九年级数学上册学习探究诊断检测试题1

合集下载

2023-2024学年浙江省杭州市萧山区九年级上学期学科学习能力诊断卷(一) 数学试题

2023-2024学年浙江省杭州市萧山区九年级上学期学科学习能力诊断卷(一) 数学试题

2023-2024学年浙江省杭州市萧山区九年级上学期学科学习能力诊断卷(一)数学试题 1.若非零实数x ,y满足,则等于()A.B.C .D .2.下列说法中正确的是()A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.000001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.将抛物线先向上平移个单位,再向右平移个单位,所得抛物线的函数表达式为()A.B.C .D .4.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A .3B .4C .9D .185.某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台的长为,为的一个黄金分割点,则的长为(结果精确到)()A .6.7mB .7.6mC .10mD .12.4m6.在一张的地图上,一块多边形地区的面积为,则这块多边形地区的实际面积为()A.B.C .D .7.如图,内接于,,,则的半径为()A.B .4C .D .58.关于函数的下列说法中,错误的是()A.当时,函数有最小值B .当时,随的增大而增大C .对称轴为直线D .图象与轴必有两个交点9.如图,在四边形中,,若,则为()A.18°B.15°C.20°D.30°10.如图,在中,,以为直径作圆,交于点D,延长交圆于点E,连接,交于点F.若,则的值为()A.B.C.D.11.正五边形的内角和度数是______.12.已知二次函数的自变量x与函数值y之间满足下列数量关系:x0245m则m______0(填“”或“”).13.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是.14.已知和时,多项式的值相等,则当时,多项式的值为______.15.如图,在中,,以为直径作半圆,交于点E,交于点D.若,,则的长为______.16.已知一块等腰三角形纸板,在它的两腰上各有一点,把这两点分别与底边的中点相连,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)各边的长度,经测量依次为,,,,那么原三角形的底边长为______.17.计算:.18.已知二次函数的图象过点,有下列点:,,,.其中哪些点在图象上?请说明理由.19.如图,有甲、乙两个完全相同的转盘均被分成两个区域,甲转盘中区域的圆心角是,乙转盘中区域的圆心角是,自由转动转盘(如果指针指向区域分界线则重新转动).(1)转动甲转盘一次,求指针指向区域的概率.(2)自由转动两个转盘各一次,利用树状图或列表法,求两个转盘指针同时指向区域的概率.20.如图,是的直径,弦于点E,G是上任意一点,连接,,.(1)找出图中和相等的角,并给出证明.(2)若等于,且,求的度数.21.如图,方格纸中每个小正方形的边长均为1,和的顶点都在方格纸的格点上.(1)判断和是否相似,并说明理由.(2),,,,是边上的5个格点,请在这5个格点中选取3个点作为三角形的顶点,使构成的三角形与相似(要求写出所有符合条件的三角形,并在图中连结相应线段,不必说明理由).22.有一块形状如图的四边形余料,,测得,.要在这块余料中截取一块矩形材料,其中一边在上,并使截得的面积尽可能大.(1)若所截矩形材料的一个顶点恰好为D,求该矩形材料的面积.(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,请说明理由.23.已知抛物线经过点,请解决下列问题:(1)点,分别落在抛物线上,且,求k的值.(2)当时,①求的取值范围.②若,,求的值.24.如图,为的直径,C为圆上的一点(异于点A,B),D为的中点,,相交于点P,过点D作于点E,交于点F.(1)证明:.(2)猜想与有怎样的数量关系,并证明你发现的结论.(3)如图2,连结,若,求的值.。

九年级数学第一次诊断性调研考试试卷

九年级数学第一次诊断性调研考试试卷

九年级数学第一次诊断性调研考试试卷考试证号:学校:考试证号:学校:班级:姓名:九年级数学第一次诊断性调研考试试卷欢迎你参加第一次诊断性调研考试试卷,祝你取得好成绩!请先看清以下几点注意事项:本卷分第Ⅰ卷和第Ⅱ卷两部分,共130分,考试时间为120分钟.2.做第Ⅱ卷时,请先将密封线内的项目填写清楚,然后,用蓝色、黑色钢笔、签字笔或圆珠笔直接在试卷上作答,写在试题卷外无效.3.考试结束后,将第I 卷、第II卷和答题卡一并交回。

命题、校对:乔太华第Ⅰ卷(选择题,共30分)得分阅卷人复卷人一、选择题:(每小题3分,共30分)1、在0,-1,1,2这四个数中,最小的数是( )A、-1B、0C、1D、22.下列各式运算正确的是()A、 B、 C、 D、3.下列说法中错误的是()A.是实数 B.1<<2 C.是2的算术平方根 D.是无理数4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()BBACD密封线内不答题密封线内不答题5在数-4,-2,-1,0,1,2,4中,任意取一个数,使分式没有意义的概率()A、 B、 C、 D、6.如图,抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有()(A)最大值1 (B)最小值-3(C)最大值-3 (D)最小值17. 不等式组的正整数解的个数是()BEBEADC8. 如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处。

已知BC=12,∠B=30o,则DE的长是()A 6B 4C 3D 2ABCDGEABCDGE的对角线,则图中相似三角形共有()A.2对; B.3对;C.4对; D.5对.10. 小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,为铺满地面而不重叠,瓷砖的形状可能有(? ).(A)正三角形、正方形、正六边形(B)正三角形、正方形、正五边形(C)正方形、正五边形(D)正三角形、正方形、正五边形、正六边形第一次诊断性调研考试试卷第Ⅱ卷(100分)题号二三11~161718192021222324252627得分得分阅卷人复卷人二、填空题(本大题共6小题,每小题3分,共18分.把正确答案直接填在题中的横线上)11. 函数y=中,自变量x的取值范围是__________。

2020-2021学年辽宁省铁岭市部分学校九年级(上)调研数学试卷(一)【附答案】

2020-2021学年辽宁省铁岭市部分学校九年级(上)调研数学试卷(一)【附答案】

2020-2021学年辽宁省铁岭市部分学校九年级(上)调研数学试卷(一)一、选择题(每小题3分,共30分)1.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=(2x+1)B.x+﹣2=0C.ax2+bx+c=0D.x2+2x=x2﹣12.(3分)用配方法解3x2﹣6x=6配方得()A.(x﹣1)2=3B.(x﹣2)2=3C.(x﹣3)2=3D.(x﹣4)2=3 3.(3分)已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1B.1C.5D.5或﹣14.(3分)若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a且a≠0B.a C.a D.a且a≠0 5.(3分)某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=1826.(3分)在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD7.(3分)夹在两条平行线间的正方形ABCD、等边三角形DEF如图所示,顶点A、F分别在两条平行线上.若A、D、F在一条直线上,则∠1与∠2的数量关系是()A.∠1+∠2=60°B.∠2﹣∠1=30°C.∠1=2∠2.D.∠1+2∠2=90°8.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH 的周长为()A.B.2C.+1D.2+19.(3分)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C'处,点B 落在点B'处,其中AB=9,BC=6,则FC′的长为()A.3B.4C.4.5D.510.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③B.②④C.②③④D.①③④二、填空题:(每小题3分.共24分)11.(3分)方程x(x﹣5)=2x的根是.12.(3分)等腰三角形两腰长分别为a,b,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为.13.(3分)关于x的方程(a﹣6)x2﹣8x+6=0有实数根,则整数a的最大值是.14.(3分)关于x的一元二次方程a(x+2)2+b=0的解是x1=﹣3,x2=﹣1,则方程a(x ﹣1)2+b=0的解是.15.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为度.16.(3分)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.17.(3分)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是.18.(3分)已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长∁n=.三、解答题(19题10分,20题12分,共22分)19.(10分)用适当的方法解下列方程:(1)3x2+4x﹣7=0;(2)x2+2x=1.20.(12分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.四、解答题(每题12分,共24分)21.(12分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.22.(12分)已知方程x2﹣(k+1)x﹣6=0是关于x的一元二次方程.(1)求证:对于任意实数k,方程总有两个不相等的实数根;(2)若方程的一个根是2,求k的值及方程的另一个根.五、解答题(12分)23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.六、解答题(12分)24.(12分)在丝绸博览会期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸条带.(1)若丝绸条带的面积为650cm2,求丝绸条带的宽度;(2)已知该工艺品的成本是40元/件,如果以单价为100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元时,当日所获利润为22500元.七、解答题(本题12分)25.(12分)已知:关于x的一元二次方程x2﹣(3m+1)x+2m2+m=0(1)求证:无论m取何值,这个方程总有实数根;(2)若△ABC的两边的长是这个方程的两个实数根,第三边的长为3,当△ABC为等腰三角形时,求m的值及△ABC的周长.八、解答题(本题14分)26.(14分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.2020-2021学年辽宁省铁岭市部分学校九年级(上)调研数学试卷(一)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=(2x+1)B.x+﹣2=0C.ax2+bx+c=0D.x2+2x=x2﹣1【解答】解:A、是关于x的一元二次方程,故此选项正确;B、是分式方程,故此选项错误;C、当a≠0,b、c为常数时,是一元二次方程,故此选项错误;D、是一元一次方程,故此选项错误;故选:A.2.(3分)用配方法解3x2﹣6x=6配方得()A.(x﹣1)2=3B.(x﹣2)2=3C.(x﹣3)2=3D.(x﹣4)2=3【解答】解:系数化为1,得x2﹣2x=2,配方,得(x﹣1)2=3,故选:A.3.(3分)已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1B.1C.5D.5或﹣1【解答】解:原方程变形得,(x2+y2)2+4(x2+y2)﹣5=0,(x2+y2+5)(x2+y2﹣1)=0,又∵x2+y2的值是非负数,∴x2+y2的值为只能是1.故选:B.4.(3分)若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a且a≠0B.a C.a D.a且a≠0【解答】解:根据题意得a≠0且Δ=12﹣4×a×(﹣1)≥0,解得a≥﹣且a≠0.故选:A.5.(3分)某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182【解答】解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.6.(3分)在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD【解答】解:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,∴A正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵∠A=90°,∴四边形ABCD是矩形,∴B正确;∵∠B+∠C=180°,∴AB∥DC,∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,∴C不正确;∵∠A=∠B=90°,∴∠A+∠B=180°,∴AD∥BC,如图所示:在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,∴四边形ABCD是平行四边形,又∵∠A=90°,∴四边形ABCD是矩形,∴D正确;故选:C.7.(3分)夹在两条平行线间的正方形ABCD、等边三角形DEF如图所示,顶点A、F分别在两条平行线上.若A、D、F在一条直线上,则∠1与∠2的数量关系是()A.∠1+∠2=60°B.∠2﹣∠1=30°C.∠1=2∠2.D.∠1+2∠2=90°【解答】解:∵夹在两条平行线间的正方形ABCD、等边三角形DEF如图所示,顶点A、F分别在两条平行线上,∴∠BAD=90°,∠DFE=60°,∵l1∥l2,A、D、F在一条直线上,∴∠1+∠BAD=∠2+∠DFE,即∠1+90°=∠2+60°,可得:∠2﹣∠1=30°,故选:B.8.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH 的周长为()A.B.2C.+1D.2+1【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.9.(3分)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C'处,点B 落在点B'处,其中AB=9,BC=6,则FC′的长为()A.3B.4C.4.5D.5【解答】解:∵将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C'处,∴CF=C'F,C'D=3设CF=FC'=x,则DF=9﹣x,在Rt△C'DF中,由勾股定理得:(9﹣x)2+32=x2,解得x=5,∴FC'=5,故选:D.10.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③B.②④C.②③④D.①③④【解答】解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形,∴③正确;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②③④正确,故选:C.二、填空题:(每小题3分.共24分)11.(3分)方程x(x﹣5)=2x的根是x1=0,x2=7.【解答】解:将方程x(x﹣5)=2x整理成一般式得:x2﹣7x=0,则x(x﹣7)=0,∴x=0或x﹣7=0,解得:x1=0,x2=7,故答案为:x1=0,x2=7.12.(3分)等腰三角形两腰长分别为a,b,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为10.【解答】解:∵等腰三角形两腰长分别为a、b,∴a=b.∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴Δ=(﹣6)2﹣4×1×(n﹣1)=40﹣4n=0,解得:n=10.故答案为:10.13.(3分)关于x的方程(a﹣6)x2﹣8x+6=0有实数根,则整数a的最大值是8.【解答】解:①若a=6,则方程有实数根,②若a≠6,则△≥0,∴64﹣4×(a﹣6)×6≥0,整理得:a≤,∴a的最大值为8.14.(3分)关于x的一元二次方程a(x+2)2+b=0的解是x1=﹣3,x2=﹣1,则方程a(x ﹣1)2+b=0的解是x1=0,x2=2.【解答】解:∵一元二次方程a(x+2)2+b=0的解是x1=﹣3,x2=﹣1,∴二次函数y=a(x+2)2+b与x轴的交点坐标是(﹣3,0)(﹣1,0),∴二次函数y=a(x﹣1)2+b与x轴的交点坐标是(0,0)(2,0),∴方程a(x﹣1)2+b=0的解是x1=0,x2=2,故答案为:x1=0,x2=2.15.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为32度.【解答】解:∵∠ABC=∠ADC=90°,∴点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=58°,∴∠DEB=116°,∵DE=BE=AC,∴∠EBD=∠EDB=32°,故答案为:32.16.(3分)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【解答】解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.17.(3分)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是.【解答】解:连接CP,∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB=5,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠ACB=90°,∴四边形EPFC是矩形,∴EF=CP,即EF表示C与边AB上任意一点的距离,根据垂线段最短,过C作CD⊥AB,当EF=DC最短,根据三角形面积公式得:AC×BC=AB×CD,∴CD=,故答案为:.18.(3分)已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长∁n=2n+1.【解答】解:∵∠MON=45°,∴△OA1B1是等腰直角三角形,∵OA1=1,∴正方形A1B1C1A2的边长为1,∵B1C1∥OA2,∴∠B2B1C1=∠MON=45°,∴△B1C1B2是等腰直角三角形,∴正方形A2B2C2A3的边长为:1+1=2,同理,第3个正方形A3B3C3A4的边长为:2+2=22,其周长为:4×22=24,第4个正方形A4B4C4A5的边长为:4+4=23,其周长为:4×23=25,第5个正方形A5B5C5A6的边长为:8+8=24,其周长为:4×24=26,则第n个正方形的周长∁n=2n+1.故答案为:2n+1.三、解答题(19题10分,20题12分,共22分)19.(10分)用适当的方法解下列方程:(1)3x2+4x﹣7=0;(2)x2+2x=1.【解答】解:(1)∵3x2+4x﹣7=0,∴(x﹣1)(3x+7)=0,则x﹣1=0或3x+7=0,解得x1=1,x2=﹣;(2)∵x2+2x=1,∴x2+2x+1=1+1,即(x+1)2=2,∴x+1=,∴x1=﹣1+,x2=﹣1﹣.20.(12分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴Δ=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.四、解答题(每题12分,共24分)21.(12分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∴AC=4,∴S菱形ABCD=AC•BD=4.22.(12分)已知方程x2﹣(k+1)x﹣6=0是关于x的一元二次方程.(1)求证:对于任意实数k,方程总有两个不相等的实数根;(2)若方程的一个根是2,求k的值及方程的另一个根.【解答】(1)证明∵Δ=(k+1)2﹣4×(﹣6)=(k+1)2+24>0,∴对于任意实数k,方程总有两个不相等的实数根;(2)解:设方程的另一个根为t,根据题意得2+t=k+1,2t=﹣6,所以t=﹣3,则2﹣3=k+1,解得k=﹣2,所以k的值为﹣2,方程的另一个根,为﹣3.五、解答题(12分)23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.六、解答题(12分)24.(12分)在丝绸博览会期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸条带.(1)若丝绸条带的面积为650cm2,求丝绸条带的宽度;(2)已知该工艺品的成本是40元/件,如果以单价为100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元时,当日所获利润为22500元.【解答】解:(1)设条带的宽度为xcm,根据题意,得(60﹣2x)(40﹣x)=60×40﹣650.整理,得x2﹣70x+325=0,解得x1=5,x2=65(舍去).答:丝绸条带的宽度为5cm.(2)设每件工艺品降价y元出售,由题意得:(100﹣y﹣40)(200+20y)﹣2000=22500.解得:y1=y2=25.所以售价为100﹣25=75(元).答:当售价定为75元时能达到利润22500元.七、解答题(本题12分)25.(12分)已知:关于x的一元二次方程x2﹣(3m+1)x+2m2+m=0(1)求证:无论m取何值,这个方程总有实数根;(2)若△ABC的两边的长是这个方程的两个实数根,第三边的长为3,当△ABC为等腰三角形时,求m的值及△ABC的周长.【解答】(1)证明:∵a=1,b=﹣(3m+1),c=2m2+m,∴Δ=[﹣(3m+1)]2﹣4(2m2+m)=m2+2m+1=(m+1)2≥0,∴无论m取何值,这个方程总有实数根;(2)解:设方程的两根为x1,x2.①当3为底边时,则两腰的长是方程的两根,∴Δ=(m+1)2=0,∴m=﹣1,∴x1+x2=3m+1=3×(﹣1)+1=﹣2<0,∴此种情况不合题意,舍去;②当3为腰时,把x=3代入方程x2﹣(3m+1)x+2m2+m=0得:9﹣3(3m+1)+2m2+m=0,解得m1=1,m2=3.当m=1时,x1+x2=3m+1=4,△ABC的周长为7;当m=3时,x1+x2=3m+1=10,此时腰长为3,底为7,∵3+3<7,∴此种情况不合题意,舍去.综上所述:m的值为1,△ABC的周长为7.八、解答题(本题14分)26.(14分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.。

北京市西城区九年级数学 学习·探究·诊断(上册)期末检测题

北京市西城区九年级数学 学习·探究·诊断(上册)期末检测题

期末检测题一、填空题1.已知a>2,则=-2)2(a______.2.计算=3______.-283.一元二次方程x2-2x-1=0的解是______.2=的解是______.4.一元二次方程xx21为如果掷一枚硬币150次,则着地时5.在掷一枚硬币的试验中,着地时反面向上的概率⋅2正面向上占______次.6.五张标有1,2,3,4,5的卡片,除数字外其他没有任何区别,现将它们背面朝上,从中任取一张得到卡片的数字为偶数的概率是______.7.如图,正方形ABCD内接于⊙O,点E在上,则∠BEC=______.7题图8.已知圆心角为120°,弧长为10πcm,则这个扇形的半径为______cm.9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP∶PB=1∶4,CD=8,则AB=______.9题图10.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后,与△ACP'重合,如果AP=3,那么PP'=______.10题图二、选择题11.已知xy >0,化简二次根式2xy x-的正确结果为( ).A .yB .y -C .y-D .y --12.代数式46+-x 的值( ).A .当x =0时最大B .当x =0时最小C .当x =-4时最大D .当x =-4时最小13.若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是( ).A .21<kB .21≤kC .21>kD .21≥k14.用配方法解关于x 的方程x 2+px +q =0时,此方程可变形为( ).A .44)2(22q pp x -=+ B .44)2(22pq px -=+C .44)2(22q pp x -=-D .44)2(22pq px -=-15.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( ). A .21 B .41 C .61 D .8116.从一副扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事件( ). A .可能发生 B .不可能发生 C .很可能发生 D .必然发生17.李刚同学设计了四种正多边形的瓷砖图案,如下图,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( ).A .①,②,④B .②,③,④C .①,③,④D .①,②,③18.一圆锥的底面半径是,25母线长为6,此圆锥侧面展开图扇形的圆心角的度数为( ).A .180°B .150°C .120°D .90°19.在下列图形中,既是中心对称图形又是轴对称图形的是( ).A .等腰三角形B .圆C .梯形D .平行四边形 20.如下图,ABCD 是一张矩形纸片,点O 为矩形对角线的交点,直线MN 经过点O 交AD 于M ,交BC 于N .20题图操作:先沿直线MN 剪开,并将直角梯形MNCD 绕O 点旋转180°后,恰好与直角梯形NMAB 完全重合,再将重合后的直角梯形MNCD 以直线MN 为轴翻转180°后所得的图形可能是( ).三、简答题21.不使用计算器,计算:⋅---+÷--)12(12222118122.已知一元二次方程x 2-4x +k =0有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.23.已知:如图,CA =CB =CD ,过三点A ,C ,D 的⊙O 交AB 于点F .求证:CF 平分∠BCD .24.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树形图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,价格如下图所示,恰好用10万元,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?25.某农户种植花生,原来种植的花生亩产量为200kg,出油率为50%(即每100kg花生可加工成花生油50kg),现在种植新品种花生后,每亩可收获的花生可加工成花生油1求新品种花生亩产量的增长132kg,其中花生出油率的增长率是亩产量的增长率的⋅2率.26.已知:如图,P是圆上的一动点,弦3AB,PC是∠APB的平分线,∠BAC=30°.=(1)当∠PAC等于多少度时,四边形P ACB有最大面积?最大面积是多少?(2)当∠PAC等于多少度时,四边形P ACB是梯形,说明你的理由.27.已知:如图,点P是正方形ABCD内的一点,连结P A,PB,PC.(1)如图甲,将△PAB绕点B顺时针旋转90°到△P′CB的位置.①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边P A所扫过区域(图甲中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC的长.(2)如图乙,若P A2+PC2=2PB2,请说明点P必在对角线AC上.答案与提示期末检测题1.a -2. 2..25 3..21,21-+4,.2,0 5.75. 6.⋅527.45°. 8.15.9.10. 10..2311.D . 12.C . 13.B . 14.A . 15.B . 16.D . 17.A . 18.B . 19.B . 20.D . 21..123-22.(1)∵方程有两个不相等的实数根,∴b 2-4ac =16 -4k >0, ∴k <4. (2)当k 取最大整数时,即k =3,这时方程为x 2-4x +3=0, ∴x 1=1,x 2=3. 当相同根为x =1时,有1+m -1=0,m =0, 当相同根为x =3时,有9+3m -1=0,,38-=m∴m 的值是0或⋅-3823.连结AD . ∵ CA =CD ,∴∠D =∠CAD .∵ ∠D =∠CFA , ∴ ∠CAD =∠CF A . ∵ ∠CFA =∠B +∠FCB ,∴ ∠CAF +∠FAD =∠B +∠FCB .∵ CA =CB , ∴∠CAF =∠B .∴∠F AD =∠FCB . ∵ ∠F AD =∠FCD ,∴∠FCB =∠FCD . ∴ CF 平分∠BCD .24.(1)有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2)因为选中A 型电脑有2种方案,即(A ,D ),(A ,E ),所以A 型电脑被选中的概率是⋅31(3)由(2)已知,当选用方案(A ,D )时,设购买A 型、D 型电脑分别为x ,y 台. 根据题意⎩⎨⎧=+=+.10000050006000,36y x y x 解得⎩⎨⎧=-=.116,80y x经检验不合题意舍去.当选方案(A ,E )时,设购买A 型号、E 型号电脑分别为x ,y 台. 根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑. 25.设新品种花生亩产量的增长率为x ,根据题意得.132)211%(50)1(200=+⨯+x x解得x 1=0.2,x 2=-3.2(舍去).答:新品种花生亩产量的增长率为20%. 26.(1)∵PC 是∠APB 的平分线,=.∴当PC 是圆的直径,即∠P AC =90°时,四边形P ACB 面积最大. 在Rt △PAC 中,∠APC =30°,,3===AB PB AP ∴PC =2..3212=⋅==∴∆AB PC S S ACP PACB四边形(2)①当∠PAC =120°时,四边形PACB 是梯形.∵PC 是∠APB 的平分线,∴∠APB =∠BPC =∠CAB =30°.∴∠APB =60°,∴∠PAC +∠APB =180°.∴AC //PB ,且AP 与BC 不平行,∴四边形PACB 是梯形. ②当∠PAC =60°时,四边形PACB 是梯形. ∵=,∴AC =BC .∵∠BAC =30°,∴∠ACB =120°.∴∠PAC +∠ACB =180°,∴BC //AP 且AC 与PB 不平行. ∴四边形PACB 是梯形.27.(1)①);(4π22b a S -=阴影②连结PP ′,证△PBP ′为等腰直角三角形,从而PC =6.(2)将△PAB 绕点B 顺时针旋转90°到△P ′CB 的位置,由勾股逆定理证出∠P ′CP =90°,再证∠BPC+∠APB=180°,即点P在对角线AC上.。

四川省青神县九年级数学诊断试题(一) 人教新课标版

四川省青神县九年级数学诊断试题(一) 人教新课标版

(全卷满分120分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共36分)一、选择题:(每小题都给出了四个答案,将其中只有一个是正确答案的代号填在后面的括号里,每小题3分,共36分).1.-3的倒数为()A .3 B.13C.-13D.-32.下列计算正确的是()A.222a b a b()B.222()2a b a ab bC.22(2)(2)2a b a b a b D.222()2a b a ab b3.函数21xyx中自变量x的取值范围()A.x≥-2 B.x≥-2且x≠1C.x≠1D.x≠-2且x≠14.我国以2010年11月1日零时为标准时间进行了第六次全国人口普查,普查得到全国总人口为1370536875人,该数用科学记数法表示为(保留3个有效数字)()A.13.7亿B.13.7×108C.1.37×109D.1.4×1095.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57°B.60°C.63°D.123°6.如图是由几个小方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()7.计算211(-1)1-mmm+÷⨯的结果是()A.221m m B.21mC.2--2-1m m D.221m m8.如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()A.3 B.4C.6 D.89.某市2011年5月1日—10日对空气污染指数的检测数据如下(主要污染物为可汲入颗粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别得分评卷人是( )A .36,86B .36,78C .20,78D .20,77.3 10.关于x 的方程2(5)410a x x 有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5 11.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于( )A .20°B .30°C .40°D .50° 12.如图,在平面直角坐标系中,矩形ABCD 的中心在原点,顶点A 、C 在反比例函数k y x 的图象上,AB∥y 轴,AD∥x 轴,若矩形 ABCD 的面积为8,则k 等于( )A .2B .-2C .-4D .4第Ⅱ卷(非选择题,共64分)二、填空题:本大题共6个小题,每小题3分,共18分.将正确答案直接填在题中横线上. 13.因式分解:223(2)3m x y mn __________________.14.某校为了了解本校八年级学生课外阅读的喜好,随机抽机该校八年级部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了 __________名学生;.(2)在扇形统计图中,“其他”所在扇形圆心角等于_______度;(3)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是_______人.15.如图,在△ABC 和△BAD 中,BC =AD ,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是____________________(只填一个).16.如图,点A 、B 、C 在直径为23 的⊙O 上,∠BAC=45°,则图中阴得分评卷人影的面积等于____________(结果中保留π).17.已知1x ,2x 是一元二次方程2630x x 的两个实数根,则2112x x x x 的值为______________. 18.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 车上,如果矩形OA B C '''与矩形OABC 关于点O 位似,且矩形OA B C '''的面积等于矩形OABC 的面积的14,那么点' 的坐标是___________. 三、本大题共2个小题,每小题6分,共12分.19.计算:201130001(1)()(πcos30)338sin 60322---+-+-+-20.已知 120a b ,求关于x 的方程1a bx x的解.四:本大题共2个小题,每小题8分,共16分.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1;(2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2; (3)△A B C '''与△ABC 是中心对称图形,请写出对称中心的坐标:_________;得分评卷人 得分 评卷人(4)顺次连接C 、C 1、C 、C 2,所得到的图形是轴对称图形吗?22.图①为已建设封顶的16层楼房和其塔吊图,图②为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m ,每层楼高3.5m ,AE 、BF 、CH 都垂直于地面,EF =16m ,求塔吊的高CH 的长.五、本大题共2个小题,每小题9分,共18分.23.2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一菜调查了________名司机;(2)求图①中④所在的扇形圆心角,并补全图②;(3)在本次调查中,记者随机采访其中的一名司机,求他属第②种情况的概率;(4)请估计开车的10万名司机中,不违反“酒驾”禁令的人数.得分评卷人24.在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/㎡下降到5月份的12600元/㎡.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:0.9≈0.95) (2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/㎡?请说明理由.B 卷(共20分)一、本大题共1个小题,共9分.25.如图,在 ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD. (1)求证:△ABF~△CEB;(2)若△DEF 的面积为2,求 ABCD 的面积.二、本大题共1个小题,共11分. 26.如图,在平面直角坐标系中,二次函数2(y ax bx c a >0)的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=13. (1)求这个二次函数的表达式;(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这们的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由;得分评卷人 得分评卷人(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.2012级中考诊断试题(数学)(一)评分标准及评分意见一、C D B C A D A A B A C B二、13.3m(2x-y+n)(2x-y-n) 14.20,36,180; 15.略 16.3π342; 17.10;18.(3、2)或(―3,―2)四、21.(1)3分(2)6分(3)8分24.B卷一、25.二、。

第一学期初三教学质量诊断性检数学试卷

第一学期初三教学质量诊断性检数学试卷

第一学期初三教课质量诊疗性检测数学试卷说明:考试时间 120分钟,满分 125分(包含 5分卷面分)。

一、精心选一选(此题共 13小题,在每题所给出的四个选项中,只有一个是正确的,每小题 3分,计 39分) 1.以下计算错误的选项是A .2 3 6B .C .6 7 7 77D .2.关于分式1的变形永久都建立的是x 11 222(67)26 71 21 x 1A .1 x 2B .1 x 21xx1x 111 C . 1 ( x 1)2D .1 x1xx3.在二次根式18 , 108 , 2 ,3中,能与 3 进行归并的有3 4A .4个B . 3个C . 2个D . 1个 4.以以下图:① BE ∥ DC ,②∠ AED =∠ B ,③正方形 EFGB 的极点在正方形 ABCD 的对角线BD 上,④点 F 在 AC 上, GF ∥ DC ,EF ∥ BC 。

此中没有位似图形的一项为哪一项A .①④B .②C .①②④D .②④5.252 72 化简的结果是27A .86B .83C .46D .8339336.以下命题是真命题的是A .假如a为实数,那么a0B.一个三角形中起码有两个锐角C.假如与互余,与互余,那么与也互余a 2D.假如分式的值为零,那么 a 2a 27.某校初三社会检查小组对我区城区内一个社区居民的家庭经济状况进行了检查。

检查的结果是:该社区共有400户,高收入、中等收入和低收入家庭分别有100户、 220户和 80 户。

已知我区共有20万户家庭,以下表述正确的选项是A .我区高收入家庭约5万户B.我区中等收入家庭约11万户C.我区低收入家庭约4万户D.因城区社区家庭经济状况较好,因此不可以据此数据预计全区全部家庭经济状况8.以以下图,以下推论及所注原因正确的选项是A .∵∠ 1=∠B ,∴ DE∥ BC (两直线平行,同位角相等)B.∵∠ 2=∠ C,∴ DE∥ BC (两直线平行,内错角相等)C.∵∠ 2+∠ 3+∠ B=180°,∴ DE ∥ BC (同旁内角互补,两直线平行)D.∵∠ 4=∠ 1,∴ DE∥ BC (对顶角相等)9.为了认识某校八年级学生的体能状况,随即抽查了八(一)班全部学生,测试一分钟仰卧起坐的次数,并由此绘制成以以下图所示的频数散布直方图。

九年级上数学学情调研1答案

九年级上数学学情调研1答案

九年级上数学学情调研1答案一、选择题(每小题3分,共10个小题,共30分)1.C .2.D .3.A .4.C .5.B .6.B .7.A .8.B .9.D .10.B .二、填空题(每小题3分,共5个小题,满分15分)11.1,021-==x x 12.113.14.15.4或9三、解答题(共8个小题,满分75分)16.(12分)(1)4,621-==x x (2)52,5221-=+=x x (3)方程无实数根(4)1,221=-=x x 17.(8分)(1)统计表中的a =5;圆心角为144度....................................2分(2)阅读时间在40≤x <60范围内的数据的众数是40根据调查结果,请你估计全校600名同学课外阅读时间不少于40min 的人数有360人....................................4分(3)A 等级学生中只有一名男生,从A 等级学生中选两名学生对全校学生作读书的收获和体会的报告,用列举法或树状图法求恰好选择一名男生和一名女生的概率.(3)样本中A 等级学生人数b =20﹣3﹣5﹣8=4(人),即1男2女,从这4人随机选取2人,所有等可能出现的结果如下:共有12种等可能出现的结果,其中1男1女的有6种,所以恰好选择一名男生和一名女生的概率为=....................................8分18.(8分)(1)证明:由于x 2﹣(k +2)x +2k ﹣1=0是一元二次方程,Δ=b 2﹣4ac =[﹣(k +2)]2﹣4×1×(2k ﹣1)=k 2﹣4k +8=(k ﹣2)2+4,无论k 取何实数,总有(k ﹣2)2≥0,(k ﹣2)2+4>0,所以方程总有两个不相等的实数根................................................4分(2)解:把x =3代入方程x 2﹣(k +2)x +2k ﹣1=0,有32﹣3(k +2)+2k ﹣1=0,整理,得2﹣k =0.解得k =2,此时方程可化为x2﹣4x+3=0.解此方程,得x1=1,x2=3.所以方程的另一根为x=1....................................................8分19.(8分)解:(1)如图,直线MN就是线段BD的垂直平分线,...................................................3分(2)四边形BEDF是菱形,理由如下:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∵∠BEF=∠BFE,∴BE=BF,∴BF=DF,∴BE=ED=DF=BF,∴四边形BEDF是菱形;...................................................8分20.(10分)(1)证明:小星:连接BE,∵AE∥BD,DE∥BA,∴四边形ABDE是平行四边形,∴AE=BD,∵BD =BC ,∴AE =BC ,∵AE ∥BC ,∴四边形AEBC 是平行四边形,∵∠C =90°,∴四边形AEBC 是矩形,∴∠EBC =90°,∴BE ⊥CD ;小红:连接CE ,∵AE ∥BD ,DE ∥BA ,∴四边形ABDE 是平行四边形,∴AE =BD ,AB =DE ,∵BD =BC ,∴AE =BC ,∵AE ∥BC ,∴四边形AEBC 是平行四边形,∵∠C =90°,∴四边形AEBC 是矩形,∴AB =CE ,∴DE =CE ;...................................................4分(2)BF ∥DE ,BF=21DE.理由如下:∵四边形AEBC 是矩形,∴CF =EF ,∵BD =BC ,∴BF 是 CDE 的中位线∴BF ∥DE ,BF=21DE.....................................8分21.(10分)解:(1)设该款吉祥物4月份到6月份销售量的月平均增长率为x ,根据题意得:256(1+x )2=400,解得:x 1=0.25=25%,x 2=﹣2.25(不符合题意,舍去).答:该款吉祥物4月份到6月份销售量的月平均增长率为25%;..................................4分(2)设该吉祥物售价为y 元,则每件的销售利润为(y ﹣35)元,月销售量为400+20(58﹣y )=(1560﹣20y )件,根据题意得:(y ﹣35)(1560﹣20y )=8400,整理得:y 2﹣113y +3150=0,解得:y 1=50,y 2=63(不符合题意,舍去).答:该款吉祥物售价为50元时,月销售利润达8400元.........................................10分22.(10分)解:(1)6,12...............................................2分(2)∵△ABC 是等边三角形,∴AB =BC =12cm ,∠A =∠B =∠C =60°,当∠PQB =90°时,∴∠BPQ =30°,∴BP =2BQ .∵BP =12﹣x ,BQ =2x ,∴12﹣x =2×2x ,解得x =,当∠QPB =90°时,∴∠PQB =30°,∴BQ =2PB ,∴2x =2(12﹣x ),解得x =6.答:6秒或秒时,△BPQ 是直角三角形;.............................................6分(2)作QD ⊥AB 于D ,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,∴=10,解得x1=10,x2=2,∵x=10时,2x>12,故舍去,∴x=2.答:经过2秒△BPQ的面积等于10cm2...............................................10分23.(11分)解:(1)正方形;..............................................2分(2)如图2作EG⊥AD于G,∵∠BAD=90°,∠BAE=45°,∴∠EAG=45°,∴∠AEG=90°﹣∠EAG=45°,∴∠AEG=∠EAG,∴AG=EG,∵EG2+AG2=AE2,∴2EG 2=42,∴EG =22,∴S △ADE =2522521EG AD 21=⨯⨯=∙;..............................................9分(3)BF =2或8...............................................11分。

九年级第一次诊断性考试数学试题

九年级第一次诊断性考试数学试题

九年级第一次诊断性考试数学试题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-5的倒数是 A . 15-B .15 C . 5- D . 52.对右图的对称性表述,正确的是A .轴对称图形B .中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形又不是中心对称图形3.绵阳市统计局发布2014年一季度全市完成GDP 共317亿元,居全省第二位,将这一数据用科学记数法表示为:A .31.7×109元;B .3.17×1010元;C .3.17×1011元;D .31.7×1010元。

4.如图,几何体上半部为正三梭柱,下半部为圆柱,其俯视图是( ).A .B .C .D .5.下列运算正确的是A .a + a 2 = a 3B .2a + 3b = 5abC .(a 3)2 = a 9D .a 3÷a 2 = a 6.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.三台县鲁班湖某船家有3艘大船与6艘小船,一次可以载游客的人数为A .129B .120C .108D .96 7.要使1213-+-x x 有意义,则x 应满足A .21≤x ≤3 B .x ≤3且x ≠21C .21<x <3 D .21<x ≤38.张大娘为了提高家庭收入,买来10头小猪.经过精心饲养,不到7个月就可以出售了,下表为10头猪出售时的体重:则这10头猪体重的平均数和中位数分别是A .126.8,126B .128.6,126C .128.6,135D .126.8,135 9.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为 A .94 B .95 C .32 D .9710.如图,已知 AC 、BD 相交于O ,且AD//BC ,G 是BD 的中点.若AD = 3,BC = 9,则GO : BG =A .1 : 2B .1 : 3C .2 : 3D .11 : 2011.如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =A .29B .30C .31D .3212.在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是A .①④⑤B .③④⑤C .①③④D .①②③CEBAFD(第12题)二、填空题:本大题共6个小题,每小题3分,共18分.将答案直接填写在题中横线上. 13.请你写出一个既要运用平方差公式又要用提取公因式法分解因式的多项式,你写的 多项式是 (写出一个即可)14.如图,AB ∥CD ,∠A = 60︒,∠C = 25︒,G 、H 分别为CF 、CE 的中点,则∠1 = .15.已知菱形ABCD 的两条对角线相交于点O ,若AB = 6,∠BDC = 30︒, 则菱形的面积为 .16.如图,点P 在双曲线(0)ky k x=≠的一支上,点(12)P ',与点P 关于y 轴对称,则这支曲线的解析式为. 17.若m 是方程错误!未找到引用源。

北京市西城区九年级数学学习探究诊断(上册)概率初步

北京市西城区九年级数学学习探究诊断(上册)概率初步

第二十五章概率初步测试1 随机事件学习要求了解随机事件的意义,会判断必然事件、不可能事件和随机事件,知道不同随机事件发生的可能性.课堂学习检测一、填空题1.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a,b为实数,那么a+b =b+a;⑿抛掷一枚图钉,钉尖朝上.确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)二、选择题2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生三、解答题6.“有位从不买彩票的人,在别人的劝说下用2元买了一随机号码,居然中了500万”,你认为这样的事情可能发生吗?请简述理由.综合、运用、诊断7.一张写有密码的纸片被随意地埋在如图所示的矩形区域内,图中的四个正方形大小一样,则纸片埋在几号区域的可能性最大?为什么?8.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?9.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?拓广、探究、思考10.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.测试2 概率的意义学习要求理解概率的意义;对于大量重复试验,会用事件的频率来估计事件的概率.课堂学习检测一、填空题1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______. 二、选择题4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .95 三、解答题6投篮次数n 8 10 12 9 16 10 进球次数m 6 8 9 7 12 7 进球频率nm(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?综合、运用、诊断7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元)奖金/万元 50 15 8 4 … 数量/个202020180…如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个 D .15个11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21 B .31 C .51 D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13出生年份 出生数 共计n =m 1+m 2出生频率男孩m 1 女孩m 2 男孩P 1女孩P 21996 52807 49473 102280 1997 51365 47733 99098 1998 49698 46758 96456 1999 49654 46218 95872 2000 48243 45223 93466 5年共计251767235405487172完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.拓广、探究、思考15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).测试3 用列举法求概率(一)学习要求会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.课堂学习检测一、填空题1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.3.某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(如图所示),转盘可以自由转动,参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品.则获得钢笔的概率为______,获得______的概率大.4.一副扑克牌有54张,任意从中抽一张. (1)抽到大王的概率为______;(2)抽到A 的概率为______; (3)抽到红桃的概率为______;(4)抽到红牌的概率为______;(红桃或方块) (5)抽到红牌或黑牌的概率为______. 二、选择题5.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ).A .1B .21 C .31 D .41 6.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ). A .61 B .41 C .31 D .21 7.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ). A .54 B .53 C .52 D .51 三、解答题8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢?9.小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?综合、运用、诊断一、填空题10.袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是______. 11.有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概率为______.12.有7条线段,长度分别为2,4,6,8,10,12,14,从中任取三条,能构成三角形的概率是______. 二、选择题13.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( ).A .32B .21 C .31D .6114.从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( ).A .31B .21C .53D .3215.柜子里有两双不同的鞋,取出两只刚好配一双鞋的概率是( ).A .21 B .31 C .41 D .61 16.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ).A .4个B .3个C .2个D .1个 三、解答题17.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法? (2)其中甲排在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?18.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?拓广、探究、思考19.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?20.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是,21摸到白球的概率是,31摸到黄球的概率是;61(2)摸到白球的概率是,41摸到红球和黄球的概率都是 83测试4 用列举法求概率(二)学习要求能运用列表法和树状图法计算一些事件发生的概率.课堂学习检测一、选择题 1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118 C .1411 D .1432.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1B .101 C .1001 D .10001二、解答题3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么: (1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.综合、运用、诊断一、填空题 8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支. 二、选择题12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31B .41C .51D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ). A .51 B .52 C .53 D .54 三、解答题14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球51个,任意摸出1个绿球的概率是3求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.拓广、探究、思考15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______.16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1)奇数点朝上的概率为;3(2)大于6的点数与小于3的点数朝上的概率相同.测试5 利用频率估计概率(一)学习要求会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:抽取球数n50 100 500 1000 5000优等品数m45 92 455 890 4500m优等品频率n8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机总条数50 45 60 48 10 30 42 38 15 10标记数 2 1 3 2 0 1 1 2 0 1总条数53 36 27 34 43 26 18 22 25 47标记数 2 1 2 1 2 1 1 2 1 2(1)估计池塘中鱼的总数.根据这种方法估算是否准确? (2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.测试6 利用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测一、填空题1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______. 二、选择题5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361B .181C .61D .21 6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )A .8000条B .4000条C .2000条D .1000条 三、解答题7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率nm 0.580.640.580.590.6050.601(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法. 8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.综合、运用、诊断一、填空题9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______. 二、解答题 11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,掷子次数 50次 150次 300次 石子落在⊙O 内 (含⊙O 上)的次数m 14 43 93 石子落在图形内的次数n1985186你能否求出封闭图形ABC 的面积?试试看.13.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?拓广、探究、思考14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;(3)敌国的士气不振.因此,他向本国发回消息:“敌国已基本失去战斗力”.你认为这名间谍的消息正确吗?。

九年级数学学习探究诊断(上册)

九年级数学学习探究诊断(上册)

第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( )(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程 23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______. 21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________.二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b a x a b x 2,221==B .ba x ab x ==21, C .0,2221=+=x abb a x D .以上都不正确 三、解下列方程24.(x +1)2+(x +2)2=(x +3)2.25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx y x +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

九年级数学上学期第一次诊断性检测试题 试题

九年级数学上学期第一次诊断性检测试题  试题

卜人入州八九几市潮王学校博山区第HY 学2021届九年级数学上学期第一次诊断性检测试题一、填空题〔每空3分,一共39分〕:1、等腰梯形有一个底角是700,那么另外三个角的度数分别为。

2、有一组数据15,23,12,25,17,18。

这组数据的极差是。

3、假设分式612+-x x 有意义,那么x 。

4、假设反比例函数x k y =的图象过点〔2,-3〕,那么k =.5、一直角三角形的两条直角边分别为6㎝,8㎝,那么斜边上的中线长是。

6、梯形上底长2,下底长5,一腰长为4,那么另一腰x 的取值范围是。

7、在菱形ABCD 中,∠B=700,对角线AC 、BD 相交于O ,那么∠OCD=。

8、数据15,16,16,14,14,15的方差是。

9、在△ABC 中,∠ACB=900,AB=6㎝,那么以AC 、BC 为直径的两个半圆的面积的和为。

O ,假设AB=6,AD=8P 向x 轴做垂线,垂足为A ,连PO 得△POA ,假设S △POA =3,那么这反比例函数的解析式是。

13、在矩形ABCD 中,AB=3,AD=4,P 是AD上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,那么PE +PF 的值是。

二、选择题〔每一小题4分,一共40分〕:1、以下说法错误的选项是〔〕A 、平行四边形的对角线互相平分B 、对角线互相平分的四边形是平行四边形C 、菱形的对角线互相垂直D 、对角线互相垂直的四边形是菱形2、甲、乙两人各打靶5次,甲所中的环数是8,7,9,7,9;乙所中的环数的平均数是8=乙x ,方差5.02=乙s ,那么对甲、乙射击成绩正确判断是〔〕A 、乙的射击成绩较稳定B 、甲的射击成绩较稳定C 、甲、乙的射击成绩稳定性一样D 、甲、乙的成绩无法比较3、y 与x 成反比例,当x=3时,y=4,那么当y=3时,x 的值等于〔〕A 、4B 、-4C 、3D 、-34、直角三角形的三边长分别为2,4,x ,那么x 的可能值为〔〕A 、1个B 、2个C 、3个D 、4个5、关于x 的方程221-=--x m x x 无解,那么m 的值是〔〕 A 、-1 B 、0C 、1D 、2 6、一组数据54321,,,,x x x x x 的平均数是2,方差是31,那么数 据,23,2321--x x 23,23,23543---x x x 的平均数和方差分别为 〔〕A 、4,3B 、4,21C 、2,1D 、2,31 7、假设点A 〔-1,y 1〕,B(2,y 2),C 〔3,y 3〕都在反比例函数x y 5=的图象上,那么以下关系式正确的选项是〔〕A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 28、菱形的一个内角为1200,边长为2㎝,那么菱形的面积为〔〕 A 、23㎝2B 、43㎝2 C 、25㎝2 D 、4㎝210、一架25dm 的梯子,斜立在一竖直的墙上,这时梯足间隔墙底端7dm ,假设梯子的顶端沿墙下滑4dm ,那么梯足将滑动〔〕A 、4dmB 、9dmC 、15dmD 、8dm 三、计算〔一共6分〕:1.21422---a a a 2.⎪⎪⎭⎫ ⎝⎛-b a 2÷2⎪⎭⎫ ⎝⎛b a四、解方程〔一共6分〕:1.x x 321=- 2.22121--=--xx x 五、〔4分〕菱形的一边长为10,两条对角线之比为3:4,求这个菱形的面积。

北京市海淀区交通大学附属中学2022一2023学年九年级上学期9月学习诊断一数学 试卷

北京市海淀区交通大学附属中学2022一2023学年九年级上学期9月学习诊断一数学 试卷

2022—2023学年度第一学期9月学习诊断—初三数学一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一.个.是符合题意的. 1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是( ) A .3,6,1B .3,6,-1C .3,-6,1D .3,-6,-12.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为( ) A .21y x =+B .21y x =-C .21y x =-+D .21y x =--3.如图,在正方形网格中,MPN △绕某一点旋转某一角度得到M P N '''△,则旋转中心可能是( )A .点AB .点BC .点CD .点D4.用配方法解方程2420x x -+=,配方正确的是( ) A .()222x -=B .()222x +=C .()222x -=-D .()226x -=5.已知抛物线22y x x =+经过点()14,y -,()21,y ,则1y 与2y 的大小关系为( ) A .12y y =B .12y y <C .12y y >D .无法确定6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n ︒后能与原来的图案重合,那么n 的值可能是( )A .45B .60C .90D .1207.已知抛物线2y ax bx c =++,其中0ab <,0c >.下列说法正确的是( ) A .该抛物线经过原点B .该抛物线的顶点可能在第一象限C .该抛物线的对称轴在y 轴左侧D .该抛物线与x 轴必有公共点8.如图,在ABC △中,90C ∠=︒,5AC =,10BC =.动点M ,N 分别从A ,C 两点同时出发,点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动,点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t ,点M ,C 之间的距离为y ,MCN △的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .正比例函数关系,二次函数关系C .一次函数关系,正比例函数关系D .一次函数关系,二次函数关系二、填空题(本题共16分,每小题2分) 9.一元二次方程22x x =的解为______.10.写出一个图象开口向上,过点()0,1的二次函数的表达式:______.11.若关于x 的一元二次方程22(2)240a x x a -++-=有一个根为0,则a 的值为______.12.如图,矩形ABCD 中,3AB =,4BC =.以点A 为中心,将矩形ABCD 旋转得到矩形AB C D ''',使得点B '落在边AD 上,则此时DB '的长为______.13.南宋数学家杨辉在《田亩比类乘除算法》中提出一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”译文:“矩形面积是864平方步,宽比长少12步,求长、宽分别是多少步?”设矩形的长为x 步,可列方程为______.14.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++的对称轴为直线2x =,与x 轴的一个交点为()1,0,则关于x 的方程20ax bx c ++=的解为______.15.抛物线223y ax ax =--与x 轴交于两点,分别是(),0m ,(),0n ,则m n +的值为______.16.若抛物线22y x mx n =-++与x 轴交于A ,B 两点,其顶点C 到x 轴距离是8,则线段AB 的长为______.三、解答题(本题共68分,第17题10分,第18题3分,第19题~25题,每小题5分,第26题6分,27~28题,每小题7分)17.解方程:(1)()2130x --=(2)2430x x -+=18.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为()0,2,()1,0-,将AOB △绕点O 顺时针旋转90︒得到11AOB △.(1)画出11AOB △;(2)直接写出点1A 和点1B 的坐标.19.如图,等边三角形ABC 的边长为3,点D 是线段BC 上的点,2CD =,以AD 为边作等边三角形ADE ,连接CE .求CE 的长.20.已知m 是方程2310x x -+=的一个根,求()()()2322m m m -++-的值.21.二次函数()20y ax bx c a =++≠图象上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -4 -3 -2 -1 0 1 2 … y…52-32 23252-…(1)求这个二次函数的表达式; (2)在上图中画出此二次函数的图象;(3)结合图象,直接写出当0y >时,自变量x 的取值范围.(4)当抛物线2y ax bx c =++的顶点在直线y x n =+的下方时,n 的取值范围是______.22.如图,四边形ABCD 是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG 的形状,其中点E 在AB 边上,点G 在AD 的延长线上,2DG BE =.设BE 的长为x 米,改造后苗圃AEFG 的面积为y 平方米.(1)y 与x 之间的函数关系式为____________(不需要写出自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等,请问此时BE 的长为多少米?23.关于x 的一元二次方程222(1)10x m x m +-+-=有两个不相等的实数根1x ,2x . (1)求实数m 的取值范围;(2)是否存在实数m ,使得120x x =成立?如果存在,求出m 的值;如果不存在,请说明理由. 24.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形; (2)若5AB =2BD =,求OE 的长.25.小明进行铅球训练,他尝试利用数学模型来研究铅球的运动情况.他以水平方向为x 轴方向,1m 为单位长度,建立了如图所示的平面直角坐标系,铅球从y 轴上的A 点出手,运动路径可看作抛物线,在B 点处达到最高..位置,落在x 轴上的点C 处.小明某次试投时的数据如图所示.(1)在图中画出铅球运动路径的示意图;(2)根据图中信息,求出铅球路径所在抛物线的表达式(不需要写出自变量的取值范围);(3)若铅球投掷距离(铅球落地点C 与出手点A 的水平距离OC 的长度)不小于10m ,成绩为优秀.请通过计算,判断小明此次试投的成绩是否能达到优秀.26.在平面直角坐标系xOy 中,抛物线2y ax bx c =++经过点()0,2-,()2,2-.(1)直接写出c 的值和此抛物线的对称轴;(2)若此抛物线与直线6y =-没有公共点,求a 的取值范围;(3)点()1,t y ,()21,t y +在此抛物线上,且当24t -≤≤时,都有2172y y -<,直接写出a 的取值范围. 27.如图,已知()090MON αα∠=︒<<︒,OP 是MON ∠的平分线,A ,B 分别在OP ,OM 上,且AB ON ∥.以点A 为中心,将线段AO 旋转到AC 处,使点O 的对应点C 恰好在射线BM 上,在射线ON上取一点D ,使得180BAD α∠=︒-.(1)①依题意补全图; ②求证:OC OD AD =+;(2)连接CD ,若CD OD =,求α的度数,并直接写出ADOD的值.28.点P 到AOB ∠的距离定义如下:点Q 为AOB ∠的两边上的动点,当PQ 最小时,我们称此时PQ 的长度为点P 到AOB ∠的距离,记为(),d P AOB ∠.特别的,当点P 在AOB ∠的边上时,(),0d P AOB ∠=. 在平面直角坐标系xOy 中,()4,0A .(1)如图1,若()0,2M ,()1,0N -,则(),d M AOB ∠=______,(),d N AOB ∠=______; (2)在正方形OABC 中,点()4,4B .①如图2,若点P 在直线34y x =+上,且(),22d P AOB ∠=P 的坐标;②将抛物线24y x =-+向下平移()0k k ≥个单位长度后得到的新抛物线记作图象W ,若点P 在图象W 上,且满足(),22d P AOB ∠=P 有且只有两个,请直接写出k 的取值范围.2022-2023学年度第一期9月学习诊断初三数学答案一、选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 答案DABACDBD二、填空题(本题共16分,每小题2分)9.10x =,22x = 10.答案不唯一,例如21y x =+ 11.-2 12.1 13.()12864x x -= 14.11x =,23x = 15.2 16.4 三、解答题(本题共68分)17.(1)解:()213x -=,13x -=,13x =±113x =213x =(2)解法一:解:2441x x -+=,()221x -=,21x -=±,11x =,23x =.解法二:解:()()130x x --=,10x -=或30x -=,11x =,23x =. 18.(1)如图.(2)()12,0A ,()10,1B .19.解:∵ABC △是等边三角形,∴AB BC AC ==,60BAC ∠=︒.∴1360∠+∠=︒. ∵ADE △是等边三角形,∴AD AE =,60DAE ∠=︒. ∴2360∠+∠=︒.∴12∠=∠.在ABD △与ACE △中,12AB ACAD AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ACE ≌△△.∴CE BD =.∵3BC =,2CD =,∴1BD BC CD =-=.∴1CE =.20.解:∵m 是方程2310x x -+=的一个根,∴2310m m -+=.∴231m m -=-.∴原式()2226942353m m m m m =-++-=-+=.21.(1)解法一:由题意,设二次函数的表达式为()212y a x =++.∵二次函数经过点()1,0,∴420a +=.∴12a =-. ∴二次函数的表达式为21(1)22y x =-++.即21322y x x =--+.解法二:由题意,设二次函数的表达式为()()31y a x x =+-.∵二次函数经过点()1,2-,∴42a -=.∴12a =-. ∴二次函数的表达式为1(3)(1)2y x x =-+-.即21322y x x =--+.(2)如图.(3)31x -<<. (4)3n >.22.解:(1)22416y x x =-++(或()()442y x x =-+)(2)由题意,原正方形苗圃的面积为16平方米,得2241616x x -++=. 解得:12x =,20x =(不合题意,舍去). 答:此时BE 的长为2米.23.解:(1)∵方程222(1)10x m x m +-+-=有两个不相等的实数根, ∴()224(1)41880m m m ∆=---=-+>,∴1m <. (2)存在实数m 使得120x x =.120x x =,即是说0是原方程的一个根,则210m -=.解得:1m =-或1m =.当1m =时,方程为20x =,有两个相等的实数根,与题意不符,舍去.∴1m =-.24.(1)证明:∵AB CD ∥,∴CAB ACD ∠=∠,∵AC 平分BAD ∠,∴CAB CAD ∠=∠,∴CAD ACD ∠=∠, ∴AD CD =,又∵AD AB =,∴AB CD =, 又∵AB CD ∥,∴四边形ABCD 是平行四边形, 又∵AB AD =,∴ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O . ∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==,∴112OB BD ==. 在Rt AOB △中,90AOB ∠=︒.∴222OA AB OB -=.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC △中,90AEC ∠=︒.O 为AC 中点.∴122OE AC OA ===. 25.解:(1)如图所示.(2)解:依题意,抛物线的顶点B 的坐标为()4,3,点A 的坐标为()0,2. 设该抛物线的表达式为()243y a x =-+. 由抛物线过点A ,有1632a +=.解得116a =-. ∴该抛物线的表达式为21(4)316y x =--+. (3)解:令0y =,得21(4)3016x --+=. 解得1443x =+2443x =-C 在x 正半轴,故舍去). ∴点C 的坐标为()443,0+.∴443OC =+332>,可得344102OC >+⨯=.∴小明此次试投的成绩达到优秀. 26.解:(1)2c =-,对称轴为1x =.(2)当0a >时,∵此抛物线与直线6y =-没有公共点,∴此抛物线顶点的纵坐标大于-6. ∵抛物线的对称轴为1x =,∴12ba-=,即2b a =-. ∵当1x =时,2222y ax ax a =--=--, ∴26a -->-,解得4a <.∴04a <<.当0a <时,此抛物线与直线6y =-一定有公共点,不符合题意.综上,04a <<.(3)102a -<<或102a <<. 27.(1)①补全图形,如图.②证明:∵OP 平分MON ∠,MON α∠=,∴1122AOC AON MON α∠=∠=∠=. ∵AB ON ∥,∴BAO AON ∠=∠.∴BAO AOC ∠=∠.∴AB BO =.∵由旋转,AO AC =,∴12AOC ACO α∠=∠=.∴ACO AON ∠=∠,180OAC α∠=︒-.∵180BAD α∠=︒-,∴OAC BAD ∠=∠.∴BAC DAO ∠=∠. ∴ABC ADO ≌△△.∴AB AD =,CB OD =.∴BO AD =. ∵OC CB BO =+,∴OC OD AD =+.(2)如图所示,∵AB ON ∥,∴180BAD ADO ∠+∠=︒. ∵180BAD α∠=︒-,∴ADO α∠=.∵AC AO =,CD OD =,AD AD =,∴ADC ADO ≌△△.∴12DCA DOA α∠=∠=,CDA ODA α∠=∠=. ∵在CDO △中,180OCD CDO DOC ∠+∠+∠=︒,∴4180α=︒.∴45α=︒.此时,ADOD21.28.(1)1;1.(说明:每空1分)(2)①如图,点P 在EF 上时,22OP =设(),34P x x +,()22348x x ++=,12x =-,225x =-(舍),()2,2P --, 点P 在射线FG 上时,P 到射线OB 的距离为22 点P 与点C 重合,()0,4P ,∴()2,2P --,()0,4. ②14224k <<+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式acb b 42-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( )(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等 D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D .17.(1)π-3.14;(2)-9;(3);23(4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 2638..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);x xy(5) ;36(6);223 (7);32+x x (8)630.2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1(8.⋅y yx x x 55)4(;66)3(;2)2(;55)1(9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x b ab+13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅8279..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-42341117..321b a + 18.0.19.原式,32y x+=代入得2. 20.1.21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

相关文档
最新文档