分析化学第六章氧化还原滴定法.ppt
合集下载
分析化学06 氧化还原滴定法
越大, K’ 越大,反应越完全。
/ 1 / 2
例题:p139
6.2.2 化学计量点时反应进行的程度
O' O' n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2 lg K = (1 2 )n
0.059
?
/ 1 / 2
(2) 如果两个电对反应完全,应满足什么条件? n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2 氧化还原反应进行的程度可用平衡常数的大小来 衡量。
n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2 两个半电池反应的电极电位为: 0.059 cOx1 O' 1 1 lg n1 cRed1
n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2
lg K =lg[(
cRe d1 cox1
)n2(
cox2 cRe d2
(1O' 2O' )n1n2 (1O' 2O' )n )n1 ]= = 0.059 0.059
K’ 与两电对的条件电极电位差和 n1 、n2有关。
略不计。
2. 副反应的影响 主要影响因素
ox/Red
O ox/Red
ox Red cox cox RT RT O' ln ox/Red ln nF Red ox cRed nF cRed
电对的氧化态(cOX)生成沉淀(或配合物)时,电极电位降低;
还原态(cRed)生成沉淀(或配合物)时,电极电位增加。
在特定条件下,氧化态与还原态的总浓度均为1mol.L-1(即 cox/cRed = 1) 时的实际电极电位叫条件电极电位。条件电极电位 能更准确判断氧化还原反应进行的方向、次序及反应完成的程 度。
分析化学 氧化还原滴定法
a 与 C的关系为:
aOx
Ox
Ox
C Ox Ox Ox
aRed
Red
Re d
C Red Red Red
-活度系数 -副反应系数
Ox / Re d
Ox / Re d
RT ln γOx Red cOx nF γ c Red Ox Red
Ox / Re d
RT ln γOxRed
Red
增大,
0
值增大。
Eg. 2Fe3+ + 2I = I2 + 2Fe2+
Fe3+ + e = Fe2+ φFe3+/Fe2+ =0.771V I2 + 2e = 2I- ΦI2/I- =0.54V
例如,用间接碘量法测定Cu2+时,反应为
2Cu2 4I
2CuI I2
若试液中有Fe3+共存时,Fe3+也可以氧化I-生成I2,
0' 0 0.059lg OxRed
n
Red Ox
从条件电位的定义式知道,影响条件电位的因素 就是影响电对物质的活度系数和副反应系数的因素。
主要包括:盐效应 酸效应 生成沉淀 生成配合物
活度系数 副反应系数
1.盐效应:溶液中的电解质浓度对条件电位 的影响作用。
电解质浓度 离子强度 活度系数
*以标准氢电极为参照电极的相对值。
2、书写Nernst方程式时注意的问题:
(1)固体、溶剂的活度为1mol/L;
(2)气体以大气压为单位;
(3)如果半电池中除了氧化态和还原态外, 还有其他组分如:H+、OH参加, 活度也要包 括到Nernst方程式中;
氧化还原滴定法—高锰酸钾法(分析化学课件)
还易和水中的有机物、空气中的尘埃及氨等还原性物质作 用;KMnO4还能自行分解,反应如下:
4KMnO4 +2H2O ==== 4MnO2 + 4KOH+ 3O 2 ↑ 常用Na2C2O4作基准物质来标定KMnO4 溶液,Na2C2 O4 不含结晶
水,容易精制。用Na2C2 O4标定KMnO 4 溶液的反应如下:
3.0mol·L -1 H2SO4 溶液 四、实验步骤
1.0.02mol·L -1 KMnO 4 标准滴定溶液的配制 1. KMnO4标准溶液(0.02 mol/L)的配制 称取KMnO41.6 g, 溶于500 ml新煮沸放冷的蒸馏水中,置于棕色试剂瓶里,摇 匀,避光放置7~14天,然后用G4玻璃砂心漏斗过滤,滤液存 于另一棕色试剂瓶中。
根据每份滴定中Na2C2O4的重量和消耗的 KMnO4溶液体积,计算出KMnO4溶液的浓度。
双氧水含量测定
3、 H2O2含量的测定 用移液管吸取10.00mL3% H2O2,置
于250mL容量瓶中,定容。 用移液管吸取25.00mL上述溶液置
于锥型瓶中,加水20mL,3mol.L-1H2SO410mL, 用KMnO4标准溶液滴定至微红色,半分钟内不 褪色即为终点。计算试样中H2O2的质量体积百 分比。
1
高锰酸钾的性质
高锰酸钾在碱性溶液中的氧化性也较弱,氧化还原电位为(E0=0.564V)。高锰酸钾在 中性条件下的最大特点是反应生成二氧化锰,由于二氧化锰在水中的溶解度很低,便以水 合二氧化锰胶体的形式由水中析出。正是由于水合二氧化锰胶体的作用,使高锰酸钾在中 性条件具有很高的去除水中微污染物的效能,而在处理土壤中的有机污染物时,则是在酸 性条件下更好。
相对平均偏差:
高锰酸钾标准溶液的配制与标定
4KMnO4 +2H2O ==== 4MnO2 + 4KOH+ 3O 2 ↑ 常用Na2C2O4作基准物质来标定KMnO4 溶液,Na2C2 O4 不含结晶
水,容易精制。用Na2C2 O4标定KMnO 4 溶液的反应如下:
3.0mol·L -1 H2SO4 溶液 四、实验步骤
1.0.02mol·L -1 KMnO 4 标准滴定溶液的配制 1. KMnO4标准溶液(0.02 mol/L)的配制 称取KMnO41.6 g, 溶于500 ml新煮沸放冷的蒸馏水中,置于棕色试剂瓶里,摇 匀,避光放置7~14天,然后用G4玻璃砂心漏斗过滤,滤液存 于另一棕色试剂瓶中。
根据每份滴定中Na2C2O4的重量和消耗的 KMnO4溶液体积,计算出KMnO4溶液的浓度。
双氧水含量测定
3、 H2O2含量的测定 用移液管吸取10.00mL3% H2O2,置
于250mL容量瓶中,定容。 用移液管吸取25.00mL上述溶液置
于锥型瓶中,加水20mL,3mol.L-1H2SO410mL, 用KMnO4标准溶液滴定至微红色,半分钟内不 褪色即为终点。计算试样中H2O2的质量体积百 分比。
1
高锰酸钾的性质
高锰酸钾在碱性溶液中的氧化性也较弱,氧化还原电位为(E0=0.564V)。高锰酸钾在 中性条件下的最大特点是反应生成二氧化锰,由于二氧化锰在水中的溶解度很低,便以水 合二氧化锰胶体的形式由水中析出。正是由于水合二氧化锰胶体的作用,使高锰酸钾在中 性条件具有很高的去除水中微污染物的效能,而在处理土壤中的有机污染物时,则是在酸 性条件下更好。
相对平均偏差:
高锰酸钾标准溶液的配制与标定
水分析化学6 氧化还原滴定法
的大小由电对的氧化态和还原态的材料自身性质及温度 决定。当二者一定时, 为常数。
第六章 氧化还原滴定法
2、条件电极电位
以HCl溶液中Fe(Ⅲ)/Fe(Ⅱ)这一电对为例,在298.15K时,由能 斯特方程式可得:
在盐酸溶液中,Fe(Ⅲ)以Fe3+、FeOH2+、FeCl2+、FeCl63-等形 式存在;而Fe(Ⅱ)也以Fe2+、FeOH+、FeCl+、FeCl42-等形式 存在。那么,Fe(Ⅲ)与Fe(Ⅱ)的分析浓度与游离Fe3+和Fe2+的 平衡浓度之间的关系并不相等。
第六章 氧化还原滴定法
生成沉淀的影响
在氧化还原反应中,当加入一种可以与氧化态或者还原态生成 沉淀的沉淀剂时,会改变电对的电极电位。根据能斯特方程式, 若电对的氧化态生成沉淀,则电位降低;反之,还原态生成沉 淀则使电对的电位增高。 例如,碘量法测铜是基于以下反应:
从标准电极电位看,应该是I2氧化Cu+,但是由于Cu2+/ Cu+中 Cu+生成的了CuI沉淀使得电对的电位升高,超过了0.54V,从而 氧化还原反应的方向发生了转变。
第六章 氧化还原滴定法
第六章 氧化还原滴定法
主要内容:
氧化还原平衡
氧化还原反应的速度
氧化还原滴定过程及滴定曲线
氧化还原滴定的指示剂
氧化还原滴定法在水质分析中的应用
第六章 氧化还原滴定法
氧化还原滴定法:是以氧化还原反应为基础的滴定 方法。 氧化还原反应的特点:
是电子转移反应(反应机理复杂); 反应常分步进行; 反应速率慢,且多有副反应。
发生氧化还原反应的两个电对的条件电极电位相差 得越大,其K’越大,说明反应进行得越完全。还可 以根据两电对的 ' 以及各自转移的电子数n1、n2 推导出用于判别可否用于氧化还原滴定分析的通式。
《氧化还原滴定法》课件
酚酞指示剂
在弱酸性条件下,由无色变为粉红色,常用于 测定氧化剂和还原剂的滴定。
甲基橙指示剂
在酸性条件下,由红色变为黄色,常用于测定 还原剂的滴定。
二溴酚蓝指示剂
在强酸性条件下,由黄色变为蓝色,常用于测 定氧化剂和还原剂的滴定。
邻苯二酚指示剂
在碱性条件下,由无色变为蓝色,常用于测定 氧化剂的滴定。
常用的滴定试剂及其应用
滴定的控制误差和计算结果的 处理
滴定的控制误差主要包括滴定试剂的误差、指示剂的误差和操作误差。
为了减小滴定的误差,可以使用称量精确的试剂、选用敏感的指示剂,并尽 量减小搅拌或振荡时的人为误差。
滴定法在分析化学中的应用
滴定法广泛应用于分析化学中,可用于测定无机化合物、有机化合物、电解 质和非电解质的含量和浓度。
《氧化还原滴定法》PPT 课件
本课件将介绍氧化还原滴定法的基本原理,滴定的步骤和操作要点,常见的 氧化还原指示剂,以及常用的滴定试剂及其应用。
此外,我们还会学习如何计算滴定反应的过量试剂量,控制滴定误差以及处 理计算结果,并深入探讨滴定法在分析化学中的应用。
滴定的基本原理
滴定法是一种常用的定量分析方法,通过滴定试剂与被测物质进行化学反应,确定被测物质的含量。 滴定的速反应达到滴定终点,从而确定被 测物质的浓度。
滴定法具有快速、准确、经济的特点,是定量分析的重要手段,被广泛应用 于实验室和工业生产中。
高锰酸钾溶液
碘溶液
硫代硫酸钠溶液
常用于测定还原剂的浓度和含量。 常用于测定还原剂的浓度和含量。 常用于测定氧化剂的浓度和含量。
计算滴定反应的过量试剂量
滴定反应的过量试剂量是指在滴定终点之后,滴定试剂继续滴定并加入到被滴定溶液中的体积。 计算过量试剂量的方法是基于滴定反应的立方方程式,并考虑到滴定试剂的浓度和滴定反应的摩尔比例。
分析化学 第6章 氧化还原滴定
0.1
化学计量点时:
sp
(1.44 0.68) V 2
1.06
V
化学计量点后 用 Ce4+ / Ce3+ 电对计算
1.44 V
0.0592 V
lg
cr (Ce 4 cr (Ce 3
) )
加 20.02mL Ce4 时,
等于 -3
1.44 V 0.0592 V lg 0.1 1.26 V
由上可见,同一电极反应当条件不同时,
和 不同, 不同。
当 0.0592 V lg (O) (R)
n
(R) (O)
0.0592 n
V
lg
cr cr
(O) (R)
0.0592 V lg cr (O)
n
cr (R)
≠ 0 时,
即:在任意浓度时,用下式计算 某特定条件下的电对的电极电势
若相近条件下的条件电势也查不到时, 只好用标准电极电势。
条件电势表见附录Ⅴ(p311)。
例如计算 1.5 mol·L-1 H2SO4 介质中 Fe3+/Fe2+ 电对的电极电势时, 查附录Ⅴ(p311)可知, 查不到这一条件下的条件电势,此时可用 1 mol·L-1 H2SO4 介质中的条件电势 0.68 V, 这仍比用标准电极电势 0.771 V 算得的结果 更接近实际值。
变为 0.71 ~ 1.31 V,
突跃范围扩大(突跃开始点的电势降低)了。
此时,二苯胺磺酸钠指示剂的变色点电势 0.84 V 在突跃范围 0.71 ~ 1.31 V 内、成为合 适的指示剂了(在突跃范围内变色)。
可见,同一氧化还原反应, 介质不同时, 突跃范围不同(因 不同)。
3. 化学计量点电势 (sp ) 的位置
化学计量点时:
sp
(1.44 0.68) V 2
1.06
V
化学计量点后 用 Ce4+ / Ce3+ 电对计算
1.44 V
0.0592 V
lg
cr (Ce 4 cr (Ce 3
) )
加 20.02mL Ce4 时,
等于 -3
1.44 V 0.0592 V lg 0.1 1.26 V
由上可见,同一电极反应当条件不同时,
和 不同, 不同。
当 0.0592 V lg (O) (R)
n
(R) (O)
0.0592 n
V
lg
cr cr
(O) (R)
0.0592 V lg cr (O)
n
cr (R)
≠ 0 时,
即:在任意浓度时,用下式计算 某特定条件下的电对的电极电势
若相近条件下的条件电势也查不到时, 只好用标准电极电势。
条件电势表见附录Ⅴ(p311)。
例如计算 1.5 mol·L-1 H2SO4 介质中 Fe3+/Fe2+ 电对的电极电势时, 查附录Ⅴ(p311)可知, 查不到这一条件下的条件电势,此时可用 1 mol·L-1 H2SO4 介质中的条件电势 0.68 V, 这仍比用标准电极电势 0.771 V 算得的结果 更接近实际值。
变为 0.71 ~ 1.31 V,
突跃范围扩大(突跃开始点的电势降低)了。
此时,二苯胺磺酸钠指示剂的变色点电势 0.84 V 在突跃范围 0.71 ~ 1.31 V 内、成为合 适的指示剂了(在突跃范围内变色)。
可见,同一氧化还原反应, 介质不同时, 突跃范围不同(因 不同)。
3. 化学计量点电势 (sp ) 的位置
第六章 氧化还原滴定 (1)
(Cr2O72-2Cr3+)。
(3)浓度的方次:物质前的系数若不是1,则a要 有与系数相同的方次。 (4)纯溶剂、纯金属、纯固体其a≈1。 (5)对复杂电对,式中应包括有关反应物和生
成物的活度;参加电极反应的H+或OH-离
子也应参与计算。
例如:
Zn2+ + 2e = Zn
0 Zn 2 /Zn
EZn2 /Zn E
AgCl + e ==Ag + Cl-
AgI + e ==Ag + I-
EɵAgCl /Ag =0.22
EɵAgI /Ag = -0.15
例1:K2Cr2O7在酸性溶液中的半反应: Cr2O72-+ 14H++ 6e == 2Cr3++ 7H2O 当 [Cr2O72-]=[Cr3 + ]=[H + ]=1mol/L 时,计算电 位值; 若保持[Cr2O72-]=[Cr3+]浓度不变,将 溶液的pH升至6,此时 电位 值又为多少? 已知:Eɵ=1.33V
T 为热力学温度(T /K=273.15+t℃)
n 为半反应中转移的电子数
EOx/Red E
Ox/Red
0.059 aOx lg n a Red
0.059 [Ox] lg n [Red]
0.059 C Ox lg n C Red
温度为25℃时,将 各常数代入,可 得
EOx/Red E
E Fe 3 /Fe 2
1.00 102 0.68 0.059lg 0.74 3 1.00 10
三、氧化还原反应方向及影响因素
1.氧化还原反应的方向 较强的氧化剂与较强的还原剂作用生成较 弱的还原剂和较弱的氧化剂。
氧化还原滴定法—碘量法(分析化学课件)
➢ I2是较弱的氧化剂,它只能与一些较强的还原剂作用;而是中等强 度的还原剂,它能被许多氧化剂氧化为I2。因此,碘量法又分为直 接碘量法和间接碘量法。
30
直接碘量法
(1)直接碘量法(碘滴定法)
电位比
Θ I 2 /I
低的还原性物质可以直接用I2标准溶液滴定,这种滴定方式称为直
接碘量法。
直接碘量法只能在酸性、中性或弱碱性溶液中进行。如果溶液的pH>9,则会发
7
硫代硫酸钠标准溶液的配制和标定 二、测定步骤
1.0.1mol/L的Na2S2O3溶液的配制 称取碳酸钠0.1g,置于500ml烧杯中,加新煮沸并放冷的纯化水约
200ml搅拌使溶解,加入Na2S2O3.5H2O 10.5g,搅拌使完全溶解,用新煮 沸并放冷的纯化水稀释至400ml,搅匀,转至试剂瓶中,贴上标签,放置 7-14天,备用。(实验老师已配好)
8
硫代硫酸钠标准溶液的配制和标定
2.0.1mol/L碘Na2标S2O准3溶溶液的液标的定配制和标定
精密称取在120℃干燥至恒重的基准物质K2Cr2O7约1.2g于小烧杯中, 加水至适量使其溶解,定量转移至250ml容量瓶中,加水至刻度线,摇 匀。
用25ml移液管移取K2Cr2O7溶液于碘量瓶中,加KI 2g、纯化水25ml、 4mol/LHCl 溶液5ml,密塞,摇匀,水封,在暗处置放10分钟。加纯化 水50ml,用0.1mol/L Na2S2O3溶液滴定至接近终点时,加淀粉指示液2ml, 继续滴加至蓝色消失、溶液呈亮绿色即为终点,记录消耗Na2S2O3溶液的 体积并进行数据处理。
•23
碘量法减少误差的方法 (2)减少I-被O2氧化的方法: ①溶液酸度不宜过高,酸度大会增大O2氧化I-的速度; ②Cu2+、NO2-对I-的氧化起催化作用,故应除去; ③密塞避光放置,析出I2的反应完全后立即滴定,快滴慢摇。
氧化还原滴定法原理(分析化学课件)
三、氧化还原滴定法的指示剂
一些氧化还原指示剂的条件电极电势及颜色变化
指示剂
次甲基蓝 二苯胺 二苯胺磺酸钠 邻苯胺基苯甲酸 邻二氮杂菲—亚铁 硝基邻二氮杂菲—亚铁
θ' ln
/V
c(H+)=1
mol · L-1
0.36
0.76
0.84
0.89
1.06
1.25
颜色变化 氧化形 还原形
蓝
无色
紫
无色
红紫
无色
P323 附录F
电极电位的大小,主要 取决于物质的本性,但 同时与体系的温度、浓 度等外界条件有关。
标准电极电位: 温度:25℃ 压力:1atm 浓度:1mol/L
电对的标准电位越高,其氧化型的氧化能力就越强;反之电对的标 准电位越低,则其还原型的还原能力就越强。因此,作为一种还原 剂,它可以还原电位比它高的氧化剂。根据电对的标准电位,可以 判断氧化还原反应进行的方向、次序和反应进行的程度。
E
E
RT
a(Ox) ln
E 0.059 lg a(Ox)
n F a(Re)
n a(Re)
(25C )
E , — 标准电极电位(电势·. ),热力学常数,温度的函数。
aOx , aORe — 分别为氧化态和还原态的活度
R — 摩尔气体常数,8.314J/(mol.K)
T — 热力学温度
n — 半反应中电子的转移数
即生成Fe(Ⅲ)的硫氰酸配合物时,即为终点。
பைடு நூலகம்
氧化还原反应,除了发生主反应外。常常可能发生副反应或因条 件不同而生成不同产物。因此,要考虑创造适当的条件,使它符 合满足分析的基本要求。
一、氧化还原电对和电极电位
[暨南大学课件][分析化学][教案PPT][精品课程]第六章-第二节-氧化还原滴定-1
红色
1.06
2020/6/17
二、氧化还原滴定的预处理
目的:将被测物预先处理成便于滴定的形式 对预氧化剂和预还原剂的要求 a. 定量氧化或还原预测组分 b. 反应速率快 c. 具有一定的选择性
例: 钛铁矿中Fe的测定, 不能用Zn作还原剂,用Sn2+
d. 过量的氧化剂或还原剂易除去
例 H2O2, (NH4)2S2O8 加热分解
150 200 250 滴定百分数
氧化还原滴定指示剂
指示剂选择的原则:条件电位落在滴定突跃范围之内
(1) 自身指示剂:有些滴定剂或被测物有颜色,滴定 产物无色或颜色很浅,则滴定时无须再滴加指示 剂,本身的颜色变化起着指示剂的作用。
MnO4 Mn2
I2 I
紫色
无色
深棕色 无色
2.5×10-6mol/L→粉红色
2020/6/17
➢ 化学计量点:
Ce4+和Fe2+分别大量地转变为Fe3+和Ce3+,未 反应的Ce4+和Fe2+浓度很小,不易直接求得, 但此时CCe4+= CFe2+,CCe3+= CFe3+
2020/6/17
➢ 化学计量点后:
溶液中的Fe2+几乎全部被氧化为Fe3+,CFe2+ 的浓度很难直接求得,但只要知道加入过量 Ce4+的百分数,便可用CCe4+/CCe3+计算电位 值。
2020/6/17
1. 氧化还原滴定曲线
电对电位随滴定剂加入体积而不断改变: E~VT曲线
? 如何获得氧化还原滴定曲线
理论计算:可逆电对氧 化还原体系
实验方法
分析化学氧化还原滴定法PPT精选文档
22 0.n 0 2 5 lg a a 9 R O d 2 2 ex2 '0.n 0 2 5 lg C C 9R O d 22 ex
16
氧化还原反应进行的程度
当 1( 2 无副或 反 1'应 2 ( ')有副反应
p2Ox1 + p1Red2
p1Ox2 + p2Red1
平衡常 K数 aaR pO p22ed1x1
lgKlgaaRpO p22ed1x1
p1
aO2x ap1
Red2
n(1 2)(无副反应
0.059
1 ' 0.n 015lg9 C C R Od 11 ex2 ' 0.n 025lg9 C C R Od 2e 2x
lgK'lgC CR p O p22d1e1xC CR p O p11d2 e2x
14
氧化还原反应平衡
H H3 AA sO 24 s [O [ HH [ H]] 3 ]K[ aH ]2K a 1 [ [H H ] ]2 3 K a 1 K a 2 K a 1 K a 2 K a 3
当 [ H ] 5 m /L o H '3 A l4s H O 2 A 0 . 6 s V O 0 I 3 /I
C ‘ 4 e C 3 e 0 .0l5 g C C C C 9 3 4 e e 1 .4 4 0 .0l5 1 g 9 3 0 1 .2V 6
CF2e 0.1
F '3 e F 2 e 0 .0l5g C C F F 9 2 3 e e 0 .6 8 0 .0l5 1 g3 9 0 0 .8V 6
26
氧化还原滴定曲线及终点确定
S时 P C F 3 e : C C 3 e , C F 2 e C C 4 e
16
氧化还原反应进行的程度
当 1( 2 无副或 反 1'应 2 ( ')有副反应
p2Ox1 + p1Red2
p1Ox2 + p2Red1
平衡常 K数 aaR pO p22ed1x1
lgKlgaaRpO p22ed1x1
p1
aO2x ap1
Red2
n(1 2)(无副反应
0.059
1 ' 0.n 015lg9 C C R Od 11 ex2 ' 0.n 025lg9 C C R Od 2e 2x
lgK'lgC CR p O p22d1e1xC CR p O p11d2 e2x
14
氧化还原反应平衡
H H3 AA sO 24 s [O [ HH [ H]] 3 ]K[ aH ]2K a 1 [ [H H ] ]2 3 K a 1 K a 2 K a 1 K a 2 K a 3
当 [ H ] 5 m /L o H '3 A l4s H O 2 A 0 . 6 s V O 0 I 3 /I
C ‘ 4 e C 3 e 0 .0l5 g C C C C 9 3 4 e e 1 .4 4 0 .0l5 1 g 9 3 0 1 .2V 6
CF2e 0.1
F '3 e F 2 e 0 .0l5g C C F F 9 2 3 e e 0 .6 8 0 .0l5 1 g3 9 0 0 .8V 6
26
氧化还原滴定曲线及终点确定
S时 P C F 3 e : C C 3 e , C F 2 e C C 4 e
水分析化学第6章氧化还原滴定法
氧化还原电对常粗略地分为可逆和不可逆两大类。
6.1 氧化还原平衡
6.1.2 电极电位与能斯特方程
1. 氧化还原反应的实质—电子的转移 氧化还原反应平衡式: Ox1 + Red2 → Red1+ Ox2 氧化还原半反应: Ox + ne- →Red 其中:n表示电子转移数。
接受电子倾向越大的物质是强的氧化剂; 给出电子倾向越大的物质是强的还原剂;
O /R d x eO /R d x e 0 .0 nl5 g R O 9 d R e x O d ex 0 .0 nl5 [ g [ O R d 9 ] ] x e
θ 称条件电极电位
O/x RdeO ’ /x Rde0.0 n5lg 9[[O Rd]]e x
e.g. F3eeF2e C 2 O 7 2 r 6 e 1H 4 2 C 3 r 7 H 2 O
②条件电位差对氧化还原反应速度的影响
当Δθ’增大时,氧化还原反应的反应速度增大。
③反应物浓度对氧化还原反应速度的影响 反应物浓度c增加,反应速率增大(质量作用定律)。
6.2 氧化还原反应的速度
氧化还原反应能否进行不仅与Δθ有关, 还与反应速度有关。
影响反应速度的因素:
电子层结构与
化学键
速
氧化剂、还原剂的性质
度 的
浓度的影响
电极电位
影
温度的影响
反应历程
响
因
催化剂的作用
素
诱导作用
6.2 氧化还原反应的速度
①电子层结构与化学键对氧化还原反应速度的影响 一般规律:只涉及电子转移的反应快;涉及断键的反应慢
所以:
Ce4 /Ce3
6.1 氧化还原平衡
6.1.2 电极电位与能斯特方程
1. 氧化还原反应的实质—电子的转移 氧化还原反应平衡式: Ox1 + Red2 → Red1+ Ox2 氧化还原半反应: Ox + ne- →Red 其中:n表示电子转移数。
接受电子倾向越大的物质是强的氧化剂; 给出电子倾向越大的物质是强的还原剂;
O /R d x eO /R d x e 0 .0 nl5 g R O 9 d R e x O d ex 0 .0 nl5 [ g [ O R d 9 ] ] x e
θ 称条件电极电位
O/x RdeO ’ /x Rde0.0 n5lg 9[[O Rd]]e x
e.g. F3eeF2e C 2 O 7 2 r 6 e 1H 4 2 C 3 r 7 H 2 O
②条件电位差对氧化还原反应速度的影响
当Δθ’增大时,氧化还原反应的反应速度增大。
③反应物浓度对氧化还原反应速度的影响 反应物浓度c增加,反应速率增大(质量作用定律)。
6.2 氧化还原反应的速度
氧化还原反应能否进行不仅与Δθ有关, 还与反应速度有关。
影响反应速度的因素:
电子层结构与
化学键
速
氧化剂、还原剂的性质
度 的
浓度的影响
电极电位
影
温度的影响
反应历程
响
因
催化剂的作用
素
诱导作用
6.2 氧化还原反应的速度
①电子层结构与化学键对氧化还原反应速度的影响 一般规律:只涉及电子转移的反应快;涉及断键的反应慢
所以:
Ce4 /Ce3
分析化学:氧化还原滴定法
c
a Ox
a Ox
b Red
c
b Red
Ox/Red
θ Ox / Re d
0.059 lg n
c aOx
a Ox
b Red
c
b Red
∴忽略盐效应后的 Ox/Red 计算式:
Ox/Red
θ
0.059 lg n
b Red
a Ox
⑵酸效应
H+或OH 参加电极反应时
Ox或 Red 为弱酸、弱碱时 pH影响极大!
(25ο C)
aOx
Ox [Ox ]
OxcOx Ox
;
aRed
Red [Re
d]
Red c Red Red
Ox / Red
θ Ox /Red
0.059 lg n
a Ox
b Red
c aOx
a Ox
b Red
c
b Red
Ox / Red
θ Ox /Red
0.059 lg n
a Ox
与还原态生成配合物,φ’↑
利用此影响可消除某些离子对主反应的干扰
例:φ’Fe3+/Fe2+= 0.77V,Fe3+可氧化I 干扰其与
Cu2+的反应。加入NaF,使[F ]=1.0mol/L
Fe3/Fe 2
θ Fe3 / Fe2
0.059 lg Fe2
1
Fe3
Fe3/Fe 2
θ Fe3 / Fe2 0.059 lg 1
Ox1+Red2→Red1+Ox2
φOx/Red大者为氧化剂,发生还原反应; φOx/Red小者为还原剂,发生氧化反应。
➢ 氧化还原方程式配平(离子-电子法)
分析化学第六章氧化还原滴定法
2018/8/1
2、副反应的影响: 利用沉淀反应和配位反应使氧化态和还原态浓度变 化,从而改变电对的电极电势。 如,氧化态生成沉淀,使其电极电位降低,还原态 生成沉淀,则电极电位升高。
2Cu I2 2Cu2 2I
实际上在大量I-存在下,Cu+与I-生成沉淀。
2Cu 4I 2CuI I 2
C
B、自动催化反应 D、络合反应
2018/8/1
6-4 氧化还原滴定曲线及终点的确定 一、 氧化还原滴定曲线
2018/8/1
二、氧化还原滴定指示剂
1) 自身指示剂(self indicator)
利用滴定剂自身颜色的变化指示终点. MnO4- + 5Fe2+ + 8H+ = Mn2+ + 5Fe3+ + 4H2O 紫红 无色
D
C. 条件电极电位是电对氧化态和还原态的浓度 都等于1mol· L-1 时的电极电位 D. 条件电极电位是在特定条件下,氧化态和还 原态的总浓度比为1时,校正了各种外界影响后 的实际电极电位
2018/8/1
6-2 氧化还原反应进行的程度
一、氧化还原反应的平衡常数 进行的程度用反应平衡常数来衡量 由标准电极电位→K / 由条件电位→K (条件平衡常数) Ox1 + n1e Red1 Red2 Ox2 + n2e
12.88
二、化学计量点时反应达到的完全程度 n2Ox1+n1Red2=n2Red1+n1Ox2 若滴定允许误差为0.1%, 即允许还原剂残留0.1%或氧化剂过量0.1%,则
n1=n2=1 lg K ≥ 6, E ≥ 0.36 V 一般规定,两电对的条件电位差大于0.4才用于滴定。
氧化还原滴定法—提高氧化还原反应速度的方法(分析化学课件)
此反应速率较慢,通常采用增大I-浓度(过量5倍)
或提高酸度(0.8~1mol/L)来加快反应。
提高氧化还原反应速度的方法
(2)升高溶液温度 对于大多数反应来说,升高反应体系的温度可以加快 反应速率,通常温度每升高10℃,反应速率约增大 2~4倍。 由于升高溶液温度,不仅增加了反应物之间的碰撞 几率,更重要的是增加了活化分子或活化离子的数 量,从而加快了反应速率。
室温下速率较慢,将溶液加热至65℃,反应速率 显著增大。
提高氧化还原反应速度的方法
必须注意,不是任何情况下都可以用加热方式来加快 反应速率的。如易挥发的物质参与的反应,加热会引 起挥发损失;易氧化的物质、参与的反应,加热会使 这些物质被空气中的氧气所氧化造成误差。
提高氧化还原反应速度的方法
(3)使用催化剂 在滴定分析中,经常使用正催化剂来提高反应速率。
……
6
氧化还原反应分类和特点
2S2
O
2 3
MnO
4
Cr2
O
2 7
BrO
3
S
4
O
2 6
7
氧化还原反应分类和特点
氧化还原反氧应的化主还要特原点反应分类和特点
(1)反应机制复杂 (2)反应速度较慢 (3)伴有副反应,反应条件不同可能生成不同产物
提高氧化还原反应速度的方法
加快氧化还原反应速率的方法 1.增大反应物的浓度或降低生成物的浓度 2.升高溶液的温度(对性质不稳定的物质此方法不适宜) 3.使用催化剂
1
提高氧化还原反应速度的方法
影响氧化还原反应速率的因素,除了参加反I应的 氧化剂和还原剂本身的性质外,还与反应条件有 关,如浓度、温度、催化剂等。 (1)增加反应物浓度 多数情况下,增大反应物浓度,都能加快反应速率。
或提高酸度(0.8~1mol/L)来加快反应。
提高氧化还原反应速度的方法
(2)升高溶液温度 对于大多数反应来说,升高反应体系的温度可以加快 反应速率,通常温度每升高10℃,反应速率约增大 2~4倍。 由于升高溶液温度,不仅增加了反应物之间的碰撞 几率,更重要的是增加了活化分子或活化离子的数 量,从而加快了反应速率。
室温下速率较慢,将溶液加热至65℃,反应速率 显著增大。
提高氧化还原反应速度的方法
必须注意,不是任何情况下都可以用加热方式来加快 反应速率的。如易挥发的物质参与的反应,加热会引 起挥发损失;易氧化的物质、参与的反应,加热会使 这些物质被空气中的氧气所氧化造成误差。
提高氧化还原反应速度的方法
(3)使用催化剂 在滴定分析中,经常使用正催化剂来提高反应速率。
……
6
氧化还原反应分类和特点
2S2
O
2 3
MnO
4
Cr2
O
2 7
BrO
3
S
4
O
2 6
7
氧化还原反应分类和特点
氧化还原反氧应的化主还要特原点反应分类和特点
(1)反应机制复杂 (2)反应速度较慢 (3)伴有副反应,反应条件不同可能生成不同产物
提高氧化还原反应速度的方法
加快氧化还原反应速率的方法 1.增大反应物的浓度或降低生成物的浓度 2.升高溶液的温度(对性质不稳定的物质此方法不适宜) 3.使用催化剂
1
提高氧化还原反应速度的方法
影响氧化还原反应速率的因素,除了参加反I应的 氧化剂和还原剂本身的性质外,还与反应条件有 关,如浓度、温度、催化剂等。 (1)增加反应物浓度 多数情况下,增大反应物浓度,都能加快反应速率。
分析化学课件:第六章 氧化还原滴定法一
分析化学
第6章 氧化还原滴定法
14
(二) 影响条件电位的因素
• 1.盐效应:溶液中电解质浓度对条件电位的影响作 用称为盐效应。主要影响氧化态和还原态的活度系 数。当仅考虑盐效应时,条件电极电位为:
• 在氧化还原滴定中,溶液的离子强度常较大,氧化 态和还原态的价态也较高,活度系数受离子强度的 影响较大,这样就会影响电位值。
• 平衡常数究竟多大时可视为反应完全? • 滴定分析一般要求:允许误差为<0.1%,终点时
反应产物的浓度应大于或等于反应物原始浓度的 99.9%,即
• 反应剩余物质的浓度应小于或等于反应生成物质 的0.1%以下,即
分析化学
第6章 氧化还原滴定法
30
• 可得
• 即氧化还原滴定的基本要求为:
分析化学
第6章 氧化还原滴定法
量关系定量、快速地进行。
分析化学
第6章 氧化还原滴定法
3
• 分类:习惯上按氧化还原滴定剂的名称分为碘 量法、高锰酸钾法、亚硝酸钠法、重铬酸钾法、 溴量法等。
• 应用:氧化还原滴定法不仅能直接测定本身具 有氧化还原性质的物质,也能间接地测定本身 无氧化还原性质、但能与某种氧化剂或还原剂 发生有计量关系化学反应的物质;不仅能测定 无机物,也能测定有机物。氧化还原滴定法是 滴定分析中应用广泛的一类分析方法。
分析化学
第6章 氧化还原滴定法
8
• 25℃时,相关离子活度均为1mol/L(或其比值 为1),气体压力为1.103×105 Pa时,测出的相 对于标准氢电极(其标准电极电位规定为零) 的电极电位。式中R为气体常数:8.314J/K·mol; T为绝对温度K,等于:273+t℃ ;F为法拉第常 数:96487c/mol;n为氧化还原反应中转移的电 子数;a为活度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.2 外界条件对电极电位的影响
1.离子强度的影响
一般情况忽略离子强度的影响。
2. 副反应的影响 主要影响因素
电对的氧化态(cOX)生成沉淀(或配合物)时,电极电位降低; 还原态(cRed)生成沉淀(或配合物)时,电极电位增加。
3.酸度的影响
若有H+或OH-参加氧化还原半反应,则酸度变化直接影响电 对的电极电位。
§6.1 氧化还原反应平衡
§6.2 O.R反应进行的程度
第六章 §6.3 O.R反应的速率与影响因素
氧化还原 §6.4 O.R滴定曲线及终点的确定 滴定法 §6.5 O.R滴定法中的预处理
Oxidation-Reduction Titrimetry
§6.6 高锰酸钾法
§6.7 重铬酸钾法
§6.8 碘 量 法
2020年3月30日2时19分
例:在高锰酸钾法滴定中
(1) KMnO4与C2O42-的滴定反应需要在75-85C下进行, 以提高反应速率。但温度太高将使草酸分解。 (2) 在反应开始时,需要Mn2+。
二价锰的作用: 催化剂; 降低 Mn3+/Mn2+ 电对的电位,防止诱导反应(共 轭反应)的发生。
n1n2
cOx1
cRed2
0.059 lg
n1n2
K
2020年3月30日2时19分
K’ 越大,反应越完全。K’ 与两电对的条件电极电位 差和 n1 、n2有关。对于 n1 = n2 = 1的反应,若要求反应 完全程度达到 99.9%,即在到达化学计量点时:
cRed1 / cOx1 ≥ 103 ; cOx2 / cRed2 ≥ 103
6.2.1 条件平衡常数
在氧化还原滴定反应过程中,需要判断: (1) 反应是否进行完全,即终点误差是否满足要求; (2) 如果两个电对反应完全,应满足什么条件?
n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2 氧化还原反应进行的程度可用平衡常数的大小来 衡量。 滴定过程中,达到平衡时(1 = 2):
O' ox/Red
RT nF
ln cox cRed
条
件
电
极
电位:来自O' ox/Red
O ox/Red
RT nF
ln
ox Red Red ox
当cox/cRed = 1 时,条件电极电位等于实际电极电位。 用条件电极电位能更准确判断氧化还原反应进行的方
向、次序及反应完成的程度。
2020年3月30日2时19分
考虑到这两个因素,需要引入条件电极电位!
2020年3月30日2时19分
条件电极电位(Conditional Electrode Potential):
ox/Red
O ox/Red
RT nF
ln
aox aRed
ox/Red
O ox/Red
RT nF
ln ox c Red ox Red c ox Red
O 1
O 2
0.059 lg(103n1103n2 n1n2
)
0.059 n1n2
3(n1
n2 )
n1 = n2 = 1 时,为保证反应进行完全: 两电对的条件电极电位差必须大于0.4 V。
2020年3月30日2时19分
§6.3 氧化还原反应的速率与影响因素
化学平衡:反应的可能性; 反应速率:反应的现实性。 影响反应速率的主要因素有: 1. 反应物浓度 反应物浓度↑,反应速率↑; 2. 催化剂 改变反应过程,降低反应的活化能; 3. 温度 温度每升高10℃,反应速率可提高2~3倍。 4. 诱导作用 由于一种氧化还原反应的发生而促进 另一种氧化还原反应进行的现象。
§6.9 其他氧化还原滴定法
§6.10 2020年3月30日2时
19分
氧化还原滴定结果的计算
§6.1 氧化还原反应平衡
6.1.1 条件电极电位(Conditional Electrode Potential)
氧化还原半反应(Redox Half-Reaction)为:
Ox(氧化态) + n e- = Red(还原态)
Ox/Red
O Ox/Red
RT ln aOx nF aRed
O Ox/Red
0.059 lg aOx
n
aRed
但在实际应用时,存在着两个问题:
(1) 不知道活度 a(或活度系数 ): a = c
(2) 离子在溶液中可能发生: 络合,沉淀等副反应。
( 副反应系数:αM=[M' ] / [M] ; [M' ]总浓度, [M]有效浓度 )
可逆电对的电位可用能斯特方程式( Nernst Equation)
表示:
Ox/Red
O Ox/Red
RT nF
ln
aOx aRed
O Ox/Red
0.059 lg n
aOx aRed
: 电对的标准电极电位(Standard Electrode Potential)
2020年3月30日2时19分
2020年3月30日2时19分
诱导反应(共轭反应):
MnO4- + 5Fe2++ 8H+ = Mn2+ + 5Fe3+ + 4H2O (诱导反应 ) 2MnO4- + 10Cl- + 16H+ = 2Mn2+ + 5Cl2 + 8H2O (受诱反应-变快)
O
C u2 /C u
= 1.1 10-12
[Cu2 ] 0.059 lg [Cu ]
O 0.059 lg [Cu2 ][I ]
C u2 /C u
KSp[CuI]
若控制[Cu2+] = [I-] = 1.0 mol ·L-1则: Cu2/Cu 0.87 V
2020年3月30日2时19分
§6.2 氧化还原反应进行的程度
2020年3月30日2时19分
例:判断二价铜离子能否与碘离子反应
2Cu2+ + 4I- = 2CuI + I2
Cu2/Cu 0.16 V ;
I2 /I 0.54 V
从数据看,不能反应,但实际上反应完全。
原因:反应生成了难溶物CuI,改变了反应的方向。
Ksp(CuI) = [Cu+][I-]
Cu 2/Cu
2020年3月30日2时19分
n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2 两个半电池反应的电极电位为:
1
1O'
0.059 n1
lg
cOx1 cRed1
2
O' 2
0.059 n2
lg
cOx2 cRed2
滴定过程中,达到平衡时(1 = 2):
O' 1
O' 2
0.059 lg( cRed1 )n2 ( cOx2 )n1