学第11章压杆稳定
对于等直杆
F N max [ ] max A
例题:一长为300 mm的钢板尺,横截面尺寸为 20mm 1mm 。钢 的许用应力为[ ]=196 MPa。按强度条件计算得钢板尺所能承受的 轴向压力为
一, 两端为绞支(球形绞支),长为 l 的 细长 压杆。
当 F 达到 FCr 时,压杆的特点是:保持微弯形式的平衡。
x
F cr
x
w
l
l 2
m w m
F cr
M ( x) F cr w
m m
x
o w o
x
w
F cr
FCr
x
w
m
M ( x) F cr w
m
x
o w
FCr
压杆任一 x 截面沿 w 方向的位移为 w = f (x) 该截面的弯矩为
E F cr cr A ( l / i )
l
i
称为压杆的柔度(长细比)。集中地反映了压杆的长度,杆端约
束,截面尺寸和形状对临界应力的影响。
2 E 2
cr
cr
E 2
2
越大,相应的 cr 越小,压杆越容易失稳。
F Cr A Cr
x
y
2 EI F cr 2 ( l )
z
2 EI y ( F Cr ) y ( l )2 y
2 EI z ( F Cr ) z ( l )2 z
F Cr {( F Cr ) y,( F Cr ) z}min
材料力学-11压杆稳定
π D4 d4 4
D2 d2 64
D2 d 2
17mm
4
μl i
1(1100) 64.7
17
235钢
2EI
Fcr crA Fcr (l)2 ?
2E 2
(D2 d2)
4
226.14 721090(522 4424)
(1) P
F M Fw
w
d 2w
M
dx2
EI
Fw EI
d2w F
dx2
w0 EI
令: k2 F EI
d2w dx2
k2w
0
二阶线性、 常系数齐次
F Fcr 方程解 wAsin B kc xoskx
x
2019/11/22
11
wAsin B kc xoskx
② 边界条件: w(0)0 w(l )0
2 EI
Fcr (2l )2
Euler公式 (固端-自由)
15
[例1] 试由挠曲微分方程,导出下述细长压杆临界力公式
l
Fcr P
解: 1. 挠曲线近似微分方程:
EI,,w M(x) PwMe
Me x x P
令: k2 P w,, k2w Me
EI
EI
M PwMe wAs ik nx Bcoksx M e
S
P
λ μl i
a s
2E
临界应力总图
b
P
2019/11/22
24
§4 压杆的稳定校核
Stability Condition
为保证压杆有足够的稳定性——安全工作
(工作荷载)F
工程力学压杆稳定ppt课件
解 (1)圆形截面
直径 惯性半径
D 4 A 4 90 3 0 .8 3 m 5 m 3.8 3 5 1 3 0 m
iI A
D D 4 2 //6 4 4 D 4 3.8 3 4 1 5 3 0 8 .4 1 6 3 0 m
柔度
l 11.2 142
i 8.461 03
P
E P
200190 9.93
200160
因为 14 2 P9.3 9,所以属细长压杆,用欧拉公式计算临界力
F cr 2 lE 2 I 2 20 1精0 9 选1 0 p6 p1 t课.2 件4 2 23 021.8 3 5 1 3 0 48.3 8 KN 35
(2) 正方形截面
截面边长 aA 90 3 0 0 1 3 0 m
p, crp cr22Ep.
2E p
p
2E p
cr
无效
(细长压杆临界柔度)
p
欧拉公式的适用围: p,
有效
cr
2E 2
称大柔度杆(细长压杆 )
例:Q235钢,E20G0P ,p a20M o 0.Pa p
l i
p
2 E 2200103 99 .35100
p
20精0选ppt课件2021
kln (n = 0、1、2、3……)
由 k2 Fcr 可 得 EI
Fcr
n2 2EI
l2
精选ppt课件2021
17
临界载荷:
Fcr
n2 2EI
l2
屈曲位移函数 :y(x)Asinnx
l
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最小
的轴弯曲。
最小临界载荷:
工程力学习题 及最终答案
第一章 绪论思 考 题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么? 4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
习题2-1图12030200N F4560F 习题2-2图2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
(b)x453=30N =20N=40N A x45600N 2=700N0N 习题2-3图 (a )F 1习题2-4图F 12习题2-5图(b)(a )2-7 画出图中各物体的受力图。
(c)(d)(e)(f) (g) 习题2-6图(a)ACD2-8 试计算图中各种情况下F 力对o 点之矩。
(b)(d)习题2-7图P(d)(c)(a ) CA2-9 求图中力系的合力F R 及其作用位置。
2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
习题2-8图习题2-9图( a )1F 3 ( b )F 3F 2( c)1F /m( d )F 32-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b的大小。
第三章 静力平衡问题习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若α=30︒, 求工件D 所受到的夹紧力F D 。
( b )q ( c )习题2-10图B习题2-11图3-2 图中为利用绳索拔桩的简易方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a )所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使(a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
压杆保持稳定与发生屈曲间的力F cr 称为压杆的临界载荷或临界压力。
建筑物中的立柱、桁架结构中的受压杆、液压装置中的活塞推杆、动力装置中的气门挺杆等都是工程中常见的压杆,细长压杆的稳定是设计中必需考虑的。
§11.2 两端铰支细长压杆的临界载荷压杆是否能保持稳定,取决于压杆的临界载荷或临界压力F cr 。
当F =F cr 时,压杆处于如图11.2(b)所示的微弯平衡状态。
现将二端铰支的细长压杆重画于图11.3,用静力学的方法研究其平衡问题。
一、力的平衡取任一截面,由力的平衡方程可知,杆在任一距原点o 为x 处的弯矩为:M (x )=-Fy 二、物理方程讨论弹性小变形情况,有线弹性应力-应变关系:(a )图11.2 压杆稳定概念(b)(c)图11.3 二端铰支的细长压杆σ=E ε 三、变形几何关系在弹性小变形条件下,处于微弯平衡状态的杆的挠曲线微分方程由(9-19)式给出为:将M (x )=-Fy 代入,杆的挠曲线微分方程可写为:d 2y /d x 2+k 2y =0式中,k 2=F /EI 。
上式是一个二阶齐次常微分方程,其通解为: y =Asink x +Bcosk x 式中的积分常数A 、B 由边界条件确定。
图11.3中,杆的边界条件是在二支承处挠度为零,即: 1) x =0处, y =0; 2) x =l 处, y =0。
将边界条件1)代入通解,有:B=0;再将边界条件2)代入通解,有:Asink l =0注意上式中如果A=0,则因为B 已经为零,挠曲线微分方程给出的解答将成为y ≡0,其物理意义是杆各截面处挠度均为零,不发生弯曲变形,杆仍然为直杆。
这与所研究的微弯平衡问题不符,故A ≠0。
于是,必有:sink l =0上式给出:k l =n π ( n=0,1,2,… ) 注意前面已定义k 2=F /EI ,即F = k 2EI ,利用上式,可以得到:( n=0,1,2,… )EIx M dx y d )(22=222l EI n F π=上述结果中若取n=0,则F =0,杆上无载荷,不会发生压杆稳定问题。
故由n=1可给出使二端铰支压杆发生微弯平衡(失稳)的最小临界载荷为:式(11-1)称为确定二端铰支压杆稳定临界载荷的欧拉公式。
欧拉公式指出:压杆稳定的临界载荷F cr 与杆长l 的平方成反比,l 越大,F cr 越小,杆越容易发生屈曲失稳;压杆的临界载荷F cr 与杆的抗弯刚度EI 成正比,杆的抗弯刚度越小,F cr 越小,杆越容易发生屈曲失稳。
细长杆件l 大、抗弯刚度EI 小,稳定问题是不可忽视的。
值得注意的是,对于图11.3所示的压杆屈曲问题,若二端为平面铰链支承,只允许杆在x y 平面内弯曲,则截面惯性矩I=I z ;若二端为球形铰链支承,则杆可在过轴线x 的任一平面内发生弯曲。
若截面对某轴惯性矩最小,则能承受的临界载荷也最小,将首先垂直于该轴的平面内发生屈曲失稳。
例如,对于图11.4所示之二端为球形铰支的矩形截面压杆,若h>b ,则显然有I y =hb 3/12<I z =bh 3/12,故y 为中性轴的方位将先发生屈曲失稳,即失稳时杆的轴线是在垂直于y 轴的x z 平面内发生弯曲的,临界载荷应由F cr =π2EI y /l 2计算。
例11.1 直径d=20mm 的圆截面直杆,长l =800mm ,二端铰支。
已知材料的弹性模量E=200GPa ,σys =240MPa ,试求其临界载荷和屈服载荷。
解:由二端铰支压杆临界载荷的欧拉公式(11-1)式,有:压杆的屈服条件为σ=F /A=σys ,故屈服载荷为:22lEIF cr π=---(11-1 )图11.4 失稳发生在I 最小的方位NN d l E F cr 32433422102.2480064201020064⨯=⨯⨯⨯⨯=∙=πππ显而易见,F cr <<F s ,故当轴向压力到达F cr 时,杆首先发生的是屈曲失稳。
§11.3 不同支承条件下压杆的临界载荷采用与前节类似的方法,可以由压杆微弯平衡的力学模型,研究不同支承情况下的屈曲临界载荷。
但是应当注意,当杆端约束情况改变时,挠曲线近似微分方程中的弯矩和挠曲线的边界约束条件也将发生变化,因而临界载荷也不同。
一、二端固定的压杆二端固定的压杆如图11.5所示。
在B 端施加轴向压力F ,讨论杆在微弯状态下的平衡。
注意固定端A 的约束反力有轴向反力F A x =F ,有反力偶M A ;由对称性知B 端也应有反力偶M B =M A =M ,如图所示。
固定端还可以有y 方向的反力,但因为本问题(载荷和几何)是左右对称的,若A 端有反力F A y ,则B 端一定有同号的反力F B y =F A y ,为满足平衡方程:∑F y =F A y +F B y =0必有F A y =F B y =0。
故二端固定支承压杆,在微弯平衡状态时的受力如图11.5所示。
杆在任一截面x 处的弯矩为: M (x )=M -Fy 挠曲线近似微分方程为:NN d A F ysyss 322103.754240204⨯=⨯⨯===πσπσ图11.5 二端固定的压杆EIFyM EI x M dx y d -==)(22仍然定义k 2=F /EI ,上式成为:上述二阶常微分方程的通解为: y=Asink x +Bcosk x +M /F为确定积分常数A 、B ,将挠度方程微分得到截面转角为: y ′=θ=Akcosk x -Bksink x二端固定杆的边界条件是,二固定端处挠度和转角均为零,即: 1) x =0处, y A =0,θA =0; 2) x =l 处, y B =0,θB =0; 将4个边界条件分别代入通解,得到:B+M /F =0; Ak=0Asink l +Bcosk l +M /F =0 Akcosk l -Bksink l =0上述第一式说明B ≠0。
因为若B=0,则必有M =0,二固定端无反力偶,相当于铰支,如所讨论的问题不符。
将第二式Ak=0代入上述第四式,并注意B 、k 均不为零,则必有:sink l =0再将sink l =0代入上述第三式,并利用上述第一式给出的B=-M /F ,还有:cosk l -1=0能使sink l =0,cosk l -1=0同时满足的解答是:k l =2n π ( n=0,1,2,… )若n=0,因为杆长l ≠0,则由k=0,有F =0,杆上无载荷,不会发生微弯平衡。
n=1时,k l =2π,有k=2π/l ,代入k 2=F /EI ,即得到二端固定压杆的临界载荷为:EIM y k dx y d =+222二、欧拉公式的一般形式前节导出的二端铰支压杆的临界应力公式(11-1)式和本节导出的二端固定压杆的临界应力公式(11-2)式,可以统一写成:这就是确定压杆稳定临界载荷F cr 的欧拉公式的一般形式。
对于二端铰支的压杆,μ=1;对于二端固定的压杆,μ=1/2。
μl 可视为压杆的相当长度,即确定二端固定压杆稳定的临界载荷时,杆长相当于二端铰支压杆长度的1/2;μ则称为反映压杆不同支承情况的相当长度系数。
用类似的方法研究一端固定、另一端铰支;一端固定、另一端自由的压杆,结果表明其稳定临界载荷也可由(11-3)式描述,只不过μ值不同而已。
不同支承情况下,用欧拉公式的一般形式(11-3)式确定临界载荷时的相当长度系数μ为:μ=1 二端铰支μ=0.7 一端铰支、一端固定 μ=2 一端自由、一端固定 μ=0.5 二端固定可见,杆端支承对于压杆的临界载荷有显著影响。
杆的几何尺寸一定时,一端自由、一端固定时临界载荷最小;二端铰支,一端铰支、一端固定次之;二端固定支承时临界载荷最大。
---(11-4)224l EI F cr π=---(11-2 )22)(l EI F cr μπ=---(11-3 )Nl EI F xcra 23922228122.012.01010⨯⨯⨯⨯⨯==ππ在工程实际中,受压杆件二端的支承情况往往是复杂的。
需要根据具体情况,分析支承对于杆端的约束特性,选择适当的理想化支承模型。
如桁架中的压杆,其节点处的连接常常用焊接或铆接,但因为连接处限制杆件转动的能力并不强,简化成铰接是比较恰当且偏于安全的。
又如图11.6所示的圆柱销铰链,在x y 平面内,杆可以绕销钉转动,接头处支承是铰支。
在yz 平面内,杆不能与接头发生相对转动,若接头固定牢靠,可以简化为固定端;但若杆插入接头的深度不够或杆与接头连接的间隙较大,有相对转动的可能,则接头处仍应简化为铰支。
例11.2 矩形截面木杆如图11.7所示,b=0.12m ,h=0.2m ,l =8m 。