矩阵分析 史荣昌 魏丰 第三版 第一章-第四章 期末复习总结
矩阵分析的重点(升级版)

第一章 线性空间与线性变换1、 充分理解抽象线性空间的概念,掌握向量的线性表出,线性相关,线性无关的判断与性质.P5,例1.1.82、 掌握线性空间的基,维数,坐标的定义与求法,掌握基变换与坐标变换,明确过渡矩阵必可逆,会求过渡矩阵.P12,例1.2.63、 理解线性子空间的概念,重点掌握齐次线性方程组的解空间与生成子空间,理解线性子空间的交与和以及维数公式,了解子空间的直和与补子空间.P19,例1.3.54、 掌握线性映射(变换)的概念, 线性映射(变换)的矩阵表示以及一个线性变换在不同基下矩阵之间的(相似)关系.P30,例1.4.8,P35,例1.6.15、 会求线性映射的核与值域,理解秩与零度定理P33,例1.5.16、 理解线性变换不变子空间的定义与性质.7、 会求矩阵(线性变换)的特征值与特征向量,理解矩阵(线性变换)的特征值与特征向量的性质8、 掌握矩阵可对角化的条件,理解矩阵族同时可对角化的含义.第二章 λ-矩阵与矩阵的Jordan 标准形1、会求λ-矩阵的Smith 标准形2、会求λ-矩阵的不变因子,行列式因子和初等因子.明确三者之间的关系(特别是:初等因子+矩阵秩可决定不变因子) .P72,例2.2.1, 例2.2.23、理解λ-矩阵等价的几个充分必要条件.4、掌握矩阵Jordan 标准形的定义,会求矩阵的Jordan 标准形及其相似变换矩阵. P79例2.3.3第三章 内积空间, 正规矩阵, Hermite 矩阵1、掌握欧氏空间和酉空间的定义与性质,掌握Hermite 矩阵的定义与性质,会求欧氏(酉)空间的度量矩阵(P94),明确欧氏空间的度量矩阵为实对称阵, 酉空间的度量矩阵为Hermite 矩阵. 例:在线性空间[]3x R 中定义内积()⎰-=11)()()(),(dx x g x f x g x f(1) 、证明[]3x R 是欧氏空间;(2) 、求基1,2,x x 的度量矩阵; (3) 、求21)(x x x f +-=与2541)(x x x g --=的内积.2、掌握线性无关向量组的Schmidt 正交化与单位化方法P100,例3.2.13、掌握酉矩阵和正交矩阵的定义与性质,理解酉变换与正交变换的定义与性质4、掌握Schur 引理的内容及实现过程,掌握正规矩阵的定义与性质P114,例3.5.1第四章 矩阵分解1、掌握矩阵满秩分解的定义以及具体分解方法,明确矩阵满秩分解表达式不唯一,及其应用于求矩阵广义逆.2、掌握矩阵正交三角分解的定义以及具体分解方法,理解矩阵正交三角分解与Schmidt 正交化与单位化方法之间的关系.P148,例4.2.1例:求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101011110A 的正交三角(UR)分解.第五章 向量与矩阵范数1、理解向量范数的定义,会判断所给定义是否可作为向量范数,会求向量的p-范数,1-范数,2-范数, ∞-范数,学习指导上例5.12、理解矩阵范数的定义,会判断所给定义是否可作为矩阵范数3、理解矩阵范数与向量范数的相容性,掌握诱导范数的定义,会求矩阵的1-范数(列和范数), 2-范数(谱范数),∞-范数(行和范数),谱半径,学习指导上例5.6,例5.7 4、理解矩阵序列极限与矩阵序列敛散性的含义,会求矩阵序列极限,会判断矩阵序列敛散性,学习指导上例5.185、掌握矩阵幂级数敛散性的含义,会判断矩阵幂级数的敛散性,并会求收敛幂级数的和,学习指导上例5.20,例5.21,例5.22。
矩阵论第一章内容总结

定理(展开定理) 行列式D等于它的任意一行(列) 的各元素与其对应的代数余子式的乘积之和.
第一章内容总结
推论 行列式任一行(列)的元素与另一行(列) 的对应元素的代数余子式乘积之和等于零,即
ai1Aj1 ai2Aj2 ain Ajn 0, i j. ai1Aj1 ai2Aj2 ain Ajn D, i j.
定理 定理
一个排列中的任意两个元素对换,排列改变奇偶性. 一个排列经过奇数次对换改变排列的奇偶性,偶数次 对换不改变奇偶性。
n 2 时,n个数的所有排列中,奇偶排列各占一半,
各为 n!2 个。
第一章内容总结
6. n阶行列式的定义
a11 a12 a1n
a21
a22
a2n
( j1 j2 jn )
(Байду номын сангаас) a a a 1 j1 2 j2
nj n
j1 j2 jn
an1 an2 ann
7. 上三角、下三角、对角行列式的值等于主对角线上元素 的乘积。
第一章内容总结
8、行列式的性质
性质1 行列式与它的转置行列式相等. 性质2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)完全相同,则 此行列式为零. 性质3 行列式的某一行(列)中所有的元素都 乘以同一数k,等于用数k乘此行列式.
如果齐次线性方程组(Ⅱ)有非零解,则它的系数行 列式等于零.
11. 拉普拉斯展开
an1 ani ann an1 an i ann
4
第一章内容总结
推论 如果将行列式某一行(列)的每个元素都写成 m个数(m为大于2的整数)的和, 则此行列式可以写 成m个行列式的和.
史荣昌魏丰版矩阵分析第一章(1)

矩阵分析主讲教师:张艳霞矩阵理论的应用微分方程、概率与统计、优化、信号处理、控制工程、经济理论等等。
工程经济理论等等如需更深入地学习和了解在自己专业的应用,可如需更深入地学习和了解在自己专业的应用可参考:《矩阵分析与应用》,张贤达著,清华大学出版社;《Matrix Analysis for Scientists & Engineers》:Alan J. Laub,SIAM.第章第一章线性空间和线性变换线性空间的基本概念及其性质线性空间的基底,维数, 坐标变换线性空间的基底维数线性空间的子空间,交与和线性映射及其值域、核线性变换及其矩阵表示矩阵(线性变换)的特征值与特征向量矩阵的可对角化条件第一节第节线性空间一:线性空间的定义与例子线性间的义定义设是一个非空的集合,是一个数域,V F 在集合中定义两种代数运算,一种是加法运算,来表示另种是运算用来表示V 用来表示; 另一种是数乘运算, 用来表示, +i并且这两种运算满足下列八条运算律:(1)加法交换律αββα+=+(2)加法结合律()()αβγαβγ++=++(3)零元素: 在中存在一个元素,使得对于V 0任意的都有V α∈0αα+=(4)负元素: 对于中的任意元素都存在一V α个元素使得β0αβ+=(5)i =1αα(6)()()k l kl αα=(7)()k l k l ααα+=+(8)()k k k αβαβ+=+为数域F 称这样的上的线性空间。
V例1全体实函数集合构成实数域上的线性空间。
R 例2复数域上的全体型矩阵构成的集C m n ×合为上的线性空间。
m n × C C 例3实数域上全体次数小于或等于的多项式R n 集合构成实数域上的线性空间;1[]n R x +R 实数域上全体次数等于的多项式集合不构成实数域上的线性空间;R n R二:线性空间的基本概念及其性质定义:线性组合;线性表出;线性相关;线性无关;向量组的极大线性无关组;向量组的秩向量组的极大线性无关组向量组的秩R例1实数域上的函数空间中,函数组2x x1,cos,cos2是线性相关的函数组。
矩阵分析

教材:矩阵分析 史荣昌等编
参考书 矩阵分析引论 矩阵论
罗家洪编 程云鹏编
矩阵理论是一门最有实用价值的数学 理论。 在现代工程技术中有广泛的应用。算法处理, 系统工程,优化方法,现代控制理论,自动化 技术,稳定性理论等,都与矩阵理论有着密切 的联系。矩阵理论在内容上也在不断的更新和 发展。
本课程只介绍矩阵理论中最经典的一部分。 它是线性代数课程的继续和深化。为了学好这门 课程,希望同学们好好复习一下线性代数,特 别向量、矩阵、二次型的相关内容。
定义2 给定向量组A :1,2 , ,m ,如果存在不
全为零的数k1, k2 , , km使
k11 k2 2 km m 0
则称向量组 A是线性相关的,否则称它线性无关.
定理3 向量组 1,2 , ,(m当 m 时2 )线性相关
的充分必要条件是 1 ,2 , ,m中至少有一个向
的集合。即
R
[a1,
a2, a3,]
ai F, i 1,2,3,
在 R 中定义加法与数乘:
[a1, a2, a3,] [b1, b2, b3,] [a1 b1, a2 b2, a3 b3, ] k[a1, a2, a3,] [ka1, ka2, ka3,] 则 R 为实数域 R上的一个线性空间。
例 4 在4维线性空间 R22中,向量组
0 1
1 1
,
1 1
0 1
,
1 0
1 1
,
1 1
1 0
与向量组
1 0
0 0
,
1 0
1 0
,
1 1
1 0
,
1 1
1 1
关于矩阵分析第4章

拟讲满秩分解,正交三角分解,奇异值分解和极分解.
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) ①将矩阵A的两行互换等价 于用第一类初等矩阵P(i,j)=
1 1 0 1 1 1 0 1 1
引理4.3.1:对任意矩阵ACrmn有 rank(AA*)=rank(A*A)=rank A*=rank A=r. 证:因方程组Ax=0的解空间维数等于n-rank A,故 为了证明 rank(A*A)=rank A (*) 只须证明下列两个方程组 Ax=0 ⑴ A*Ax=0 ⑵ 有相同的解空间即可. 显然,x满足⑴ x满足⑵. 反之,x满足⑵ x*A*Ax=0, 即 (Ax,Ax)=0 Ax=0, 即x满足⑴. 注:利用A的任意性以A*代A由(*)得 rank A=rank A*=rank((A*)*A*)=rank(AA*)
m=3,n=4,r=2. 注:可能存在不仅是常数差别的两个实质不同的 满秩分解.
矩阵满秩分解的存在定理
定理4.1.1:任意矩阵ACrmn,都有满秩分解: A=BC,BCrmr,CCrrn. 证:由初等矩阵性质知:存在可逆阵PCmmm和 Er 0 Er nn 使 QCn PAQ= 0 0 0 Er 0 从而
证:因前r列线性无关,故用第一类初等矩阵左乘 可使A的(1,1)元0.再用第二类初等矩阵左 乘可使a11=1;最后用若干第三类初等矩阵左 乘可使A的第一列=e1.因前2列线性无关,故 新的第2列与e1不线性相关且0,故用第一类 行变换可使(2,2)元0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元。
矩阵分析第四章.

将上两式代入BC = B1C1,得: B1(θ1θ2)C1 = B1C1 因此有: B1HB1(θ1θ2)C1C1H = B1HB1C1C1H 其中B1HB1, C1C1H都是可逆矩阵, 因此 θ 1θ 2 = E ⇒ θ 2 = θ 1− 1 (2) 将(1)的结果代入CH(CCH)−1(BHB)−1BH即可得到.
第四章 矩阵分解 矩阵分解
第一节 矩阵的满秩分解
定理:设 定理 :设A∈Crm×n, 则∃B∈Crm×r, C∈Crr×n使 A = BC 证明:设 证明 :设A的前r个列线性无关, 则∃P∈Cmm×m, 使
⇒
Er D PA = (即对A做初等行变换 ) 0 0 D −1 E r −1 E r A=P 0 0 =P 0 (E r D ) = BC
−1
Er m× r r×n ( ) 其中 : B = P ∈ C , C = E D ∈ C r r r 0
若A的前r个列线性相关, 则∃P∈Cmm×m, Q∈Cnn×n使
D −1 E r −1 ( ) ⇒ A = P E D Q = BC r 0 0 −1 E r m× r −1 r ×n ( ) 其中 : B = P ∈ C , C = E D Q ∈ C r r r 0
2 2 1 2
1 3 0 − 1 / 3 10 / 3 r ←r − 2r → 0 0 1 2 / 3 1 / 3 0 0 0 0 0
1 1 2
取第1列和第3列构成E2, 则B由A的第1列和第3列构成, 即
1 2 B = 2 1 , 3 3
⇒
′ k11 A = (α 1 , α 2 , L, α r ) = (ν 1 , ν 2 , L, ν r )
矩阵分析知识点总结

矩阵分析知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是由数个数排成的矩形阵列。
矩阵可以用大写字母表示。
1.2 矩阵的基本要素- 元素:矩阵中的每一个数称为矩阵的元素。
- 维数:矩阵的行数和列数称为矩阵的维数。
行和列的个数分别称为行数和列数。
1.3 矩阵的类型- 方阵:行数等于列数的矩阵称为方阵。
- 零矩阵:所有元素都是 0 的矩阵称为零矩阵。
- 对角矩阵:除了主对角线上的元素外,其它元素都是 0 的矩阵称为对角矩阵。
1.4 矩阵的表示- 横标法:按行标的顺序把元素排列成一串数,两个 4× 3 的矩阵可以表示为 12 个数。
- 纵标法:按纵标的顺序把元素排列成一串数。
1.5 矩阵的运算- 矩阵的加法- 矩阵的数乘- 矩阵的乘法1.6 矩阵的转置- 行变列,列变行,得到的新矩阵称为原矩阵的转置。
- 性质: (AT)T = A1.7 矩阵的逆- 若矩阵 A 有逆矩阵 A-1, 则 A × A-1 = A-1 × A = E- 矩阵 A 有逆矩阵的充分必要条件是 A 是可逆的。
- 克拉默法则:若一个 n 阶矩阵可逆,且 Ax = b,则 x = A-1b1.8 矩阵的秩- 行最简形矩阵都是行等价的。
其秩等于不为零的行数。
- 同样列最简形矩阵都是列等价的。
其秩等于不为零的列数。
- 行秩等于列秩。
1.9 矩阵的特征值和特征向量- 特征值:如果数λ和非零向量 x ,使得Ax = λx 成立,则称λ 是矩阵 A 的特征值。
非零向量x 称为特征值λ 对应的特征向量。
- 矩阵 A 所有特征值的集合称为 A 的谱。
- 若λ1,λ2,···,λn 互不相同,相应的特征向量组 x1,x2,···,xn 线性无关,则它们构成一组 A 的特征向量基。
1.10 矩阵的奇异值- 奇异值:对于矩阵A(λ1, λ2, ···, λn),λ1,λ2,···,λn称为矩阵 A 的奇异值。
《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

第四章 矩阵分析4-1.(1)对矩阵A 只做初等行变换得到行简化阶梯形矩阵82100-55212311125141010551312114001-5582100-5521211251,0105513114001-55A B C A BC ⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-→⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦=取于是即为其满秩分解表达式(2)对矩阵A 只做初等行变换得到行简化阶梯形矩阵1101010-10-1011110111123131000001110-10-101,0111123A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(3)对矩阵A 只做初等行变换得到行简化阶梯形矩阵12101212101212213300112124314500000048628100000001112121012,2300112146A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(4)对矩阵A 只做初等行变换得到行简化阶梯形矩阵120111012011036142360011-1024022270000016121757300000010101201103136,0011-1020270000016173A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=取于是即为其满秩分解表达式4-2.解:首先注意到A 的秩为1,同时计算出HAA 的特征值12=6=0λλ,,所以A 的奇异值1=6.σ然后分别计算出属于12λλ,的标准正交特征向量.]] []121211112121,1-1,1,.3111111=[,]T TH HU UV A UVV V VAηηηηη-====⎡⎤⎢⎥=∆==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎢⎢⎢⎢⎢⎢⎥⎢⎥⎣⎦⎤⎥==⎢⎥⎥⎣⎦,记,现在计算取于是r000003333HrA U V⎤⎥⎤=⎥⎥⎢⎣⎦⎥⎦⎥⎢⎥⎣⎦=∆=⎦⎥⎦或者4-3.解:(1)容易验证H H H HAA A A BB B B==,所以A,B是正规矩阵.(2)下面求A的谱分解:[][]21231123232323111(+1)(-2)=2==-1.=2=.==-1=10-1=1-0.=0=.TTTTTH E A A G λλλλλλλξλλααααξξξξ-===故的特征值为:,对于特征值,其对应的特征向量对于特征值,其对应的特征向量,,,,1,将,正交化和单位化得,,于是2223311133311133311133300111110636221210003331110226H H G ξξξξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢=+=+⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎣⎢⎥⎣⎦-⎡⎤-⎢⎥⎢⎥=+--⎢⎥⎢⎥-⎢⎥-⎣⎦122113331213331111236333=2A G G ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦-因此即为其谱分解.矩阵B 的谱分解参照矩阵A 的谱分解方法. 4-4. 解:已知矩阵024102211042A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦[][][]21231212331231231(+1)(+2),==-1=-2==-1=-2,1,0,4,0,1=-2=4,2,1.244[,,]102011T TTE A A A P P AP λλλλλλλλααλααααααα--==---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦-=求得所以其对应的特征值为:,对应于特征值,其对应的特征向量对应于特征值,其对应的特征向量为:,,线性无关,所以矩阵可对角化,所以矩阵是单纯矩阵于是而且有:11231112223311161212100211010,()366002221333122112111=--=-=6331263126322433312263311212632T TTTT TT P G G βββαβαβαβ-⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦==取:,,,,,,,,令122433312263311212632A G G A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=-+故即为矩阵的谱分解表达式.4-5.解:[][][]12312i 20000-i 0000500000,=5==0000=51,0,02001,0,0,=1,0,0-i 00100H H H H TT T H HHA A AA AA AA U V A U A V λλλδληηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==∆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢=∆=⎢⎢⎣⎦,求出的特征值为,所以的奇异值为:求出对应于的特征根:==H⎡⎤⎥⎥⎥⎥⎢⎥⎣⎦4-6.解:()()()1231212112204002000i ,0100-i 000000(-1)(-4)=4,=1,=02=2,=1,14=1,0,04=0,1,010,0100H H H H T H TH A A AA E AA AA AA AA U λλλλλλλααμμμμ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦-=⇒⎡⎤∆=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎢⎣⎦,所以的奇异值为:特征值为的单位特征向量为:特征值为的单位特征向量为:于是1111100-i 102100110-i 00H H H HV A U A U V -⎥⎥⎡⎤=∆=⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦因此所以4-7.解:(1) 首先求出矩阵A 的特征多项式212322082(+2)(-6)06=-2==6A (6E-A)=14204206E-A=8400000000E A aa a λλλλλλλλλ---=--=---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以其特征值为:,由于是单纯矩阵,从而r 有此可知:a=0;(2) 由上知a=0;()21231212331112223220=820-(+2)(-6)006==6;=-2,==6=0 =001=-2=0125524551TT T H H A E A A G G λλλλλλλλααλαααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⇒⎫⎪⎭⎫⎪⎭⎛⎫ ⎪ ⎪⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭所以,求出对应于的单位正交特征向量为:,,,求出对应于的单位特征向量为:因此,的投影矩阵,31212552455062H A G G α⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭=-4-8.解: (1)3i -13i -1-i 0i -i 0i -1-i 0-1-i 0,.HH H A A AA A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=,所以是正规矩阵 (2)()()())()()()212311223312312314122 1.2==-1=0,-i,1,,=0.8801,0.3251i,0.3251,=0.4597,0.6280i 0.6280,=TTTTTE A λλλλλλλλαλαλααααηηη-=+-+=+==-===求出与求出与求出与对应的特征向量为:将单位化得到单位特征向量为:,111222333112233,,=TH H HG G G A G G G ηηηηηηλλλ⎛ ⎝⎭===++所以4-9.解:对矩阵A 只作初等行变换100071415610290102000147712401525001772655700000310007141102901020077,1245250017726500000.A ABC BC A -⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦= 的秩为,且前三个列向量线性无关,故容易验证:4-10.解: 对矩阵A 只作初等行变换110130-331321421=261070013339311100000211012130-3321,210013333.2113210-361,93A A B C BC A A B C ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 的秩为,且第一,第三个列向量线性无关,故容易验证:的秩为,且第二,第三个列向量线性无关,故10992100133.BC A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=容易验证:4-11.解:()()1231231231231===0=00=0004400TTTH A Schmidt U R U A R ααααααυυυυυυ-⎛ ⎝⎛⎝⎛⎝⎡⎢⎢⎢==⎢⎢⎢⎢⎣⎡⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎣⎦将,,的列向量,,用方法标准正交化得,命,,,则111335---1444420111==-=--2222-1131=.H x R U b Ax b -⎥⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦不难验证4-12.解:5000000005,0,0A H H AA AA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为的特征值为,故4-13.解:2123111111202000202(-4),=4==0A=2=2.=4==,10111012HH HT T HHHAAE AA AAAA UV A Uλλλλλλαλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-=∆=⎡⎤=∆=∙=⎢⎥⎢⎥⎣⎦⎢⎥所以的特征值,,的奇异值为,的特征值的单位特征向量u u因此:不难验1122124.3.443301001HHHHH HA U VAAUA AU A A VU=∆=⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎢⎢=⎢⎥⎢⎥⎣⎦=证这是定理表达形式.下面介绍定理..表述形式.又的零特征值所对应的次酉矩阵的零特征值所对应的次酉矩阵V于是AA的酉矩阵与的酉矩阵分别为V⎤⎥⎥=⎢⎥⎥⎢⎥⎥⎥⎦⎥⎦,且2000000HD A UDV ⎡⎤∆⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=不难验证4-14. 解:()()()12312111121111400010(1)(4),000=4=1=02=2=1=14=1001=01010==010010010=U V 010H HH H H H H H AA E AA AA A AA u AA u U u u V A U i A λλλλλλλαα-⎡⎤⎢⎥=-=--⎢⎥⎢⎥⎣⎦⎡⎤∆⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤=∆=⎢⎥⎣⎦∆=,的特征值,,所以的奇异值,,的特征值为的单位特征向量的特征值为的单位特征向量于是因此所以3222121010043300=0=110010(,)=010,V=V 0001100201001001000100HH Hi AA u U U U U i A UDV i ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦若要写成定理..形式还得计算U,V.特征值为的单位特征向量故所以4-15.解:242-24-2422-4-2-2-2252-2-5H i i A i i i i A i i i i -⎡⎤⎡⎤⎢⎥⎢⎥==-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由于所以A 是反Hermite 矩阵.2123121233111222-424+22==(+6i)(-3i)-22A ==-6i =3i.==-6i =0==3i 221=i -33354i2i -999-TTT H H iE A i i iA G λλλλλλλλλλλααλααααα+-=⎛ ⎝⎛⎫ ⎪⎝⎭=+= 的特征值,属于特征值的正交单位特征向量,属于特征值的正交单位特征向量,,因此的正交投影矩阵为233124i529992i 2899944i 2i 9994i 429992i 219996i 3i H G A A G G αα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦=-所以的谱分解式为:+4-16..解:130i 2202031-i 022HA A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦由于所以A 是Hermite 矩阵.()21231212331112213--i 220-20==(-2)(+1)31-i 0-22A ==2=-1.==2=010=0=-1=01i 022010i 1-022TTTH H E A A G G λλλλλλλλλλλααλααααα-=⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎣⎦ 的特征值,属于特征值的正交单位特征向量,,,属于特征值的正交单位特征向量因此的正交投影矩阵为233121i 0-22010i 10222-H A A G G αα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦=所以的谱分解式为:4-17. . .解:先求A 的特征值和特征向量,由21234-603+50=(-1)(+2)36-1==1=-2.E A A λλλλλλλλλ--=故的特征值为:,()()()()1231212331123=1-3-60360=0360=2-1,0=0,0,1=-2-3-60360=0360=-11,1201111,,101()=122011010TTT Tx x x x x x P P λααλαααα-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤⎡⎢⎥==--⎢⎥⎢⎥⎣⎦⎣当时,由方程组求得特征向量为:,,当时,由方程组求得特征向量为:,所以,()()()1231112223312=1,1,0,=-1,-2,1,=1,2,022*******,1201211202TTTT TT G G A A G G βββαβαβαβ⎤⎢⎥⎢⎥⎢⎥⎦--⎡⎤⎡⎤⎢⎥⎢⎥=+=--==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦=-因此于是所求投影矩阵为的谱分解表达式为4-18.解: 因为()()1122r r 1122r 20112012012r 11122r r 1122r r 220111011201=+++=++++=++++=(G +G ++G )+()++()=(++++)G +(++++)G ++(+k k k k r s s ss s s s s s A G G G A G G G f a a a a f A a E a A a A a A a a G G G a G G G a a a a a a a a a a λλλλλλλλλλλλλλλλλλλλλλλ=+++++++++ 若则()()()211122+++)=G +G ++s s r ra a f f f G λλλλλ 4-19.解:方法一:A 是单纯矩阵()()()()()31234123123441234-1-11-11-1=(-1)(+3)-11-11-1-1===1=-3.===1=1100=101,0=-100,1=-3=1-1-1,111-11100-1,,,=010-10011T T TTE A A P λλλλλλλλλλλλλλαααλααααα-=⎡⎤⎢⎢=⎢⎢⎣故的特征值为:,属于特征值的正交单位特征向量,,,,,,,,,属于特征值的正交单位特征向量,,所以1123411122331111-44443111--4444,()=1311--44441131444413111131=-=-4444444411131111=-=--44444444314+T TTT TT TT P A G ββββαβαβαβ-⎡⎤⎢⎥⎢⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎦⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=+=因此,,,,,,,,,,,,,,因此的正交投影矩阵为11444131144441131444411134444⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦244121111-4444111144441111--444411114444-3H G A A G G αβ⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:方法二:A 是正规矩阵.由方法一中已知A 的特征值1234===1=-3λλλλ,,把1234αααα,,,Schmidt 方法标准正交化得123441112233244=00=0=1111=--22223111444413114444+113144441113444411-44T T TTT T TH G G υυυαυυυυυυυυυ⎫⎫⎛⎪⎪ ⎭⎝⎭⎛⎫⎪⎝⎭⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦-==,,,把单位化得 ,,,正交投影矩阵121144111144441111--444411114444-3A A G G ⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:若v1 ∩ v =0,则称v1与v 2 的和空间v1 + v 2 是直和,用记号v1 ⊕ v 2 表示
交
定理:设v1与v 2 是线性空间 v 的两个子空间,则下列命题是等价的
与
和
1) v1 + v 2 是直和
直和
2) dim(v1 + v 2 )= dim v1 + dim v 2
3)
设
α1, αn1
α α α 定理:(1) R(T)=span{T( 1 ),T( 2 ),……T( n )} (2)rank(T)=rank(A)(A 为线性映射在基下的矩阵表示)
值
域
性质:
设 A 是 n 维线性空间V1 到 m 维线性空间V2 的线性映射,α1,α2, αn
是V1
的一组基,β1,
β
2
,
,βm
是V2 的一组基。线性映射 A 在这组基下的矩阵表示是 m*n 矩阵 A=( A1,A2, An
特征子
空间
V 性质:特征子空间 λi 是线性变换 T 的不变子空间。
定义:设v1和v 2 是数域 F 上的两个线性空间,映射 A:v1 → v 2 ,如果对任何两个向量 α1,α2 ∈ v1和任何数λ ∈ F
有 A( α1 + α2 )=A( α1 )+A( α2 ),A( λα1 )= λ A( α1 ),便称 映射 A 是由v 1到v 2 的线性映射
α1,α
2
,
αr
生成的子空间为
T
的不变子空间。
0 0 an,r +1 ann
λ α λ λ λ 定义:设 T 是数域 F 上 n 维线性空间 V 的线性变换,如果 V 中存在非零向量α,使得 T(α)= 0 , 0 ∈F.那么称 0 是 T 的一个特征值,称α是 T 的属于 0 的一个特征向量。
是 v1
的一组基,
β1,β2
,
βn2
的一组基,则
α1, αn1
,
β1,
β
2
,
βn2
是v
1
+ v 2 的一组基
定义:设w 1,w 2,w 3 是线性空间 V 的三个子空间,且 w=w 1 ⊕ w 2 。则称 w 有一个直和分解。
补子 空间
特别的,若 w=v=w 1 ⊕ w 2 ,便称w 1和w 2 是线性空间 v 的一对互补子空间。或称w 1是w 2
向
量
计 算 线性变换 A 的特征值和特征向量变成计算矩阵 A(线性变换在某一个基底下的矩阵)的特征值和特征向量。
方法
定理:相似矩阵有相同的特征多项式
推论 1:相似矩阵有相同的谱。
p α p Ap −1
−1
推论 2:设α是 A 的特征值λ对应的特征向量,则
是矩阵 B=
的特征值λ对应的特征向量
λ λ V 定义: n 阶方阵 A 有 n 个特征值,对于每个特征值 i 代入( i E-A)X=0 可以得到相应的特征向量,这些特征向量加上零向量构成 n 维向量空间的一个子空间,称为特征子空间,记为 λi
a1n
a2n a3n
=(
β1,β2
,
βm
)A,矩阵 A 称为线性映射 A 在基( α1,α2, αn
)与(
β1,β2
,
βm
)下的矩阵表示
am1 am 2 amn
定理
1:设v 1 的基为(α1,α2, αn
),v 2
的基为(
β1,β2
,
βm
),给定
m*n
矩阵
A=( aij
)
m
*n
)
a12(λ )
a1n(λ
)
A(λ )
=
a21(λ )
a22(λ )
a2n(λ
)
为多项式矩阵或者λ矩阵
am 1(λ )
a m
2(λ
)
amn(λ )
定义:如果λ矩阵 A(λ)中有一个(r≥1)阶子式不为零,而所有的 r+1 阶子式全部为零,则称 A(λ)的秩 r。
λ
逆矩阵:一个 n 阶λ矩阵称为可逆的,如果有一个 n 阶λ矩阵 B(λ)满足 A(λ) B(λ)= B(λ) A(λ)=E,其中 E 为 n
称 W 为线性空间 V 的一个线性子空间.简称子空间. 平凡子空间:零子空间和线性空间本身 定理:线性空间 V 的非空子集 W 构成子空间的充分必要条件是:W 对于 V 中的线性运算封闭.
线
定义:非空子集 span( α1,α2,α3, αs )是由向量 α1,α2,α3, ,αs 生成的生成子空间,
),
其中
Ai
是
m
行列矩阵。于是
A( α1,α 2,
αn
)=(
β1,β2
,
,βm
)A,故
A( αi
)=(
β1
,β2
,
,βm
)
Ai
。A
的值域和
A
的值域是一样的。
v v 定义:使 T(α)=0 的α的全体 N(T)={ α|α∈ 1 ,T(α)=0,}是 1 的子空间, N(T)称为线性映射 T 的核子空间。Dim(N(T))称为 T 的零度。
性质:(1)线性变换 T 的和与交仍然是 T 的不变子空间
(2)设
W=span(
α1,α
2
,
αn
),则
W
是线性变换
T
的不变子空间的充分必要条件是
T( αi
)∈W
(3)V 的任何一个子空间都是数乘变换的不变子空间
不
定理:设
W
是
T
的
不
变
子
空
间
,
α1,α
2
,
αr
是
W
的
一
组
基
,
α1,α2
,
α
r
,
αr
+1
线矩 性阵 映表 射示
m
∑ 定义:设α1,α2, αn
是v
1
的一组基,
β1,
β
2
,
βm
v 是 2 的一组基,A
是v1到v 2
的一个线性映射则
A( αj
)
=
αij
βi
α (j=1,2,3,…n)=(A( 1
),A( α2
), A( αn
))=(
β1,β2
,
βm
)
i =1
a11 a21
a12 a22
(1)A(0)=0;A(-a)=-A(a)
s
s
∑ ∑ 性 (2) A( kiαi )= ki A(αi )
质
i =1
i =1
(3)设
α1,α
2
,
αs
∈
V1,线性相关,则
A(α1 ),A(α 2
),
A(αs
)也线性相关。注意若
α1,α
2
,
αs
线性无关,则
A(α1
),A(α2
),
A(αs
)不一定线性无关
,则存在唯一的线性映射,它在这俩个基下的矩阵表示为
A.(In
another
word,在给定基以后,A
与矩阵表示是
一一对应的。)
定理
2:设
A
是v
1到v
2
的一个现行映射,α1,α2,
αn
和
α1',α2',
α
' n
是v
1
的两组基,从
αi
到 αi'
的过度矩阵是
P。
β1,β2
,
βm
和
β1',β2',
βm'
是v
2
的两组基,从
βi
到
βi'
的过度矩阵是
Q,线性映射
A
在基 α1,α 2,
αn
和基
β1,β2
,
βm
下的矩阵表示为
A,在基 α1',α2',
α
' n
和
β1',β2',
β
' m
下的矩阵表示为
B,则
B= Q
−1
AP
y1 a11
向量坐标变换公式:
y
2
= a21
a12 a22
a1n a2n
x1
等 定理:对一个 m*n 的λ矩阵 A(λ)的行作初等行变换,相当于用相应 m 阶初等矩阵左乘 A(λ)。对 A(λ)作初等
变
列变换,相当于用相应的 n 阶初等矩阵右乘 A(λ)
定义 :给定数域 P 上的线性空间 V 到线性空间 V 的线性映射,称线性变换
a11
定义:设
T
是线性空间
V
的线性变换,
α1,α2
,
αn
是
V
的一组基,若
T(
α1,α2
,
αn
)=(
α1,α
2
,
αn
)
a21
a12 a21
a1n
a2n
=(
α1,α2
,
αn
)A
an1 an2 ann
子
空
定理 1:设v1 = span(a1,a2,a3, as ),v 2 = span(β1,β2,β3 βt ),则v1 + v 2 =span(
间
α1,α2,α3, αs , β1,β2,β3 βt )