北师大版数学八年级下册第三章图形的平移与旋转第4节简单的图案设计课堂练习

合集下载

八年级数学下册第3章图形的平移与旋转4简单的图案设计pptx课件新版北师大版

八年级数学下册第3章图形的平移与旋转4简单的图案设计pptx课件新版北师大版

感悟新知
1-1. 如图, 可以经过平移变换得到的图案有 _①__②__④__(填序号) .
知1-练
感悟新知
知识点 2 图案设计
知2-讲
1. 图案设计的思路 设计出基本图形后,利用平移、轴对称和旋转进行图案 设计 .
感悟新知
2. 图案设计的步骤
知2-讲
(1)明确设计意图;
(2)确定图案的形状和基本图形;
感悟新知
知2-练
解题秘方:紧扣“轴对称图形、中心对称图形的 特征”按要求进行图案设计 .
感悟新知
(1)既是轴对称图形又是中心对称图形; 解:(答案不唯一) 如图 3-4-4 ① .
知2-练
感悟新知
(2)是轴对称图形但不是中心对称图形; 解: 如图 3-4-4 ② .
(3)是中心对称图形但不是轴对称图形 . 解: 如图 3知
例2 如图 3-4-2,在 4×3 的网格中,由个数相 同的白色方块与灰色方块组成一幅图案, 请仿照此图案,在如图 3-4-3的 4×3 的网 格中分别设计出符合下列要求的图案(注: a. 不得与图 3-4-2 中的图案相同; b. 每幅 图案中灰、白方块的个数要相同).
知2-练
解:(1)如图①所示.(答案不唯一) (2)如图②所示. (3)如图③所示.
知2-练
简单的图案 设计
图案
图案的形成 图案的设计
基本 图形
平移 轴对称 旋转
图案
换方式 .
感悟新知
知1-讲
特别提醒 基本图形可能是一种图形,也可能是两种
或更多种图形的组合图形,一个图案中的基本 图形可以有多个 .
感悟新知
2. 平面图案的形成依据 平移、旋转和轴对称 .
知1-讲

北师大版数学八年级下册:3.4《简单的图案设计》课时练习含答案解析

北师大版数学八年级下册:3.4《简单的图案设计》课时练习含答案解析

北师大版数学八年级下册第三章第四节简单的图案设计课时练习一、选择题(共10题)1.如图,是四家银行行标,不可以先设计出一半来通过对折来完成的是( )A.①③B.②④C.②D.④答案:D解析:解答:根据轴对称图形的定义可以判断④不是轴对称图形;故答案是D选项分析:考查如何通过轴对称设计图案2.图画上大风车的叶片可以看作一个叶片通过怎样的运动得到()A.平移B.旋转C.平移和旋转D.对折答案:B解析:解答:大风车上的叶片可以看作由一个叶片旋转得到;故答案是B选项分析:考查利用旋转设计图案3.利用电脑,在同一页面对某图形进行复制,得到一组图案,这一组图案可以看作一个基本图形通过()得到的A.旋转B.平移和旋转C.平移D.拉伸答案:C解析:解答:复制就是把一个平移到另一个位置,所以答案是C选项分析:考查平移设计图案4.如图是一个风筝的图案,它是轴对称图形,若∠B=30︒,那么∠E=( )A. 20︒B. 60︒C. 30︒D. 45︒答案:C解析:解答:因为设计的风筝是轴对称图形,所以对应角相等,故答案是C选项分析:注意中心对称和轴对称的特点5.广告设计人员在设计图案的时候经常用到的方法是()A.旋转B.平移C.轴对称D.以上都是答案:D解析:解答:在设计图案的时候经常用到的是旋转、平移、轴对称,故答案是D选项分析:考查图案的设计方法6. 如图,将△ABC绕点O旋转一定的角度得到△A′B′C′,下列结论中不成立的是( )A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′答案:D解析:解答:旋转前后的图形全等,而且对应角相等,D选项中不是对应角分析:考查旋转前后的图形全等的问题7.一个长方形绕一点旋转一周所形成的图形可能是( )A.圆B.长方形C.圆环D.正方形答案:C解析:解答:长方形绕一点旋转一周时所形成的图形是圆环,故答案是C选项分析:注意成简单的图案设计方法8.五星红旗上的四个小五角星可以看作一个基本图案经过怎样的运动得到的()A.旋转B.平移C.对折D.旋转和平移答案:D解析:解答:五星红旗上的四个小五角星可以看作一个基本图案经过平移和旋转得到,故答案是D分析:注意对中心对称图形的理解9. 小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( )答案:A解析:解答:此题需有一定空间想象能力,可以实际动手操作一下,以自己能辩认的简单图案代表各图案.,故答案是A选项10.下列几种图案是车的标志,问其中是轴对称图形的有( )A.2个B.3个C.4个D.1个答案:A解析:解答:根据轴对称图形的定义可知奥迪和大众这两个车标是轴对称图形,所以答案是A分析:考查轴对称图形二、填空题(共10题)11.如图的雪花有______条对称轴答案:3解析:解答:依据轴对称图形的意义,沿着对称轴所在的直线对折,对折后的两部分能够完全重合,所以雪花有3条对称轴分析:考查对称轴的多少12.起重机将重物垂直提起,这可以看作为数学上的_____________答案:平移解析:解答:起重机将重物垂直提起,可以看成平移现象分析:注意分清平移的特点13.关于轴对称的两个图形,沿对称轴折叠后答案:重合解析:解答:关于轴对称的两个图形,沿对称轴折叠后重合分析:注意对称点的连线一定经过对称中心14.轴对称图形只有一条对称轴_______(判断对错)答案:错误解析:解答:有的轴对称图形不止有一条对称轴,如圆、正方形等分析:考查轴对称图形的对称轴的数目15.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和_______等答案:旋转解析:解答:图案设计的时候经常用到的是行轴对称、平移和旋转等16. 将点A 绕另一个点O 旋转一周,点A 在旋转过程中所经过的路线是_______ 答案:圆解析:解答:利用旋转一周可以得到的图形是圆分析:考查利用旋转设计图案17. 利用电脑,在同一页面上对某图形进行复制,得到一组图案,这一组图案可以看作是一个基本图形通过_______得到的答案:平移解析:解答:利用平移可以得到一些相同的图案分析:考查简单的图案设计18. 利用平移、旋转和对称变换可以设计出美丽的镶嵌图案;这种说法_____________ 答案:正确解析:解答:构成一个镶嵌图形的基本单元是多边形或是类似的常规图形,利用平移、旋转和对称变换可以设计出美丽的镶嵌图案分析:考查简单图形的设计方法19. 国际奥委会会旗上的五环图案可以看作一个基本图案圆环经过______运动得到 答案:平移解析:解答:一个圆环经过平移运动可以得到五环图案分析:考查简单的图案设计20.木工师傅在设计拉动抽屉时,参考的数学原理是 _____答案:平移解析:解答:在拉动抽屉时候前后移动而抽屉不发生改变,这是平移的原理分析:注意旋转的要点三、解答题(共5题)21. 从8:55到9:15,钟表的分针转动的角度是?答案:120°解答:分针60分钟转一周,时针十二小时转一周.从8:55到9:15经过了20分钟,所以,分针转动的角度是6020×360°=120° 解析:分析:注意钟表分针旋转一周的角度22. 从5:55到6:15,时针转动的角度是?答案:10°解答:从5:55到6:15经过了31小时,所以,时针转动的角度是31×121×360°=10°.解析:分析:注意钟表上时针一小时走过的角度 23. 如图,王虎使一长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动地翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为?答案:27πcm 解答::第一次翻滚可以看成是以B 为圆心,以AB 为半径的弧,且可求得∠ABA 1=90°,∴第一次翻滚走过的路径为41×2×5π=25π,第二次翻滚可看成是以C 为圆心,以A 1C 为半径的弧,且∠A 1CA 2=60°,∴第二次翻滚走过的路径为61×2×3π=π.总共路径=25π+π=27π cm. 解析:分析:考查旋转问题,关键是找准对应点24.请你设计一个只有两条对称轴的优美图案答案:解答:解析:分析:注意轴对称图形的特点25. 在图案设计中常用的作图工具有?答案:解答:在图案设计中常用的作图工具有直尺,圆规,三角尺解析:分析:考查简单的图案设计。

八年级数学下册第三章图形的平移与旋转4简单的图案设计作业课件北师大版.pptx

八年级数学下册第三章图形的平移与旋转4简单的图案设计作业课件北师大版.pptx

知识点:图案的设计
• 1.在以下绿色食品、回收、节能、节水四个标志中,是由某个基本图形经 过旋转得到的是( ) B
2.对如图的变化顺序描述正确的是( D )
• A.翻折、旋转、平移 B.旋转、翻折、平移 • C.平移、翻折、旋转 D.翻折、平移、旋转
3.下列左图的3个图形中,能通过旋转得到右侧图形的有( D ) • A.①② B.①③ • C.②③ D.①②③
• A.6→3 B.7→16 C.7→8 D.6→15
7.如图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图
看做基本图形,那么该图形是由基本图形( D )
• A.平移一次形成的 • B.平移两次形成的 • C.以轴心为旋转中心旋转120°后形成的 • D.以轴心为旋转中心,旋转120°,240°后形成的
• (2)请你任意改变图①瓷砖中灰色部分的图案,然后再用四块改变图案后的正 方形瓷砖拼出一个中心对称图案画在图⑤中.(为了画图方便,请用平行斜线 代替黑色即可)
8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图 案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种 图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( C ) • A.4种 B.5种 C.6种 D.7种
9.作图与设计:
• (1)用四块如图①所示的黑白两色正方形瓷砖拼成一个新的正方形,分别画在 图②、图③、图④中.要求图②中的只是轴对称而不是中心对称图形,图③ 的只是中心对称而不是轴对称图形、图④的既是轴对称又是中心对称图形;
4.下列四个图案绕旋转中心旋转一定的度数后都能和原来的图案相互重合, 其中有一个图案与其余三个图案旋转的度数不同,它是(B )

北师大版八年级数学下学期《3.4 简单的图案设计 》 同步练习 包含答案

北师大版八年级数学下学期《3.4 简单的图案设计 》 同步练习  包含答案

3.4 简单的图案设计一.选择题(共10小题)1.将如图方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.2.在以下绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是()A.B.C.D.3.如图绕中心旋转180°,所得到的图形是()A.B.C.D.4.如图,下列四个图形都可以分别看作是一个“基本图案”经过旋转所形成,则它们的旋转角相同的图形为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.如下左图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A.B.C.D.6.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)7.如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程不可能是()A.先平移,再轴对称B.先轴对称,再旋转C.先旋转,再平移D.先轴对称,再平移8.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣3,b)B.(a+3,b)C.(3﹣a,﹣b)D.(a﹣3,﹣b)9.如图,在9×6的方格纸中,小树从位置A经过平移旋转后到达位置B,下列说法中正确的是()A.先向右平移6格,再绕点B顺时针旋转45°B.先向右平移6格,再绕点B逆时针旋转45°C.先向右平移6格,再绕点B顺时针旋转90°D.先向右平移6格,再绕点B逆时针旋转90°10.如图,对△ABC分别作下列变换:①先以x轴为对称轴作轴对称图形,然后再向左平移4个单位;②以点O为中心顺时针旋转180°,然后再向左平移2个单位;③先以y 轴为对称轴作对称图形,然后再向下平移3个单位;其中能使△ABC变成△DEF的是()A.①B.②C.②或③D.①或③二.填空题(共5小题)11.在下图方框中设计一个美丽的中心对称图形并使它成为正方体的一种侧面展开图.12.在中国的园林建筑中,很多建筑图形具有对称性.如图是一个破损花窗的图形,请把它补画成中心对称图形..13.下面图案中,可以由一个基本图案连续旋转45°得到的是(填序号).14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(﹣4,1)、(﹣1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,﹣3),则由线段AB得到线段A'B'的过程是:,由线段A'B'得到线段A''B''的过程是:.15.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序实数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是(请填写正确答案的序号)①黑(1,5),白(5,5)②黑(3,2),白(3,3)③黑(3,3),白(3,1)④黑(3,1),白(3,3)三.解答题(共6小题)16.如图,是由2个白色正方形和2个黑色正方形组成的“L”型图形,按下列要求画图:(1)在图1中,添1个白色或黑色正方形,使它成轴对称图形;(2)在图2中,以点O为旋转中心,将图形顺时针旋转90°.17.(1)图1是4×4的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.(2)如图2,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.18.课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.19.如图,是3×3的正方形网格,将其中两个方格涂黑,使得涂黑后的整个图案是轴对称图形.请在以下备用网格中画出四个不同的图案(如果绕正方形的中心旋转,能重合的图案视为同一种,例如,下列四个图形就属于同一种).20.在平面直角坐标系中,如图所示A(﹣2,1),B(﹣4,1),C(﹣1,4).(1)△ABC向上平移一个单位,再向左平移一个单位得到△A1B1C1,那么C的对应点C1的坐标为;P点到△ABC三个顶点的距离相等,点P的坐标为;(2)△ABC关于第一象限角平分线所在的直线作轴对称变换得到△A2B2C2,那么点B 的对应点B2的坐标为;(3)△A3B3C3是△ABC绕坐标平面内的Q点顺时针旋转得到的,且A3(1,0),B3(1,2),C3(4,﹣1),点Q的坐标为.21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移可得到△OBD,则平移的距离是个单位长度;△AOC 与△BOD关于某直线对称,则对称轴是;△AOC绕原点O顺时针旋转可得到△DOB,则旋转角至少是°.(2)连接AD,交OC于点E,求∠AEO的度数.参考答案一.选择题(共10小题)1.D.2.B.3.C.4.D.5.B.6.B.7.C.8.C.9.B.10.A.二.填空题(共5小题)11.解:12.解:13.(2).14.向右平移4个单位长度;绕原点顺时针旋转90°.15.④.三.解答题(共6小题)16.解:(1)如图1所示:(2)如图2所示:17.解:(1)如图1所示:此阴影部分是中心对称图形;(2)如图2所示:△AB1C1,即为所求.18.解:(1)如图所示,△A2B2C2即为所求,将△A2B2C2绕着点B1顺时针旋转90°,即可得到△A1B1C1.(2)如图所示,连接CC1,BB1,作CC1的垂直平分线,BB1的垂直平分线,交于点P,则点P即为旋转中心.19.解:符合要求的正方形如图所示:20.解:(1)如图,△A1B1C1即为所求,那么C的对应点C1的坐标为(﹣2,5)P,点P 的坐标为(﹣3,3).故答案为(﹣2,5),(﹣3,3).(2)△A2B2C2如图所示,那么点B的对应点B2的坐标为(1,﹣4).故答案为(1,﹣4).(3)△A3B3C3即为所求,Q(﹣1,﹣1),故答案为(﹣1,1).21.解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为;2;y轴;120.。

八级数学下册3图形的平移与旋转3.4简单的图案设计课件新版北师大版_26

八级数学下册3图形的平移与旋转3.4简单的图案设计课件新版北师大版_26

请你在网格中以左上角的三角形为基本图形,通过平移、对
称或旋转变换,设计一个精美图案,使其满足: ①既是轴对称图形,又是以点O为对称中心的中心对称图形; ②所作图案用阴影标识,且阴影部分面积为4.
初中数学
初中数学
2.火柴棍不增不减,怎样使甲图案变成乙图案?请你用平移、旋转 或轴对称来分析.
解:把1向右平移,2向下平移,3向左平 移,4向上平移,得到答图甲所示的图形, 然后以答图甲的中心为旋转中心,顺时 针旋转45度,即可得到答图乙.
第三章 图形的平移与旋转
3.4 简单的图案设计
初中数学
1.了解图形之间的变换关系(轴对称、Байду номын сангаас移、旋转及其组合).
2.会进行简单的图案设计.
初中数学
你见过右边的标志图吗?你知道这个标志图是怎样设计出 来的吗? 其实它是由一个基本图形——半圆经旋转而成的,你看出 来了吗?
初中数学
1.如图,这是一个4×4的正方形网格,每个小正方形的边长为1.
初中数学
平移 、________ 旋转 和 设计图案时,要紧紧抓住________
轴对称 的特征.根据要求,可灵活地设计出不同效果的 ________ 美丽图案.
初中数学

江西省年春八年级数学下册第三章图形的平移与旋转3.4简单的图案设计练习课件新版北师大版

江西省年春八年级数学下册第三章图形的平移与旋转3.4简单的图案设计练习课件新版北师大版
八年级数学下册(BS)
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/262021/8/26Thursday, August 26, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/262021/8/262021/8/268/26/2021 9:习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/262021/8/262021/8/26Aug-2126-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/262021/8/262021/8/26Thursday, August 26, 2021
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/262021/8/262021/8/262021/8/268/26/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月26日星期四2021/8/262021/8/262021/8/26 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/262021/8/262021/8/268/26/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/262021/8/26August 26, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/262021/8/262021/8/262021/8/26

八年级数学下册第三章图形的平移与旋转3.4简单的图案设计测试(无答案)北师大版(2021年整理)

八年级数学下册第三章图形的平移与旋转3.4简单的图案设计测试(无答案)北师大版(2021年整理)

八年级数学下册第三章图形的平移与旋转3.4 简单的图案设计同步测试(无答案)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第三章图形的平移与旋转3.4 简单的图案设计同步测试(无答案)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第三章图形的平移与旋转3.4 简单的图案设计同步测试(无答案)(新版)北师大版的全部内容。

3。

4简单的图案设计一、选择题1.如图,不是平移设计的是()A. B。

C.D。

2.下面图案中可以看作由图案自身的一部分经过平移后而得到的是() A。

B.C。

D。

3.在平移、旋转和轴对称这些图形变换下,它们共同具有的特征是()A. 图形的形状、大小没有改变,对应线段平行且相等B. 图形的形状、大小没有改变,对应线段垂直,对应角相等C。

图形的形状、大小都发生了改变,对应线段相等,对应角相等D. 图形的形状、大小没有改变,对应线段相等,对应角相等4.下列各图中,能由“基本图案"通过旋转变换得到的图形是( )A. B.C. D.5.下列图案可以看作某一部分平移后得到的是()A。

B.C。

D 。

6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A。

B。

C.D。

7.如图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图看着“基本图案"那么该图形是由“基本图案”()A。

平移一次形成的B. 平移两次形成的C. 以轴心为旋转中心,旋转120°后形成的D。

以轴心为旋转中心,旋转120°、240°后形成的8.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是( )A. +B. +++C.D.9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章图形的平移与旋转第4节简单的图案设计课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是()A.B.C.D.2.下面四个图案中,不能由基本图案(图中阴影部分)旋转得到的是() A.B.C.D.3.经过平移、旋转或轴对称的变换后,不能得到如图所示的图形的是()A.B.C.D.4.下列图形不是由平移而得到的是()A.B.C.D.5.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是()A.B.C.D.6.下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A.B.C.D.7.下面四个图案中,不能由基本图案旋转得到的是()A.B.C.D.8.在下列图形中,哪组图形中的右图是由左图平移得到的()A.B.C.D.评卷人得分二、填空题9.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.10.如图,请画出一个图形经过两次轴对称变换之后得到的图形,其中图①中的两条对称轴是平行的,图①中的两条对称轴是垂直的.仔细观察上面的两个图形经过两次轴对称变换之后得到的图形.图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的________变换得到,图①中的图形还可以通过________变换得到.11.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′= Q Q′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、①旋转、①轴对称,其中一定是“同步变换”的有______________(填序号).12.“数学是思维的体操”,亲爱的同学们,请发挥你的超级想象力用两个圆、两个三角形、两条平行线段为构件,尽可能多地构思出独特且有意义的图形,并写出一两句贴切、诙谐的解说词.例如:下面左图解说词:秃子打伞无法无天.你设计的图形是:解说词:_______________________.13.如图所示,其中的图(2)可以看作是由图(1)经过____次旋转,每次旋转____得到的.14.将图(1)中的大正方形绕着其中心顺时针至少旋转_____度时,可变成图(2).15.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有________种.评卷人得分三、解答题16.如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.17.图中的图形均可以由“基本图案”通过变换得到.(填序号)(1)通过平移变换但不能通过旋转变换得到的图案是__;(2)可以通过旋转变换但不能通过平移变换得到的图案是__;(3)既可以由平移变换,也可以由旋转变换得到的图案是__.18.用四块如图1所示的正方形瓷砖拼成一个新的正方形,请你在图2,、图3、图4中各画一种拼法.要求:其中一个图形既是轴对称图形,又是中心对称图形;一个图形是轴对称图形,但不是中心对称图形;一个图形是中心对称图形,但不是轴对称图形.19.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)20.用同样图案的正方形地砖(图1),可以铺成如图2的正方形和正八边形镶嵌效果的地面图案(地砖与地砖拼接线忽略不计).已知正方形地砖的边长为a,效果图中的正八边形的边长为20cm.(1)求a的值;(2)我们还可以在正方形地砖上画出与图1不同的图案,使它能拼出符合条件的图2镶嵌效果图,请你按这个要求,在图3中画出2种与图1不同的地砖图案,并且所画的图形既是轴对称图形,又是中心对称图形.21.欣赏图所示的团,并用两种方法分析图案的形成过程.参考答案:1.B【解析】【分析】根据题中所给剪纸方法,进行手动操作,答案就能很直观的呈现.【详解】按照图中顺序进行操作,展开后心形图案应该靠近正方形上下两边,且关于中间折线对称,故只有B选项符合.故选B.【点睛】本题考查剪纸问题,解决此类问题要熟知轴对称图形的特点,关键是准确的找到对称轴,一般的方法是动手操作,拿张纸按照题中的要求进行操作.2.D【解析】【分析】寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.【详解】A.可由一个基本花瓣绕其中心经过7次旋转,每次旋转45度得到;B. 可由一个基本菱形绕其中心经过5次旋转,每次旋转60度得到;C. 可由一个基本花瓣绕其中心旋转180度得到;D. 不能由基本图案旋转得到;故选D.【点睛】此题主要考察旋转设计图案.3.C【解析】【详解】A.经过平移可得到图形;B.经过平移和旋转可得到图形;C. 经过平移、旋转或轴对称的变换后,都不能得到图形;D.经过旋转可得到图形.故选C.4.D【解析】【详解】解:根据平移的特征可知:D不能经过平移得到.故选D.【点睛】平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.平移不改变图形的形状和大小.5.C【解析】【分析】根据两三角形的位置关系确定几何变换类型,继而得出答案.【详解】A、图形通过旋转得到;B、图形通过旋转得到;C、图形通过平移得到;D、图形通过旋转得到;故选C.【点睛】本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.6.C【解析】【详解】A.把A中图案经过平移可得题中图形,故正确;B.把B中图案经过平移和旋转可得题中图形,故正确;C.C中图案经过经过平移、旋转或轴对称变换都得不到题中图形,故不正确;D. 把D中图案经过旋转可得题中图形,故正确;故选C.7.D【解析】【详解】A、可由一个基本“花瓣”绕其中心经过7次旋转,每次旋转45°得到;B、可由一个基本“菱形”绕其中心经过5次旋转,每次旋转60°得到;C、可由一个基本”直角三角形”绕其中心绕其中心经过5次旋转,每次旋转60°得到;D、不能由基本图案旋转得到.故选D.8.C【解析】【分析】根据平移的性质、结合图形,对选项一一分析,排除错误答案.【详解】解:A、平移不改变图形的形状,形状发生改变,故错误;B、平移不改变图形的形状,形状发生改变,故错误;C、平移不改变图形的形状,故正确;D、平移不改变图形的形状,形状发生改变,故错误.故选C.【点睛】本题考查了平移的基本性质是:①平移不改变图形的形状和大小;①经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.先将图2以点A为旋转中心逆时针旋转90 ,再将旋转后的图形向左平移5个单位.【解析】【分析】变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.平移旋转【解析】【分析】根据轴对称是沿某条直线翻折得到新图形,旋转是绕某个点旋转一定角度得到新图形,可得答案.【详解】如图:,图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的平移变换得到,图①中的图形还可以通过旋转变换得到,故答案为平移,旋转.【点睛】本题考查了几何变换的类型,旋转是绕某个点旋转一定角度得到新图形,观察时要紧扣图形变换特点,认真判断.11.①【解析】【详解】根据平移的性质、旋转的性质、轴对称的性质可知答案为序号①12.见解析.【解析】【分析】利用平移或旋转进行设计即可,解说词要新颖、积极向上.【详解】如图所示:解说词:别怕,我与你在一起!【点睛】本题主要考查了作图与应用作图以及轴对称设计图案的知识,属于开放型,同学们要充分发挥想象力及语言表达能力.13.560°【解析】【详解】解:由6个图形组成,所以360°÷6=60°,故可以看成由一个图形经过5次旋转得到的,每次分别旋转了60°.故答案为5,60°.14.270【解析】【详解】解:如图所示:将图(1)中的大正方形绕着其中心顺时针至少旋转270度时,可变成图(2).故答案为270.15.4【解析】【详解】试题解析:如图所示,共有4条线段.故答案为4.16.(1)见解析;(2)见解析【解析】【分析】(1)B、C、D保持不动,延长CD边的对边,使AB=CD,则四边形ABCD是格点平行四边形;(2)把正方形的一边作为平行四边形的对角线,这边的对边中点作为平行四边形的一个顶点,然后根据对角线互相平分的四边形是平行四边形作图即可.【详解】(1)解:如图1中,平行四边形ABCD即为所求(答案不唯一)(2)解:如图2中平行四边形ABCD即为所求(答案不唯一)【点睛】本题考查作图,解题关键在于熟悉所做图形的基本性质与判定.17.(1)①①;(2) ①①;(3) ①【分析】图①由基本图形“半圆环”平移2次得到,图①由基本图形“菱形”旋转2次得到,每次旋转120°,图①既可通过基本图形“圆环”平移3次得到,又可通过旋转得到,图①由基本图形平移2次得到,图①由基本图形“箭头旋转2次得到,每次旋转120°,故可作出选择.【详解】(1)通过平移变换但不能通过旋转变换得到的图案是①①,(2)可以通过旋转变换但不能通过平移变换得到的图案是①①,(3)既可以由平移变换,也可以由旋转变换得到的图案是①,【点睛】此题主要考察旋转与平移的应用.18.图见解析【解析】【分析】轴对称图形是指在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形是指在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:如图所示:图2既是轴对称图形,又是中心对称图形;图3是轴对称图形,但不是中心对称图形;图4是中心对称图形,但不是轴对称图形.【点睛】本题考查了中心对称图形和轴对称图形的概念,注意两个概念的区别.19.(1)答案见解析;(2)答案见解析.【分析】(1)直接利用轴对称图形的性质分析得出答案;(2)直接利用中心对称图形的性质分析得出答案.【详解】(1)解:画出下列其中一种即可(2)解:画出下列其中一种即可此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.20.(1)20220+;(2)见解析.【解析】【分析】(1)根据正方形和正八边形的性质及勾股定理作答;(2)根据平面图形镶嵌的条件及轴对称图形,中心对称图形的定义作答.【详解】解:(1)20222020220a=÷⨯+=+,(2)【点睛】本题难度较大,结合轴对称图形,中心对称图形考查了平面图形镶嵌的图案,同时考查了正方形和正八边形的性质及勾股定理.【解析】【分析】从轴对称和中心对称两个角度进行分析.【详解】解:以图形正中间的水平的线段为对称轴,进行一次轴对称变换;以图形中心为旋转中心,把其中一个图形按顺时针方向分别旋转90°,180°,270°即可得到.【点睛】本题综合考察了轴对称和中心对称.。

相关文档
最新文档