全国高中数学优质课教学设计:导数的概念
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。
2. 掌握导数的计算方法。
3. 能够应用导数解决实际问题,如速度、加速度等。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。
2. 难点:导数的计算方法和在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。
2. 使用多媒体课件辅助教学。
五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。
2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。
3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。
4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。
5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。
6. 练习:布置练习题,让学生巩固导数的概念和计算方法。
7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。
8. 作业:布置作业,巩固所学内容。
六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,加强讲解和练习。
七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。
鼓励学生积极参与讨论,提高解决问题的能力。
八、课时安排本节课安排2课时,共计45分钟。
九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。
2. 导数在其他学科中的应用,如物理、化学等。
六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。
2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。
3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。
《导数的概念》教案

《导数的概念》教案教案:导数的概念1.教学目标:1.1.知识目标:学生能够了解导数的概念及其基本性质。
1.2.能力目标:学生能够应用导数的概念解决实际问题。
1.3.情感目标:通过对导数的学习,培养学生的分析和解决问题的能力,并培养学生的兴趣和热爱数学的情感。
2.教学重点:2.1.导数的定义和概念。
2.2.导数的基本性质。
3.教学难点:3.1.导数的基本性质的理解和应用。
3.2.导数的计算和应用。
4.教学过程:4.1.导入(10分钟):引入导数的概念,通过一个简单的例子说明导数的作用和意义。
4.2.导数的定义(20分钟):4.2.1.简单介绍导数的定义和符号表示。
4.2.2.讲解导数的物理意义和几何意义。
4.2.3.通过实例和图像说明导数的计算。
4.3.导数的基本性质(30分钟):4.3.1.导数的定义区间和存在性。
4.3.2.导数的唯一性和连续性。
4.3.3.导数的运算法则。
4.4.导数的应用(30分钟):4.4.1.导数在函数图像的研究中的应用。
4.4.2.导数在最值问题中的应用。
4.4.3.导数在速度和加速度中的应用。
4.5.小结(10分钟):对导数的概念及其应用进行总结,并布置相应的作业。
5.教学手段:5.1.板书与讲解相结合的教学方法。
5.2.生动形象的实例和图像辅助讲解。
5.3.教师提问和学生互动的教学方式。
6.教学资源:教材、黑板、彩色粉笔、投影仪等。
7.教学评价:7.1.反馈评价:学生在课堂上积极参与,课堂气氛活跃。
7.2.笔试评价:设计一套综合性的习题,考查学生对导数概念理解和应用的能力。
7.3.直观评价:观察学生在计算和解决实际问题时运用导数的能力和方法。
8.教学延伸:8.1.导数的计算和应用在微积分的后续学习中具有重要的作用,学生还需继续加深对导数概念和应用的理解。
8.2.练习不同类型的导数计算题目,提高运算能力和分析解决问题的能力。
8.3.进一步了解导数的发展与应用,拓宽数学知识的广度。
《导数的概念教案》

教案名称:导数的概念教案课时安排:2课时教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学方法:1. 采用讲解、示例、练习相结合的方式进行教学;2. 引导学生通过观察、思考、讨论,发现导数的本质;3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
教学内容:第一课时一、导入(5分钟)1. 复习相关概念:函数、极限的概念;2. 提问:函数在某一点的极限有什么意义?二、新课讲解(15分钟)1. 引入导数的定义:导数是函数在某一点的瞬时变化率;2. 解释导数的物理意义:描述物体在某一时刻的瞬时速度;3. 示例讲解:利用极限的概念推导函数的导数;4. 强调导数的计算方法:求导数的关键是找到函数的导数公式。
三、课堂练习(10分钟)1. 请学生独立完成练习题,巩固导数的定义和计算方法;2. 教师选取部分学生的作业进行讲解和评价。
第二课时四、新课讲解(15分钟)1. 介绍导数的运算法则:加法、减法、乘法、除法的导数法则;2. 示例讲解:利用导数法则计算复合函数的导数;3. 强调导数在实际问题中的应用:优化问题、物理问题等。
五、课堂练习(10分钟)1. 请学生独立完成练习题,巩固导数的运算法则和应用;2. 教师选取部分学生的作业进行讲解和评价。
教学评价:1. 课后作业:检查学生对导数的定义、计算方法和应用的掌握程度;2. 课堂表现:观察学生在课堂上的参与程度、思考能力和合作意识。
教学反思:本节课通过讲解、示例和练习,使学生初步掌握了导数的定义、计算方法和应用。
在教学过程中,要注意引导学生积极参与,提高学生的思考能力和合作意识。
加强对学生的个别辅导,提高学生的学习效果。
教案名称:导数的概念教案课时安排:2课时教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学方法:1. 采用讲解、示例、练习相结合的方式进行教学;2. 引导学生通过观察、思考、讨论,发现导数的本质;3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
导数的概念教学设计

导数的概念教学设计教学设计:导数的概念一、教学目标:1.了解导数的概念及其作用;2.能够求解简单的导数;3.培养学生观察、推理和解决问题的能力。
二、教学内容:1.导数的定义;2.导数的性质;3.导数的求法。
三、教学过程:导入(5分钟):1.引入:请学生回顾一下斜率的概念。
2.提问:斜率有什么作用?在什么情况下,斜率很大或者很小?3.讨论:学生回答问题,并和同学一起讨论。
引入(10分钟):1.对比斜率:通过比较两个点的斜率和曲线上一点的斜率,引入导数的概念。
2.引入导数的定义:导数即为函数在其中一点上的变化率,可以表示为函数f(x)在x点的极限:f'(x)= lim(h→0) (f(x+h)-f(x))/h。
3.解释导数的意义:导数可以用来衡量函数在其中一点的变化速率,斜率大表示函数变化快,斜率小表示函数变化慢。
讲解(15分钟):1.导数的性质:导数具有以下性质:a.常数的导数为0;b.导数存在的函数是连续函数;c.导数的次数与函数的次数相差12.实例分析:通过实例展示函数的导数和函数的关系,进一步解释导数的性质。
练习(20分钟):1.求导数的基本方法:通过多个实例,引导学生掌握求导的基本方法。
2.练习题:让学生自主完成一些基本的导数计算练习。
拓展(20分钟):1.导数的应用:通过一些实际问题的导数应用,如求函数的极值点、判断函数的单调性等,让学生了解导数的一些应用。
2.练习题:让学生自主完成一些关于导数应用的练习。
归纳总结(10分钟):1.让学生通过回顾导数的定义和应用,总结导数的概念及其作用。
2.解答学生提出的疑问,并帮助学生进一步理解导数的概念。
四、教学反思:通过以上教学过程,学生可以初步了解导数的概念及其作用,并掌握一些求导的基本方法。
教师在讲解过程中应注重与学生的互动,引导学生发现问题,培养学生的分析和解决问题的能力。
教学中可以引入一些例子和实际应用,提高学生的学习兴趣和能力。
在练习环节,教师可以设置一些有挑战性的问题,让学生进一步巩固所学知识。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。
三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。
五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。
教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。
六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。
七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。
《导数的概念》教学设计(高效课堂教学模式)数学优质课评选活动参赛课例

导数的概念(高效课堂教学模式)
一、教材分析
《导数的概念》是高中新教材人教A 版选修2-2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础.
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数.
问题1 高台跳水的平均速度--→瞬时速度
--
根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点. 二、 教学目标
1、通过实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景;
2、理解导数的概念,会用定义求导数;
3、通过导数概念的形成过程,体验逼近、类比、从特殊到一般的数学思想方法. 三、 重点、难点
重点:导数概念的形成,导数内涵的理解.
难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵. 通过逼近的方法,引导学生观察来突破难点. 四、 教学设计。
导数的概念优秀教学设计

导数的概念优秀教学设计导数是微积分中的重要概念,是描述函数变化率的工具。
设计优秀的导数教学,需要结合具体的学生特点和教学环境,以下是一个1200字以上的教学设计。
课程名称:导数的概念课时安排:2个课时教学目标:1.理解导数的概念和意义;2.掌握导数的计算方法;3.能够应用导数计算函数在给定点的切线和法线。
教学准备:1.教师准备黑板和粉笔;2.给学生准备纸和笔;3.提前准备好导数的相关练习题。
教学过程:第一课时(40分钟):1.导入(5分钟):教师首先简要回顾一下上节课讲解的函数及其性质,引导学生回忆函数图像的特点和函数值的意义。
2.引入导数的概念(15分钟):a.教师通过画图的方式,介绍导数的定义,即函数在其中一点的导数定义为函数在该点的斜率,引导学生对导数有初步的直观理解。
b.教师提供一些具体的例子,如从平面图中点A的位置移动到点B的位置所经过的路径,引导学生思考为什么我们需要斜率来描述这一移动过程的速率。
3.导数的计算方法(20分钟):a.教师通过画图和计算的方式,教学常见函数的导数计算方法,如幂函数、指数函数、对数函数、三角函数等。
b.教师提醒学生导数是一个极限的概念,需要进行极限运算,以此引导学生理解导数的计算方法。
4.小结(5分钟):教师进行本节课的小结,回顾本节课讲解的内容,强调导数是函数的变化率,需用斜率来描述。
第二课时(40分钟):1.复习(5分钟):教师简要回顾上节课讲解的导数的概念和计算方法,提问学生导数的意义和计算方法。
2.用导数计算切线和法线(15分钟):a.教师通过具体例子,如给定一条曲线上的一点P,求曲线上其中一点的切线方程和法线方程,引导学生应用导数的概念和计算方法进行求解。
b.教师提醒学生切线和法线的斜率分别等于导数和导数的负倒数,以此理解切线和法线的几何意义。
3.应用题练习(15分钟):a.教师出示一些应用题,如给定函数的图像,要求求函数在其中一点的切线和法线方程,并计算切点坐标等。
高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。
2. 培养学生运用导数解决实际问题的能力。
3. 引导学生掌握求导数的基本方法。
二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。
2. 难点:导数的直观理解和求复杂函数的导数。
四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。
2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。
3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。
4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。
5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。
五、课后作业1. 完成教材上的课后练习题。
2. 找一些实际问题,运用导数解决。
3. 复习本节课的内容,准备下一节课的学习。
1. 评价学生对导数概念的理解程度。
2. 评价学生掌握导数性质和求导数方法的情况。
3. 评价学生在实际问题中运用导数的熟练程度。
七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。
2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。
4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
八、教学资源1. 教材:高等数学导数部分。
2. 多媒体课件:用于展示导数的几何意义和实例分析。
3. 练习题库:用于巩固所学知识和提高解题能力。
4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。
九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。
注重培养学生的数学思维,激发学生学习高等数学的兴趣。
十、教学拓展1. 导数在微积分学中的应用:极限、积分等。
高中数学《导数的概念》教案导学案

导数的概念教学目标与要求:理解导数的概念并会运用概念求导数。
教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。
虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。
由此我们引出下面导数的概念。
二、新授课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数)(x f Y =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/注:1.函数应在点0x 的附近有定义,否则导数不存在。
2.在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。
3.xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率。
4.导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。
因此,如果)(x f y =在点0x可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。
5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ∆无关。
导数的概念教学设计方案

1. 知识目标:理解导数的概念,掌握导数的定义、几何意义和物理意义。
2. 能力目标:培养学生运用导数解决实际问题的能力,提高学生的数学思维能力。
3. 情感目标:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。
二、教学重难点1. 教学重点:导数的概念、几何意义和物理意义。
2. 教学难点:导数的定义及运用。
三、教学过程1. 导入新课通过回顾函数、极限等知识点,引导学生思考导数的概念。
教师可以提出问题:“如何求函数在某一点的瞬时变化率?”以此激发学生的学习兴趣。
2. 导数概念的教学(1)介绍导数的定义:导数是函数在某一点处的瞬时变化率。
通过几何直观,引导学生理解导数的定义。
(2)举例说明导数的几何意义:导数表示函数在某一点处的切线斜率。
(3)举例说明导数的物理意义:导数表示物体在某一点处的速度。
3. 导数的计算方法(1)讲解导数的定义法:运用导数的定义求解函数在某一点的导数。
(2)讲解导数的四则运算法则:运用导数的四则运算法则求解复合函数的导数。
(3)讲解求导公式和求导法则:通过举例讲解求导公式和求导法则,如幂函数、指数函数、对数函数、三角函数等的导数。
4. 实例分析通过实例分析,让学生运用所学知识解决实际问题,如求曲线在某一点的切线方程、求曲线的拐点等。
5. 课堂小结教师总结本节课的主要内容,强调导数的概念、几何意义和物理意义,以及导数的计算方法。
6. 作业布置布置相关练习题,巩固学生对导数的理解,提高学生的解题能力。
四、教学反思1. 教学过程中,注重引导学生理解导数的概念,避免死记硬背。
2. 通过实例分析,让学生将所学知识运用到实际问题中,提高学生的实际应用能力。
3. 在教学中,注重培养学生的探究精神和合作意识,鼓励学生积极参与课堂讨论。
4. 关注学生的学习进度,针对学生的不同需求,进行个性化辅导。
五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性。
2. 作业完成情况:检查学生对导数概念的理解程度和运用能力。
导数的概念教案

导数的概念教案教案名称:导数的概念教案教学目标:1. 了解导数的概念及其意义;2. 理解导数的计算方法;3. 掌握导数的性质和应用;4. 能够应用导数解决实际问题。
教学准备:1. 打印教学材料,包括导数的定义和计算方法;2. 准备多个实例进行演示;3. 录制导数的演示视频或准备PPT。
教学流程:引入导数概念(10分钟)1. 显示导数的定义:导数是描述函数在某一点附近的变化率的量,也可看作是函数图像在某一点处的切线斜率。
2. 解释导数的意义:导数可以告诉我们函数在某点的瞬时变化速率。
比如,如果一个函数的导数为正,表示函数在该点上升;若导数为负,表示函数在该点下降;若导数为零,表示函数在该点处于极值。
3. 引导学生举例说明导数在实际生活中的应用场景,如速度为时间的导数,可以表示物体的加速度;收入为销售额的导数,可以表示销售额的增长速率等。
导数的计算方法(20分钟)1. 讲解导数的计算方法:导数的计算方法有多种,主要介绍以下几种:a. 使用定义计算导数:利用导数的定义公式,计算函数在某一点处的导数,即导数等于函数在该点的极限。
b. 使用公式计算导数:介绍常用函数的导数公式,如幂函数、指数函数、对数函数等。
c. 使用求导法则:介绍导数四则运算法则,如求和法则、差法则、积法则和商法则,以及复合函数求导法则等。
2. 举例演示导数的计算方法:通过几个具体的函数例子,进行导数的计算演示,包括使用定义计算导数、使用公式计算导数和使用求导法则计算导数。
导数的性质和应用(20分钟)1. 解释导数的性质:导数的性质有连续性、可导性和递增、递减性等,侧重讲解连续性和可导性的概念和性质。
2. 展示导数的应用:介绍导数在数学和实际问题中的应用,如极值问题、最优化问题、函数图像的绘制等。
解决实际问题(10分钟)1. 给学生提供几个实际问题,让他们应用导数求解,如最大值问题、最小值问题、最优化问题等。
2. 引导学生分析问题,提供解决问题的导数计算方法。
高中数学导数的概念教案

高中数学导数的概念教案
一、教学目标:
1. 理解导数的定义及其物理意义;
2. 掌握导数计算的方法和规则;
3. 能够应用导数解决实际问题;
4. 培养学生的数学思维和解决问题的能力。
二、教学重点和难点:
1. 理解导数的定义及其物理意义;
2. 导数计算的方法和规则;
3. 实际问题应用。
三、教学内容与安排:
第一课时:导数的基本概念
1. 定义:导数是函数在某一点处的瞬时变化率;
2. 物理意义:导数表示了函数的变化速率,可以用来解释速度、加速度等物理现象;
3. 讨论导数存在的必备条件。
第二课时:导数的计算方法
1. 导数的计算法则:和、差、积、商、复合函数的导数;
2. 高阶导数的计算方法;
3. 计算导数的基本技巧。
第三课时:导数的应用
1. 利用导数求函数的极值;
2. 利用导数解决优化问题;
3. 利用导数解决曲线的切线问题。
四、教学方法:
1. 讲授相结合,引导学生主动探究;
2. 注重示范和实例讲解,提高学生的问题解决能力;
3. 课堂小组讨论,促进学生之间的合作与交流。
五、教学评价:
1. 课堂练习与作业;
2. 实际问题解决能力的考核;
3. 学生的课堂表现和参与度。
六、教学反思:
1. 根据学生的理解情况调整教学内容和节奏;
2. 激发学生的学习兴趣,增强学生的主动学习意识;
3. 关注学生的学习过程,及时给予反馈和帮助。
导数的概念教学设计

导数的概念教学设计导数是微积分中的一个重要概念,它在解决函数的变化率以及求解极值等问题上具有重要的作用。
在教学中,如何引导学生准确理解导数的概念,并能够运用导数解决相应的问题,是一个关键的问题。
本文将从教学目标、教学内容、教学方法和教学评价四个方面,设计一节导数的概念课。
一、教学目标1. 知识目标:理解导数的概念,能够准确解释导数的定义,并能够应用导数解决函数的变化率和极值问题。
2. 能力目标:培养学生运用导数分析函数在给定区间上的变化趋势的能力,以及求解函数的极值的能力。
3. 情感目标:激发学生对微积分的兴趣和学习的积极性,培养学生的数学思维和解决问题的能力。
二、教学内容1. 导数的概念:介绍导数的定义和符号表示,引导学生理解导数的意义和其在函数图像上的几何解释。
2. 导数的计算方法:以常见函数为例,说明导数的计算方法,包括使用导数的基本性质和导数的求导法则。
3. 导数的应用:通过具体问题引入导数的应用领域,如函数的变化率、切线方程和函数的极值等。
4. 综合应用:通过一些综合性的问题,既能够检验学生对导数概念的理解,又能够培养学生解决实际问题的能力。
三、教学方法1. 示范引导法:教师通过示例演示导数的概念和计算方法,引导学生思考并建立相关的概念框架。
2. 互动讨论法:教师提出问题并组织学生进行讨论与交流,激发学生的思维,促进学生之间的互动。
3. 问题解决法:教师提供一些实际问题,引导学生将导数与实际问题相结合,培养学生解决问题的能力。
四、教学评价1. 小组讨论:组织学生进行小组讨论,让学生互相交流、探讨问题,提高学生的合作与交流能力。
2. 课堂练习:设计一些练习题,让学生运用所学知识进行计算和分析,检验学生对导数概念的掌握程度。
3. 个体评价:对学生的课堂表现进行个体评价,包括对问题的思考与回答、对概念的理解和应用等方面。
综上所述,本节课的教学设计旨在通过引导学生准确理解导数的概念,掌握导数的计算方法以及应用导数解决实际问题的能力。
12导数的概念及其几何意义一等奖创新教学设计

12导数的概念及其几何意义一等奖创新教学设计导数是微积分中的重要概念之一,它表示函数在其中一点的变化率。
导数的几何意义是函数在该点的切线斜率。
为了更好地理解导数的概念及其几何意义,我设计了一堂创新教学课程,下面将详细介绍课程设计的内容。
一、教学目标:1.理解导数的概念及其几何意义;2.掌握求导的基本方法;3.能够利用导数的性质解决实际问题;4.培养学生的逻辑思维和几何直观。
二、教学准备:1.投影仪、电脑;2.课件制作,包括导数的定义、求导法则等知识点;3.黑板、粉笔;4.辅助教材,包括练习题、实例分析等。
三、教学过程:1.导入(1)通过问题引入,例如:小明骑自行车在直线上的位置随时间变化的函数是什么?如何描述小明的速度变化?为什么要研究速度的变化?(2)引导学生思考,提问:速度与位置之间有什么关系?如何描述速度的变化?2.导学(1)概念阐述:导数的定义教师通过幻灯片或黑板,详细讲解导数的定义,并解释导数与函数变化率的关系。
(2)几何意义教师通过图形展示,引导学生观察曲线在其中一点的切线,并解释切线斜率即为该点的导数。
3.求导法则的讲解(1)基本求导公式通过例题,讲解求导的基本法则,包括幂函数、指数函数、三角函数等的求导规则。
(2)导数性质教师讲解导数的性质,如导数的和差法则、导数的乘法法则、导数的链式法则等。
4.实例分析(1)通过实例分析,让学生了解导数在实际问题中的应用。
例如:根据速度函数求位移、根据边际成本函数求利润最大值等。
(2)引导学生自主思考,并解决导数应用问题。
通过小组合作,学生们讨论并解决一些导数应用问题,如找出条曲线上切线的最大斜率点。
5.深化练习(1)教师出示一些练习题,并要求学生独立完成。
(2)学生互相批改并分享答案,教师解析正确答案,指导学生如何正确解题。
四、教学评估:1.课堂练习通过课堂练习,测试学生对导数概念及其几何意义的理解,同时检验他们求导的能力。
2.论文写作要求学生写一篇关于导数的论文,要求包括导数的定义、几何意义、求导法则以及实际应用等内容。
导数的概念》说课稿(附教学设计)

导数的概念》说课稿(附教学设计)导数的概念》说课稿一、教学内容及分析导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度。
导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用。
导数概念是我们今后研究微积分的基础。
同时,导数在物理学、经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。
教材安排导数内容时,学生是没有研究极限概念的。
教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上研究。
因此,让学生通过研究导数这个特殊的极限去体会极限的思想,这为今后研究极限提供了认识基础。
另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先研究导数方便学生研究和研究函数。
基于学生已经在高一年级的物理课程中研究了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的。
进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想。
二、教学目标及分析1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来研究极限概念积累研究经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程。
导数概念市公开课获奖教案省名师优质课赛课一等奖教案

导数概念教案一、教学目标1. 理解导数的概念及其在数学和物理等领域的应用。
2. 掌握导数的计算方法和常见函数的导数表达式。
3. 能够利用导数解决实际问题。
二、教学准备1. 教材:数学教材及相关参考资料。
2. 教具:黑板、彩色粉笔、教学PPT、计算器。
三、教学过程1. 导入(5分钟)引导学生回顾函数相关概念,如函数的定义、函数图像等。
2. 导数的概念(15分钟)(1)引入导数的概念:导数是研究函数变化率的工具,表示函数在某一点上的瞬时变化率。
(2)通过图像展示导数的意义:在函数图像上,导数表示曲线上某点的切线斜率。
(3)导数的符号表示:函数f(x)在x点的导数用f'(x)表示。
3. 导数的计算方法(30分钟)(1)函数的导数定义:若函数f(x)在点x处有导数,则导数f'(x)等于极限lim(h->0) [f(x+h)-f(x)]/h。
(2)基本导数公式:介绍常见函数的导数表达式,如常数函数、幂函数、指数函数、对数函数等,并给出相应的例题进行讲解和练习。
(3)导数的特性:导数具有线性性质、乘法性质和复合函数的导数法则。
4. 导数与函数图像的关系(20分钟)(1)导数与函数图像的关系:分析导数与函数图像之间的关系,讲解导数为正数时函数单调递增,为负数时函数单调递减。
(2)举例说明极值点与导数的关系:导数为0的点可能是极值点,但不是每个导数为0的点都是极值点。
(3)讲解拐点与导数的关系:通过图像讲解导数为0的点可能是拐点,并给出相应的例题进行讲解和练习。
5. 导数的应用(20分钟)(1)速度与导数的关系:以物理中的运动问题为例,讲解速度与导数之间的关系。
(2)函数图像的平滑程度:通过导数讨论函数图像的平滑程度与导数的关系,引出曲线的凹凸性与导数的相关性。
(3)实际问题的求解:通过实际问题,如利润最大、曲线的最值等,引导学生利用导数概念解决实际问题。
6. 小结与作业布置(5分钟)(1)小结导数的概念、计算方法及应用。
全国高中数学优秀课评选:导数的概念教学设计教案或说明

高中数学说课教案第三册(选修Ⅱ)说课课题:导数的概念(第三课时)教材:全日制普通高级中学教科书数学第三册(选修Ⅱ)(人民教育出版社)一、【教材分析】1. 本节内容:《导数的概念》这一小节分“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成.2. 导数在高中数学中的地位与作用:导数作为微积分的核心概念之一,在高中数学中具有相当重要的地位和作用.从横向看,导数处于一种特殊的地位.它是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方法简化中学数学的许多问题.从纵向看,导数是对函数知识的深化,对极限知识的发展,同时为以后研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用.二、【学情分析】1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,我班学生思维比较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.三、【目标分析】1. 教学目标(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法.(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.(3)情感、态度与价值观目标:①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.2. 教学重、难点【确定依据】依据教学大纲的要求,结合本节内容和本班学生的实际重点:导数的定义和用定义求导数的方法.难点:对导数概念的理解.【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具体到抽象利用类比归纳的思想学习导数概念;把新知的核心“可导”和“导数”两个问题结合起来,利用转化的思想与学生已有的极限知识相联系,将问题化归为考察一个关于自变量x∆的函数x xxfxF∆∆∆)()(0+=当0→x∆时极限是否存在以及极限是什么的问题.四、【教学法分析】1. 教法、学法:引导发现式教学法,类比探究式学习法教学中遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则.以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念.引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.2. 教学手段:多媒体辅助教学【设计意图】通过多媒体弥补传统教学的不足,增强教学效果的直观性,帮助学生更好地理解无限逼近思想,揭示导数本质.五、【教学过程分析】【确定依据】为更好落实教学目标, 把数学知识的“学术形态”转化为数学课堂的“教学形态”,,为学生创设探究空间,让学生充分经历、体验数学知识再发现的过程,从中获取知识,发展思维,感受探索的乐趣.(一)教学环节小结整理分层作业复习引入引申拓展练习反馈类比探索(二)教学过程教学环节内容师生活动设计意图复习引入提出问题【回顾1】当运动员从10米高台跳水时,从腾空到进入水面的过程中,不同时刻的速度是不同的.假设t秒后运动员相对地面的高度为:105.69.4)(2++-=tttH,问在2秒时运动员的瞬时速度为多少?【回顾2】已知曲线C是函数105.69.4)(2++-=xxxf的图象,求曲线上点P),(yx处的切线斜率.【思考】对瞬时速度和和切线的斜率两个具体问题,解决方法上有什么共同之处?学生相互交流探讨瞬时速度和和切线的斜率两个具体问题,解决方法上有什么共同之处.针对新概念创设相应的学生熟悉的问题情景,让学生从概念的现实原型,体验、感受直观背景和概念间的关系,为学生主动建构新知提供自然的生长点.类比探索形成概念①归纳共性揭示本质研究对象求解问题求解方法本质思想具体例子物体运动规律H=h(t)物体在0t时的瞬时速度求时间增量t∆求位移增量h∆求平均速度th∆∆求瞬时速度=vtht∆∆∆0lim→平均速度的极限极限思想曲线y=f(x)曲线上P),(yx点处切线的斜率求横坐标增量x∆求纵坐标增量y∆求割线的斜率xy∆∆求切线的斜率limxykx∆→∆=∆割线斜率的极限极限思想一般情形函数y=f(x)函数在0xx=处的变化率??????【师生活动】将学生分成若干学习小组,以表格为载体为师生、生生互动搭起积极交流的探究平台.教师巡视,鼓励学生参与,对个别学有困难的小组加以指导.探究后,共同归纳得出:两个问题的解决在方法、本质、思想上都有相同之处.一个是“位移改变量与时间改变量之比”的极限,一个是“纵坐标改变量与横坐标改变量之比”的极限.如果舍去它们的具体含义,都可以概括为求平均变化率的极限.【设计意图】给学生创设探究的平台,分析瞬时速度和切线的斜率两个具体问题,讨论解决这两个问题的方法、本质、思想上有什么共同之处,引导学生分析、观察、归纳,打通揭示事物本质的思维通道.教学环节内容师生活动设计意图类比探索形成概念②类比迁移形成概念【思考】考虑求一般函数y=f(x) 在点x到x+x∆之间的平均变化率的极限问题,也就是怎样计算函数在点x处的变化率?引出导数定义后,回归问题情景,反思概念的“原型”解释“切线的斜率”、“物体的瞬时速度”的本质.引导学生利用求瞬时速度的方法和思想类比探究,猜想得出函数在点x处的变化率xyx∆∆∆0lim→=xxfxxfx∆∆∆)()(lim0-+→,并对猜想的合理性进行分析后,引出定义1:(函数在一点处可导及其导数)用具体到抽象,特殊到一般的思维方式,利用瞬时速度进行类比迁移,自然引出函数在一点处可导和导数的概念.由具体到抽象再回到具体的过程,感知上升到了理性,强化了对概念的理解.类比探索形成概念③剖析概念加深理解【探讨1】怎样判断函数在一点是否可导?判断函数)(xfy=在点x处是否可导判断极限xxfxxfx∆∆∆)()(lim0-+→是否存在【探讨2】导数是什么?描述角度本质文字语言瞬时变化率组织学生阅读“导数”定义,抓住定义中的关键词“可导”与“导数”交流探讨,然后通过师生互动挖掘这些概念之间的深层含义.分析导数的本质后,同时简单提及导数产生的时代背景.引导学生以数学语言(文字语言、符号语言、图形语言)的理解、把握、运用为切入点去揭示概念的内涵与外延,提高学生数学阅读和自主学习的能力.让学生感受数学文化的熏陶,了解导数的文化转化符号语言 0lim→x ∆xy∆∆ 图形语言 (切线斜率)价值、科学价值和应用价值.教学环 节内 容师生活动设计意图类 比 探 索 形 成 概 念【探讨3】求导数的方法是什么?【例1】求函数y=x 2在点1=x处的导数.让学生类比瞬时速度的问题,根据导数定义归纳出求函数)(x f y =在点0x 处导数的方法步骤:(1)求函数的增量; (2)求平均变化率; (3)取极限,得导数.学生动手解答,老师强调符号语言的规范使用,对诸如2)(x ∆忘写括号的现象加以纠正.用定义法求导数是本课的重点之一.有了可导这个逻辑基础,导数成为可导的自然结果,求导数的方法则是对导数概念的理解与应用.让学生积极主动参与,进行有意义的建构,有利于重点知识的掌握.本题是教材上的一道例题.在学生建立起导数概念,明确用定义求导数的方法之后,进行强化训练, 渗透算法思想,加深对导数概念的理解,强化对重点知识的巩固.引 申 拓 展 发 利用例1继续设问,函数在1=x 处可导,那么-1=x ,2=x ,3=x 这些点也可导吗?从而引申拓展出定义2:(函数在开区间),(b a 内可导)【探讨1】函数在开区间内可导,那么对于每一个确定的值,都有唯一确定的导数值与之相对应,这样在开区间内存在一个映射吗?师生互动,共同探讨归纳函数在开区间),(b a 的每一点可导,每一点就有确定的唯一的导数.这样在开区间),(b a 内构成一个特殊的映射,这里的映射是数集到数集的映射,就是函数,我们把这个通过层层展开的探讨,激活学生知识思维的“最近发展区”,引导学生主动将新问题与原认知结构中函数的相关知识相联系,自然引入导函数概念,从而完成从函数在一点可导→函数在开区间内可导→函数展概念【探讨2】存在的这个映射是否构成一个新的函数呢?若能,新函数的定义域和对应法则分别是什么呢?新函数叫做)(xf在开区间),(ba内的导函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学优质课
课题:导数的概念
一、教学内容解析
《导数的概念》是《选修2-2》第一章第1.1节中第1.1.2小结的内容,是高中数学的一节概念课.数学学习离不开推理,推理离不开判断,而判断是以一切概念为基础的.因此,数学教师必须要重视概念的教学.
纵观《导数及其应用》这章内容,导数以高起点,高观点和更一般的方法简化了中学数学中许多与函数相关的问题.导数的出现也为我们今后微积分的发展提供了方法和工具,从而使得它在其它学科领域也有了广泛的应用.但我们又不能将导数作为一种规则和步骤来学习,否则,学生很难体会导数的思想及其内涵,这样导数概念的学习就至关重要.
一般地,导数概念学习的起点是极限,但就高中学生的认知水平而言,他们很难理解极限的形式化定义.因此,我们对导数概念的引入从变化率入手,用形象直观的“逼近”方法定义导数.
我们将导数概念的建立分为两个阶段,在明确瞬时速度含义的基础上,将瞬时速度一般化,即抽象为一般的函数,从而形成导数的概念.
第一阶段:明确瞬时速度的含义及平均速度与瞬时速度的区别和联系.让学生在观察实验的同时,体会当||t ∆变小,趋于0时,
t
s
∆∆趋于一个定值,这个定值就是瞬时速度.在经历平均速度到瞬时速度的过程中,第一次体会逼近的数学思想.
第二阶段,将平均速度和瞬时速度抽象为一般的表达式,完全转化为数学问题,在揭示研究瞬时变化率必要性的同时,用类比的思想方法,经历从
平均变化率到瞬时变化率的过渡,再次体会逼近的思想方法.最后,建立导数的概念.
因此,根据以上对教学内容的分析,确立本节课的教学重点:在充分经历导数概念的建立过程中,体会逼近的数学思想,理解导数的思想及其内涵.
二、教学目标
1.在导数概念建立的过程中,引导学生通过观察、数值逼近、几何直观感受、解析式抽象、类比等方法体会数学概念的发生和形成.
2.理解导数的概念,初步掌握导数的计算方法,并在具体数学问题中进一步理解导数的概念.
3.通过对瞬时速度、瞬时变化率的探索,激发学生对本部分内容学习的兴趣.
三、学生学情分析
1.导数是对变化率的一种“度量”.实际生活中,学生最为熟悉的一种变化率就是物体的运动速度.学生在1.1.1小结学习了导数的物理意义,掌握了变化率,在高一年级的物理课程中学习过瞬时速度,因此,学生已经具备了一定的认知基础,他们不会对新知识感到无所适从.
2.可能存在的问题:(1)“逼近”的思想对于学生而言,还是比较陌生,需要精心设计教学活动,比如借助物理知识等,激发学生的兴趣,从学生已有的知识背景出发,帮助学生经历从平均速度到瞬时速度,从平均变化率到瞬时变化率的过渡.(2)使学生能通过观察发现:运动的物体在某一时刻的平均速度在时间间隔越来越小时,逐渐趋于一个不变的常数,而且这个常数就是物体在这一时刻的瞬时速度.这个过程学生难以想象,同时数值逼近的运
算繁琐,但又不能采取简单的方式告知学生,而是要学生通过实际的计算,在计算过程中,充分感知当||t ∆趋于0时,t
h
∆∆趋于一个定值;当||x ∆趋于0时,
x
y
∆∆趋于一个定值.(3)在实际教学中,学生需要用到思想方法和表达形式的迁移,即把从平均速度到瞬时速度过渡中所运用的“逼近”的思想方法迁移到从平均变化率到瞬时变化率的过渡,从对一个具体函数在一个确定点的瞬时变化率的表达式迁移到任意一个函数在任意一点的瞬时变化率的表达,这样的探究方法可能会导致学生的不适应而产生困难.
因此,如何引导学生根据生活中具体的实例,结合已有的知识经验,通过“逼近”的方法,由特殊到一般,用类比的方法归纳探究出导数的概念是本节课的难点. 四、教学策略分析
根据学生情况,为了完成本节课的教学目标,突破教学重难点,主要采取教师问题引导,学生自主探究、归纳的教学方法.具体的策略有:
1.从具体到抽象的教学方法.学生由生活中的具体实例和已有的知识背景出发,历经平均速度到瞬时速度的过渡,再把物体的运动变化量抽象为一般的函数,从而得到瞬时变化率的概念.
2.从特殊到一般的教学方法.让学生在知道2=t 是的瞬时速度以后,直观地理解运动员在任意时刻t 的瞬时速度.同样,在学生探究出一个指定函数在某一点处的瞬时变化率之后,可以归纳出一般函数在任意一点的瞬时变化率.
3.几何直观感受.通过几何画板的演示让学生形象的感知“逼近”.
4.利用计算器进行分组合作,取不同的t ∆,x ∆,计算t h ∆∆以及x
y ∆∆的值.
问:观看的时候思考仪器在测量瞬时速度时的工作原理是什么?
s
=附近的平均速度变化:
t3
讲授:经过以上三个时刻的计算,大家都发现:当时间间隔很小,也就是当两个时间的端点无限靠
讲授:由此可见,正如平均速度只能粗略反映物体在某个时间段的运动状态,而要想更为精确的刻画物体在某个时刻的运动状态,我们只能通过瞬
用几何画板演示:。