专升本数学试卷+答案

合集下载

专升本试题2023数学及答案

专升本试题2023数学及答案

专升本试题2023数学及答案一、选择题(每题2分,共10分)1. 函数f(x)=2x^2+3x-5的导数是:A. 4x+3B. 2x+3C. 4x^2+6xD. 4x^2+3x2. 圆的方程为(x-2)^2+(y-3)^2=1,圆心坐标是:A. (2, 3)B. (1, 2)C. (3, 4)D. (0, 0)3. 已知等差数列的首项为a1=3,公差为d=2,第5项a5的值为:A. 11B. 13C. 15D. 174. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. 2D. 不存在5. 矩阵A = [1 2; 3 4]和矩阵B = [5 6; 7 8]的乘积AB的行列式det(AB)为:A. 22B. 30C. 36D. 44二、填空题(每题2分,共10分)6. 若f(x)=x^3-2x^2+x-2,则f'(x)=______。

7. 若曲线y=x^2-4x+3在点x=1处的切线斜率为______。

8. 一个等比数列的首项为2,公比为3,其第3项为______。

9. 若函数y=ln(x)的图像与直线y=4相交于点(a,4),则a=______。

10. 一个矩阵的秩为2,且该矩阵的行列式为-5,则该矩阵的迹为______。

三、解答题(每题10分,共30分)11. 证明:若函数f(x)在区间(a,b)内连续,且f(a)f(b)<0,则至少存在一点c∈(a,b),使得f(c)=0。

12. 解不等式:|x-2|+|x-5|<7。

13. 计算定积分:∫(0到1) (2x+1)dx。

四、证明题(每题15分,共15分)14. 证明:若数列{an}是单调递增数列,且数列{an}的极限存在,则数列{an}是收敛的。

五、综合题(每题25分,共25分)15. 已知函数f(x)=x^3-6x^2+11x-6,求:a. 函数f(x)的极值点;b. 函数f(x)在区间[0,3]上的最大值和最小值。

数学类专升本试题及答案

数学类专升本试题及答案

数学类专升本试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 0.33333…(循环小数)B. πC. √2D. 0.5答案:B、C2. 函数f(x) = x^2 - 4x + 4的最小值是:A. 0B. 1C. 4D. -1答案:A3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2, 3}B. {2, 3, 4}C. {1, 2, 3, 4}D. {1, 4}答案:C4. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)C. (-3/2, 0)D. (0, 0)答案:C5. 已知等差数列的首项a1=2,公差d=3,求第5项a5:A. 17B. 14C. 11D. 8答案:A6. 圆的方程为(x-3)^2 + (y-4)^2 = 25,圆心坐标为:A. (3, 4)B. (0, 0)C. (1, 1)D. (4, 3)答案:A7. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值:A. √2B. 1C. 0D. -1答案:A8. 抛物线y^2 = 4x的焦点坐标是:B. (0, 0)C. (1/2, 0)D. (0, 1/2)答案:C9. 已知向量a = (3, 4),b = (-1, 2),求a·b:A. -1B. 10C. 7D. 3答案:A10. 椭圆x^2/9 + y^2/4 = 1的长轴长度是:A. 6B. 9C. 12D. 18答案:C二、填空题(每题2分,共20分)11. 函数y = ln(x)的定义域是________。

答案:(0, +∞)12. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x):________。

答案:3x^2 - 6x13. 根据勾股定理,直角三角形的斜边长为5,一条直角边长为3,则另一条直角边长是________。

答案:414. 已知集合C = {x | x > 1},D = {x | x ≤ 2},则C∩D=________。

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。

2. 等差数列1, 3, 5, 7, 的前10项和是______。

3. 不等式3x 4 < 2x + 5的解集是______。

4. 圆柱的体积公式是______。

5. 积分∫(x^3 + 1)dx的值是______。

三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。

3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。

4. 求圆柱的表面积。

5. 计算积分∫(x^4 + 1)dx。

四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。

江苏专升本数学2024真题及答案

江苏专升本数学2024真题及答案

江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。

专升本数学测试题及答案

专升本数学测试题及答案

专升本数学测试题及答案一、选择题(每题5分,共20分)1. 函数y=f(x)在点x=1处的导数为3,则在该点处的切线斜率为()。

A. 2B. 3C. 4D. 5答案:B2. 已知数列{an}的前n项和为Sn,且满足a1=1,an+1=2an,求S5的值为()。

A. 31B. 32C. 33D. 34答案:A3. 设函数f(x)=x^3-3x^2+2,求f'(x)的值为()。

A. 3x^2-6xB. 3x^2+6xC. -3x^2+6xD. -3x^2-6x答案:A4. 已知圆C的方程为x^2+y^2-6x+8y-24=0,求圆心坐标为()。

A. (3, -4)B. (3, 4)C. (-3, 4)D. (-3, -4)答案:B二、填空题(每题5分,共20分)1. 已知等差数列{an}的公差d=2,且a3=8,则a1=______。

答案:22. 函数y=x^2-4x+c的图像与x轴有两个交点,则c的取值范围为______。

答案:(-∞, 4)∪(4, +∞)3. 设函数f(x)=x^3-3x^2+2x,求f''(x)的值为______。

答案:6x-64. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求A的行列式值为______。

答案:-2三、解答题(每题10分,共60分)1. 求极限lim(x→0) (sin2x/x)。

答案:lim(x→0) (sin2x/x) = lim(x→0) (2cos2x) = 2。

2. 已知函数f(x)=x^3-6x^2+11x-6,求f(x)的单调区间。

答案:f'(x)=3x^2-12x+11,令f'(x)=0,解得x1=1,x2=11/3。

因此,f(x)的单调递增区间为(-∞, 1)和(11/3, +∞),单调递减区间为(1,11/3)。

3. 求定积分∫(0,1) (2x^2-3x+1)dx。

专升本数学卷子试题及答案

专升本数学卷子试题及答案

专升本数学卷子试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C2. 已知等差数列的前三项分别为2,5,8,该数列的公差d为:A. 1B. 3C. 4D. 5答案:B3. 以下哪个选项不是三角函数的基本性质:A. 周期性B. 奇偶性C. 有界性D. 连续性答案:D4. 曲线y=x^3-6x^2+9x在点(1,2)处的切线斜率是:A. -2B. 0B. 2D. 4答案:B5. 圆的方程为(x-1)^2+(y-2)^2=9,圆心坐标是:A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2)答案:A6. 函数y=sin(x)的值域是:A. (-1,1)B. [-1,1]C. (0,1)D. [0,1]答案:B7. 已知向量a=(3,2),b=(-1,4),向量a与b的夹角θ满足:A. cosθ=1B. cosθ=0C. cosθ=-1D. cosθ=-1/2答案:D8. 矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵A的行列式det(A)是:A. 0B. 1C. 2D. 5答案:D9. 微分方程dy/dx + 2y = 4x的通解是:A. y = 2x^2 - x + CB. y = 2x^2 + x + CC. y = 2x^2 - x - CD. y = 2x^2 + x - C答案:B10. 曲线y=x^2与直线y=4x-5的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C二、填空题(每题2分,共20分)1. 函数f(x)=x^3-3x^2+2x-1的导数f'(x)是________。

答案:3x^2-6x+22. 等比数列的前n项和公式是________。

答案:S_n = a(1-q^n)/(1-q)3. 已知函数y=2x+3,当x=2时,y的值是________。

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。

2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。

又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。

联立两个方程,得到d = 2,故选A。

3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。

4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。

专升本试题及答案数学

专升本试题及答案数学

专升本试题及答案数学一、选择题(每题2分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:\(3x - 2\),当 \(x = 5\) 时。

A. 13B. 15C. 11D. 17答案:A3. 函数 \(y = 2^x\) 的图像是:A. 一条直线B. 一个抛物线C. 一个指数函数D. 一个对数函数答案:C4. 求和 \(1 + 2 + 3 + \ldots + 100\) 的值是:A. 5050B. 5000C. 4950D. 5100答案:A5. 如果 \(a\) 和 \(b\) 是两个非零实数,那么 \(a^2 - b^2\) 可以分解为:A. \((a + b)(a - b)\)B. \((a - b)^2\)C. \((a + b)^2\)D. \((a - b)(a + b)\)答案:A6. 圆的面积公式是:A. \(\pi r^2\)B. \(2\pi r\)C. \(\pi r\)D. \(\pi d\)答案:A7. 计算 \(\sin 30^\circ\) 的值。

A. 0.5B. 0.866C. 0.25D. 0.707答案:A8. 集合 \(\{1, 2, 3, 4\}\) 和 \(\{3, 4, 5, 6\}\) 的交集是:A. \(\{1, 2\}\)B. \(\{3, 4\}\)C. \(\{5, 6\}\)D. \(\{1, 2, 3, 4, 5, 6\}\)答案:B9. 直线 \(y = 2x + 3\) 与 \(x\) 轴的交点是:A. \((0, 3)\)B. \((-1.5, 0)\)C. \((1.5, 0)\)D. \((0, -3)\)答案:D10. 以下哪个选项是复数?A. \(2 + 3i\)B. \(-4\)C. \(\sqrt{4}\)D. \(\pi\)答案:A二、填空题(每题3分,共30分)1. 计算 \(\sqrt{49}\) 的值是 ________。

专升本试卷数学试题及答案

专升本试卷数学试题及答案

专升本试卷数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是整数?A. 3.14B. 2.71C. 0D. -5.6答案:C2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -1B. 1C. 3D. 5答案:B3. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B4. 已知等差数列的首项a1=3,公差d=2,求第5项的值。

A. 11B. 13C. 15D. 17答案:B5. 以下哪个是二项式定理的展开式?A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. 所有选项答案:D6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A7. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∩B。

A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B8. 函数y=x^3-6x^2+9x+2的导数是什么?A. 3x^2 - 12x + 9B. 3x^2 - 12x + 3C. 3x^2 - 6x + 9D. 3x^2 - 6x + 2答案:A9. 已知曲线y=x^2+2x-3,求该曲线在x=1处的切线斜率。

A. 0B. 1C. 2D. 3答案:C10. 以下哪个是矩阵的转置?A. [a11 a12; a21 a22] -> [a11 a21; a12 a22]B. [a11 a12; a21 a22] -> [a12 a22; a11 a21]C. [a11 a12; a21 a22] -> [a21 a12; a11 a22]D. [a11 a12; a21 a22] -> [a22 a12; a21 a11]答案:A二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是________。

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。

A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。

A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。

A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。

A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。

A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。

A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。

8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。

9. 已知抛物线y=x^24x+3的顶点坐标为______。

10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。

三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。

12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。

13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。

四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。

五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。

四川专升本数学2024年真题 及答案

四川专升本数学2024年真题 及答案

2024四川省普通高校专升本《高等数学》一、单项选择题(本大题共10小题,每小题5分,共计50分)1.函数211x y +=是()A.有界奇函数 B.有界偶函数C.无界奇函数D.无界偶函数2.0→x 时,下列与23x 等价的是()A.2sin xx B.)cos 1(x x - C.)21ln(2x + D.12-x e3.设)(x f 在a x =处可导,且1)(='a f 则=-+∞→)](1([lim a f na f n n ()A.2- B.1- C.1D.24.曲线54122---=x x x y 的铅直渐近线有()条A.0B.1C.2D.35.下列式子中成立的是()A.⎰+=+C x dx x 2)12(B.⎰+=+12)12(x x d C.⎰+=+12])12([x dx x d D.⎰+=+12])12([x dx x dx d6.过点)0,1,1(-且垂直于直线⎩⎨⎧=++=--02z y x z y x 的平面方程为()A.0132=+-+z y xB.0=++z y x C.0332=---z y x D.032=---z y x 7.二元函数y x x yz +=ln ,则=)1,2(dz ()A.dydx )212ln 2(2-+ B.dy dx 2212ln 2(+-C.dy dx )2ln 21(21++ D.dy dx 21)2ln 21(++8.下列级数收敛的是()A.∑∞=+-01)1(n n n nB.∑∞=0)23(n nC.∑∞=02sin n nn D.∑∞=0!n nn n 9.设A 为3阶矩阵,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==120020001,100010002,2C B A ,求=-BAC 2()A.64B.64- C.16D.16-10.设向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1325522314111321αααα,,,,则下列正确的是()A.321∂∂∂,,线性相关B..421∂∂∂,,线性相关C..431∂∂∂,,线性相关D..432∂∂∂,,线性相关二、填空题(本大题共6题,每小题5分,共计30分)11.⎪⎩⎪⎨⎧>≤+=0,1cos 0,)(x x x x k e x f x 在0=x 处连续,求=k 12.求232-+-=x x y 与x 轴所围图形的面积为13.设函数),(y x f z =由0)1(=---z y e xy z所确定,求=∂∂==11y x xz14.交换积分次序⎰⎰-=2120),(xdy y x f dx 15.幂级数∑∞=1n nn xa 的收敛半径为2,则∑∞=--11)1(n n nx na 的收敛区间为16.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡222222a a a 的秩为2,则=a 三、计算题(本大题共6小题,共70分)17.(10分)求极限xx x 1)3sin 1(lim +→18.(10分)求函数3ln )(+=x xx f 的单调区间和极值19.(12分)计算定积分dx e xx38131⎰20.(12分)计算二重积分⎰⎰++Ddxdy yx2231,其中{},91|),(22≥<+≤=y y x y x D 21.(13分)已知)(x f 可导,且⎰-=--xx x f x dt tf 203)1()()1()2(,求)(x f 22.(13分)已知非齐次线性方程组为⎪⎩⎪⎨⎧+=-+++=+++=+++tx x t x x tx t x x t x x x x 2)1(4)2(32243213214321(1)当t 为何值时,方程组无解(2)当t 为何值时,方程组有解,并求有无穷解时的通解2024四川省普通高校专升本《高等数学》答案一、选择题1-5:BBCBD 6-10:ACCAA二、填空题11.1-12.6113.114.⎰⎰-121),(ydx y x f dy 15.)3,1(-16.4-三、计算题17.3e 18.增],[+∞e ,减),1(),1,0(e 极小值3)(+=e e f 19.23e20.3ln 2π21.)31)(1()(x x x f --=22.(1)时,无解1≠t ;(2)时,有无穷解1=t ,通解为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡002510230113214321C C x x x x。

2023年普通高校专升本高等数学参考答案

2023年普通高校专升本高等数学参考答案

一般高校专升本《高等数学》参照答案一、填空题1. x y e11=+;2. 1-;3.5512a π; 4.⎪⎭⎫⎢⎣⎡34,32; 5.))1((212E A ++++-λλλ; 6. 1; 7. 41;8.⎩⎨⎧>≤0),(20,02y y yf y ξ. 二、单项选择题1. D ;2. B ;3. A ;4. D ;5. C6. B7. D8. A三、计算题1. 解 原式=⎭⎬⎫⎩⎨⎧--+∞→x x a x x ln )1ln(lim exp =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--+∞→x a a a x x x 11ln lim exp , ………………………… 3分 当10<<a 时, 01ln lim =-+∞→xx x a aa , ∴ 原式=1e 0=. ……………………………… 5分 当0>a 时, aa a xx ln 1ln lim=--+∞→, ∴ 原式=a a=ln e . …………………………… 7分 2. 解 曲面在)5,2,1(-处旳法向量为)1,4,2()1,,()5,2,1(--=-=-y x z z n ………………………………………………… 2分 平面π方程为0)5()2(4)1(2=--+--z y x , 即 0542=---z y x . ……………………… 4分直线L 旳方程又可写为⎩⎨⎧-++=--=3)(5b x ax z bx y ,代入平面π旳方程解得1=a ,2-=b . …… 7分3. 解 原式=⎰⎰⎰+114d 1d d xzxy z y z x ……………………………… 2分=⎰⎰-+101224d )(1d 21xz x z z x ……………………… 3分=⎰⎰-+100224d )(1d 21zx x z z z ……………………… 5分=⎰+134d 131z z z …………………………………… 6分=18122-. …………………………………………… 7分 4. 解y u f xzx sin e )('=∂∂, y u f y z x cos e )('=∂∂. …………………………………1分 22x z ∂∂=)()(sin e )()sin e )((22u f u u f u y u f y u f x x '+''='+'', ………………………2分 22yz ∂∂=)()sin 1(e )(sin e )()cos e )((222u f u y u f y u f y u f x x x '--''='-'' =)()()(e22u f u u f u u f x'-''-''. …………………………………………………3分由z yz x z x22222e =∂∂+∂∂得0)()(=-''u f u f . ……………………………………………… 4分特性方程012=-r ,特性根11-=r ,12=r . ∴ u uC C u f e e)(21+=-. ………………………………………………………………… 6分由1)0(=f ,1)0(='f 得01=C ,212=C . ∴ uu f e 21)(=. ………………………………………………………………………… 7分 5. 解xx x x x 211112132+--=-+, … ………………………………………………… 2分∑∞==-011n n x x , 1||<x , ……………………………………………………… 4分∑∑∞=∞=-=-=+002)1()2(211n n n n n nx x x , 1|2|<x . …………………………… 6分 ∑∑∞=∞=--=2)1()(n nnnn nx x x f =∑∞=--0]2)1(1[n n n n x , 21||<x . ……………… 7分 6. 解: 1-*=A A A 111)()(--*-=-∴A A B A A E BA ……………… 2分A AB A A A A 1111)(----= …………… 3分ABA = ……… 4分 ⇒ 1))((--=A E A B ………………………5分1200320132-⎪⎪⎪⎭⎫ ⎝⎛------= …………… 6分=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210043210874321 ………………… 7分 7. 解: 514635241362,,,,,ββββββββββββ++++++=+C B516354132,,,,,βββββββββ+++=+514352136,,,,,βββββββββ+++…… 2分 563412165432,,,,,,,,,,ββββββββββββ+=+543216145236,,,,,,,,,,ββββββββββββ+ ……………………………… 5分 8-=…………………………………………………………………………………………… 7分8. 解: {}121)()()(1,1=====B A P B P BA P P ηξ …………………………… 2分 {}41)()()(1,1=-==-==AB P B P A B P P ηξ …………………………3分{}121)()|()()()()(1,1=-=-===-=AB P A B P AB P AB P A P A B P P ηξ …… 4分{}127)(1)(1,1=⋃-==-=-=B A P A B P P ηξ ……………………… 5分 1211}1,1{}1,1{}1,1{}12{=-==+-=-=+=-==≤+ηξηξηξηξP P P P … 7分 9. 解: 3100)(,10)(==i i D E ξξ …………………………………………………… 2分 )310010010001100310010010100()1100(⋅->⋅⋅-=>ξξP P)33100001000(1≤--=ξP ……………………………………… 5分042.0)3(1211232≈Φ-=-≈-∞-⎰dt e t π……………………… 7分 四、应用题1. 解 如图所示,αβθ-=,θtan =αβαβtan tan 1tan tan +-=2601610xx x +-=6042+x x . ………… 3分 上式两边对x 求导:)60()60(4d d sec 222+-=x x x θθ, …………………………… 5分 令0d d =xθ得惟一驻点152=x . …………………… 6分 由问题旳实际意义知θ必有最大值,故152=x 就是θ旳最大值点,即球员在离底线152米处可获得最大射门张角1515arctan. ………………………… 8分 2. 解: ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==-10111011000010112)(1n n T n A αβ ……………………………3分∴ 00421=++⇔=x x x x A n…………………………………………5分⇒通解:3,2,1010010010011321=∈⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-i Rk k k k i ………………8分3. 解: 22))4(()4()4()(ηξηξηξγa E a D a E E +++=+= ………… 2分),4cov(2)()4(ηξηξa a D D ++=+(4+22)a ……………… 5分2134080a a ++= …………………………………………… 6分∴ 当1320-=a 时,)(γE 到达最小 …………………………………… 8分 五、证明题1. 证 令x x f x F -=)()(, ……………………………………………… 1分 x x F x )(lim-∞→=xxx f x --∞→)(lim =01<-, ………………………… 2分∴ 由极限保号性知,0<∃a ,使得0)(>a F . ……………………… 4 分 同理,由xx F x )(lim+∞→=01<-得,0>∃b ,使得0)(<b F . …………… 5分由于)(x F 在],[b a 上持续,0)()(<b F a F ,故由零点定理知,),(),(∞+-∞⊂∈∃b a ξ,使得0)(=ξF ,即ξξ=)(f . …………………………………………………… 8分2.证: 1)(≥⇒≠A r o A ……………………………………………… 1分 ⇒0=Ax 旳基础解系中含旳向量旳个数n n A r n <-≤-=1)(…… 3分 由B 旳每一种列向量是0=Ax 旳解n A r n B r <-≤⇒)()( …………5分 B ⇒中列向量组是线性有关旳,0=∴B …………………………7分。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)高等数学专升本试卷(含答案)第一部分:选择题1. 在两点之间用直线段所构成的最短路径称为什么?选项:A. 曲线B. 斜线C. 弧线D. 线段答案:D. 线段2. 下列哪个函数在定义域内是递增的?选项:A. f(x) = x^2B. f(x) = e^xC. f(x) = ln(x)D. f(x) = 1/x答案:B. f(x) = e^x3. 下列级数中收敛的是:选项:A. ∑(n=1→∞) (-1)^n/nB. ∑(n=1→∞) n^2/n!C. ∑(n=1→∞) (1/n)^2D. ∑(n=1→∞) (1/2)^n答案:C. ∑(n=1→∞) (1/n)^24. 若函数f(x)在区间[0,1]上连续,则下列哪个不等式恒成立?选项:A. f(0) ≤ f(x) ≤ f(1)B. f(0) ≥ f(x) ≥ f(1)C. f(0) ≥ f(x) ≤ f(1)D. f(0) ≤ f(x) ≥ f(1)答案:A. f(0) ≤ f(x) ≤ f(1)第二部分:填空题1. 设函数f(x) = 2x^3 + 5x^2 - 3x + 2,那么f'(x) = ______。

答案:6x^2 + 10x - 32. 若a, b为实数,且a ≠ b,则a - b的倒数是 ________。

答案:1/(a - b)3. 设y = ln(x^2 - 4),则dy/dx = _______。

答案:2x/(x^2 - 4)4. 若两条直线y = 2x + a与y = bx + 6的夹角为60°,那么b的值为_______。

答案:√3第三部分:计算题1. 求极限lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x))。

解:由泰勒展开,sin(x) ≈ x,cos(x) ≈ 1 - x^2/2,当x→0时,忽略高阶无穷小,得到:lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x)) = lim(x→0) (x^2 - x^2)/(x^4 + (1 - x^2/2)^2)= lim(x→0) (0)/(x^4 + (1 - x^2/2)^2)= 0/(1) = 0答案:02. 求定积分∫(0→1) (x^2 + 3x + 2) dx。

2024年成人高考专升本《数学》考试真题附答案

2024年成人高考专升本《数学》考试真题附答案

2024年成人高考专升本《数学》考试真题附答案一、选择题(每题1分,共5分)A. 牛顿B. 欧拉C. 高斯D. 希尔伯特2. 设函数f(x)在区间(∞, +∞)内连续,且f(x) = f(x),则f(x)是()A. 奇函数B. 偶函数C. 周期函数D. 非奇非偶函数A. 交换两行B. 两行相加C. 两行互换D. 两行相乘4. 若函数y = f(x)在点x0处可导,则f'(x0)表示()A. 曲线在点(x0, f(x0))处的切线斜率B. 曲线在点(x0, f(x0))处的法线斜率C. 函数在点x0处的极值D. 函数在点x0处的拐点5. 设A、B为两个事件,若P(A) = 0.4,P(B) = 0.6,P(A∩B) =0.2,则P(A|B) = ()A. 0.2B. 0.4C. 0.5D. 0.6二、判断题(每题1分,共5分)1. 任何实数的平方都是非负数。

()2. 若矩阵A的行列式为零,则A不可逆。

()3. 函数的极值点必定在导数为零的点处取得。

()4. 概率论中的大数定律表明,随机事件的频率会随着试验次数的增加而稳定在概率附近。

()5. 线性方程组的解一定是唯一的。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x,则f'(x) = _______。

2. 矩阵A = [[1, 2], [3, 4]]的行列式值是 _______。

3. 在平面直角坐标系中,点(1, 2)到原点的距离是 _______。

4. 设随机变量X服从正态分布N(μ, σ^2),则μ表示 _______。

5. 若函数f(x)在区间[a, b]上连续,且f(a)·f(b) < 0,则根据闭区间上连续函数的零点定理,至少存在一点ξ∈(a, b),使得f(ξ) = _______。

四、简答题(每题2分,共10分)1. 简述罗尔定理的条件和结论。

2. 什么是矩阵的秩?如何求矩阵的秩?3. 简述导数的物理意义。

专升本数学试题及答案

专升本数学试题及答案

专升本数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是()A. f(x) = x^2B. f(x) = x^3C. f(-x) = -f(x)D. f(x) = sin(x)答案:B2. 微分方程y'' - y = 0的通解是()A. y = C1 * cos(x) + C2 * sin(x)B. y = C1 * e^x + C2 * e^(-x)C. y = C1 * x + C2D. y = C1 * x^2 + C2 * x答案:A3. 函数f(x) = x^2 - 4x + 4的最小值是()A. 0B. 1C. 4D. -1答案:B4. 曲线y = x^3 + 3x^2 - 9x + 1在点(1, -5)处的切线斜率是()A. 1B. -1C. 5D. -5答案:C二、填空题(每题5分,共20分)1. 极限lim(x→0) (sin(x)/x) = ______答案:12. 定积分∫(0,π) sin(x)dx = ______答案:23. 函数y = ln(x)的导数dy/dx = ______答案:1/x4. 级数∑(1/n^2)(n从1到∞)是______答案:发散三、解答题(每题15分,共30分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6在区间[1,3]上的最大值和最小值。

答案:首先求导数f'(x) = 3x^2 - 12x + 11。

令f'(x) = 0,解得x = 1 或 x = 11/3。

在区间[1,3]上,f'(x) > 0时,x ∈ (11/3, 3);f'(x) < 0时,x ∈ [1, 11/3)。

因此,f(x)在x = 1处取得最小值f(1) = 0,在x = 11/3处取得最大值f(11/3) = 4/27。

2. 求由曲线y = x^2与直线y = 4x - 3所围成的面积。

专升本数学试题及答案

专升本数学试题及答案

专升本数学试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)=2x^2-3x+1,求f(2)的值。

A. 3B. 5C. 7D. 92. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,求圆心坐标。

A. (0,0)B. (2,3)C. (-2,3)D. (2,-3)3. 函数y=\sqrt{x}的定义域是:A. [0,+∞)B. (-∞,+∞)C. (0,+∞)D. [0,1]4. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

A. an = 3n - 1B. an = 3n - 4C. an = n^2 - 1D. an = 2n5. 若sin(α) = 0.6,求cos(α)的值(结果保留一位小数)。

A. 0.8B. -0.8C. 0.5D. -0.56. 计算定积分∫_{0}^{1} x^2 dx的结果。

A. 1/3B. 1/2C. 1D. 2/37. 已知向量a=(2,3),b=(-1,2),求向量a与b的点积。

A. -1B. 0C. 1D. 28. 函数f(x)=x^3-6x^2+9x-2在x=2处的导数是:A. -1B. 1C. 3D. 59. 已知曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是:A. -2B. 1C. 0D. 210. 若方程x^2-6x+8=0有两个相等的实数根,则该方程的判别式Δ的值是:A. 0B. 12C. -12D. 24二、填空题(每空2分,共20分)11. 微分方程dy/dx + 2y = 3x的通解是 y = _______。

12. 若某函数的导数为f'(x)=2x+1,则原函数f(x)= _______。

13. 已知函数f(x)=ln(x),则f''(x)= _______。

14. 曲线y=x^2在点(1,1)处的切线方程是 y = _______。

15. 若向量a=(1,2),b=(3,4),则向量a与b的向量积(叉积)的模长是 _______。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本数学试题库及答案

专升本数学试题库及答案

专升本数学试题库及答案一、选择题(每题5分,共20分)1. 下列选项中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = \sin(x) \)C. \( y = x^3 \)D. \( y = \cos(x) \)答案:C2. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 已知 \( a \) 和 \( b \) 是正整数,且 \( a^2 + b^2 = 100 \),那么 \( a \) 和 \( b \) 的可能值有多少种组合?A. 4B. 5C. 6D. 7答案:C4. 函数 \( f(x) = x^2 - 4x + 4 \) 的图像与x轴的交点个数是?A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共20分)5. 计算定积分 \( \int_{0}^{1} x^2 dx \) 的值是 ________。

答案:\( \frac{1}{3} \)6. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 为锐角,则 \( \cos \alpha \) 的值是 ________。

答案:\( \frac{4}{5} \)7. 函数 \( y = \ln(x) \) 的定义域是 ________。

答案:\( (0, +\infty) \)8. 计算矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 的行列式值是 ________。

答案:-2三、解答题(每题10分,共60分)9. 解方程 \( x^2 - 5x + 6 = 0 \)。

答案:\[ x = 2 \quad \text{或} \quad x = 3 \]10. 证明:\( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \)。

大学数学专升本考试题目及答案

大学数学专升本考试题目及答案

大学数学专升本考试题目及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)答案:D2. 二次方程 x^2 - 5x + 6 = 0 的根是:A. 2, 3B. -2, 3C. -3, 2D. 1, 6答案:A3. 极限 lim (x->2) [(x^2 - 4)/(x - 2)] 的值是:A. 4B. 6C. 8D. 无法计算答案:B4. 以下哪个选项是连续函数?A. f(x) = 1/xB. f(x) = |x|C. f(x) = sin(x)D. f(x) = x^2答案:C5. 曲线 y = x^3 在点 (1,1) 处的切线斜率是:A. 1B. 2C. 3D. 4答案:C6. 以下哪个级数是收敛的?A. ∑(n=1 to ∞) (1/n^2)B. ∑(n=1 to ∞) (1/n)C. ∑(n=1 to ∞) (1/n^0.5)D. ∑(n=1 to ∞) (n)答案:A7. 矩阵 A = [[1, 2], [3, 4]] 的行列式是:A. -2B. 2C. 6D. 8答案:A8. 方程 (x - 1)y = 3x 在 y = 0 时有:A. 唯一解B. 无穷多解C. 无解D. 解集为全体实数答案:C9. 以下哪个积分是发散的?A. ∫(0 to 1) (1/x) dxB. ∫(0 to 1) x^2 dxC. ∫(1 to 2) e^x dxD. ∫(0 to 1) x dx答案:A10. 以下哪个选项是微分方程 y'' - y' - 6y = 0 的解?A. y = e^(3x)B. y = e^(x)C. y = cos(2x)D. y = sin(3x)答案:B二、填空题(每题4分,共20分)11. 函数 f(x) = x^3 - 6x^2 + 11x - 6 的最大值点的 x 坐标是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省 2015年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1.答题前,考生务必将自己的姓名、 准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题: 本大题共5小题,每小题4分,共 20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.当x →0x 时,f(x)是g(x)的高阶无穷小,则当x →0x 时,f(x)-g(x)是g(x)的
A .等价无穷小
B .同阶无穷小
C .高阶无穷小
D .低阶无穷小 2.设f(x)在x=a 处可导,则()
x
x a f x a f x --+→)(lim 0
等于
A. f ’(a)
B.2 f ’(a)
C.0
D. f ’(2a) 3.设可导函数F(x)满足F ’(x)=f(x),且C 为任意常数,则 A.
⎰+=C x f dx x F )()(' B. ⎰+=C x F dx x f )()( C.
⎰+=C x F dx
x F )()( D. ⎰+=C
x F dx x f )()('
4.设直线L 1:231511+=-=-z y x 与L 2:⎩
⎨⎧=+=32z y 1
z -x ,则L 1与L 2的夹角是
A.6π
B. 4π
C.3π
D.2
π 5在下列级数中,发散的是
A. )1ln(1)1(11
+-∑∞
=-n n
n B. ∑∞
=-113
n n n
C. n n
n 31
)1(1
1
∑∞=-- D
. ∑∞
=-11
3n n n
非选择题部分
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、 填空题: 本大题共10小题,每小题 4分,共40分。

6.
[]=-+∞
→n n ln )1(ln n lim 数列极限n
7. 的值为b 和a ,则2b ax 1x 1x lim 若2n =⎪⎪⎭
⎫ ⎝⎛+++++∞→ 8.
的单调减区间是)0(11)(F 函数1
>⎪⎪⎭⎫

⎛-=

x dt t x x
9.
=
=⎪⎩

⎨⎧≥<<---
+=a 处连续,则必有0x 在0,0
2,22)(f 设函数x a x x x
x x
10.
=+=dy ),则21(ln y 设-x
11 ==-=)(f 则,1)2(f 且,)('若x x x f
12. ⎰=+dx e x 11
13.
的和为)1-n 2(1,则级数6n 1已知级数1
n 221
n 2∑∑

=∞
==π 14.函数lnx 在x=1处的幂级数展开式为
的交点坐标是
5z 2y 2x 与平面z 2
-3
-y 32x 直线.15=++==+
三、计算题:本题共有8小题,其中16-19 小题每小题7分,20-23 小题每小题8分,共 60分。

计算题必须写出必要的计算过程, 只写答案的不给分。

16.)(f ,求)0(1
)1
(f
设4
2x x x x x
x ≠+=
+
17. )x 1
cos
-1(x lim 求极限2
x ∞

18. []22dx
y
d 求,具有二阶导数f ,其中)(f cos 设x y =
的值
b ,a )处有公切线,求常数1-,1在点(1-xy y 2与b ax x y 已知曲线.1932=++=
20.讨论方程lnx=ax (a>0)有几个实根
21.dx x
x x x 1求3
2
⎰+++
22.dx cosx -sinx 计算20
⎰π
23.
轴y 所围成的平面图形绕)0b (a y )b -x 求曲线(2
22>>=+a 旋转一周所得的旋转体体积
四、综合题: 本大题共3小题, 每小题10分, 共30分。

24.,求)
1-(y 已知函数23
x x = (1).函数的单调区间及极值;
(2).函数图形的凹凸区间及拐点; (3).函数图形的渐近线。

25. ,计算21,
x -21
0,x )(f 已知⎩⎨⎧≤≤<≤=x x x (1).
dx
e )x (
f S 2
x -0⎰
=
(2). dx
e )2n -x (
f S 2
n 2n
2x -0⎰
+=
26. ⎰
--
=x
x dt t f t x x x 0
)
(f 为连续函数,试求)()(sin )(f 设。

相关文档
最新文档