函数零点易错题三角函数重难点教师版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数零点易错题 三角函数重难点 教师版

函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1. 因"望文生义"而致误

例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C

错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数()x f y =的图象与x 轴交点的横坐标.

正解:由()0232=+-=x x x f 得,x =1和2,所以选D.

点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求.

2. 因函数的图象不连续而致误

例2.函数()x

x x f 1+=的零点个数为 ( ) A.0 B.1 C.2 D.3

错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B. 错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()x

x x f 1+=的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理.

正解:函数的定义域为()()+∞⋃∞-,00,,当0>x 时,()0>x f ,当0

=+

x

x 得012=+x 方程无实数解. 点拨:对函数零点个数的判定,可以利用零点存在性定理来判定,涉及多个零点的往

往借助于函数的单调性.若函数()x f y =在区间[]b a ,上的图象是连续曲线,并且在区间端点的函数值符号相反,即()()0

()()0

不一定有()()0

例3.判定函数()32-=x x f 在区间[]1,1-内是否有零点.

错解:因为()()111-==-f f ,所以()()011>-f f ,函数()32-=x x f 在区间[]1,1-内没有零点.

错解剖析:上述做法错误地用了函数零点判定定理,因为函数()x f 在区间[]b a ,上的函数图像是连续曲线,且()()0>b f a f ,也可能在[]b a ,内有零点.如函数()12-=x x g 在区间

[]1,1-上有()()011>-g g ,但在[]1,1-内有零点2

1±=x .

正解:当∈x []1,1-时,()132-≤-=x x f ,函数()x f y =在[]1,1-上的图象与x 轴没有交点,即函数()32-=x x f 在区间[]1,1-内没有零点.

法二:由032=-x 得∉±=2

3

x []1,1-,故函数()32-=x x f 在区间[]1,1-内没有零点. 点拨:对有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数2)1(-=x y 有零点1,(如上图)但函数值没变号.对函数零点的判定一定要抓住两点:①函数()x f y =在区间[]b a ,上的图象是连续曲线,②在区间端点的函数值符号相反,即()()0

例4.已知二次函数()m x m x x f 2)1(2+--=在[]1,0上有且只有一个零点,求实数m 的取值范围.

错解:由函数的零点的性质得()()010

错解剖析:错解的原因是只注意到函数零点的应用,而忽略问题的其它形式:①在[]1,0上有二重根;②终点的函数值可能为0.

正解:⑴当方程02)1(2=+--m x m x 在[]1,0上有两个相等实根时,

()0812

=--=∆m m 且12

1

0<-<

m ,此时无解. ⑵当方程02)1(2=+--m x m x 有两个不相等的实根时,

① 有且只有一根在[]1,0上时,有()()010

③当()01=f 时,2-=m ,方程可化为0432=-+x x ,解得4,121-==x x 合题意. 综上所述,实数m 的取值范围为[]0,2-.

点拨:在求参数时,要注意将函数零点的特殊性质与函数的有关性质相结合,进行分类讨论使复杂的问题简单化. 本文已在《学苑新报》上发表

方程的根与函数的零点

1.函数2()41f x x x =--+的零点为( )

A 、1-+

、1- C 、1-± D 、不存在 2.函数32()32f x x x x =-+的零点个数为( )

A 、0

B 、1

C 、2

D 、3

3. 函数()ln 26f x x x =+-的零点一定位于区间( ).

A. (1, 2)

B. (2 , 3)

C. (3, 4)

D. (4, 5)

1.C

2.D

3.易知函数()f x 在定义域(0,)+∞内是增函数.

∵(1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<,(3)ln366ln30f =+-=>. ∴ (2)(3)0f f <,即函数()f x 的零点在区间(2,3). 所以选B.

4. 求证方程231

x x

x -=

+在(0,1)内必有一个实数根. 4. 证明:设函数2()31

x x f x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数.

而0(0)3210f =-=-<,115

(1)3022

f =-=>,即(0)(1)0f f <,说明函数()f x 在区间(0,1)内有零点,且只有

一个. 所以方程231

x x

x -=+在(0,1)内必有一个实数根.