造桥选址问题最短路径.4-造桥选址问题-最短路径(2)课件.pptx
合集下载
最短路径问题PPT课件
A
·
C′ C
B
·
l
B′
问题1 归纳
B A
l
解决实 际问题
B
A
C
l
B′
抽象为数学问题 用旧知解决新知
B
A
C
l
联想旧知
A
C
l
B
尝试应用:
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建
一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中
实线表示铺设的管道,则所需要管道最短的是( D )
A
·
l C
B′
问题3 你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′. 在△AB′C′中,
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
将A,B 两地抽象为两个点,将河流l 抽象为一条直 线.
·B A·
l
你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河流l边 饮马,然后到B 地;
AM+NB+MN.
问题3:还有其他的方法选两点M,N,使得 AM+MN+NB的和最小吗?试一试。
a
b
A
M
N
B
问题2 归纳
解决实 际问题
《最短路径问题》PPT课件教学
C
你能要自己的语言重新描述一下问题吗? C是l上一个动点, 当点C在l的什么位置时,AC+BC最小?
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
拓广探索
在纸上画五个点,使任意三个点组成的三角形都 是等腰三角形 . 这五个点应该怎样画?
拓广探索
如图,△ABC 是等边三角形,BD 是中线,延长BC 至 E,使CE =CD . 求证DB =DE .
拓广探索
如图,△ABC 是等腰三角形,AC =BC,△BDC 和△ACE 分别为等边三角形,AE 与BD 相较于F,连接CF 并延长 ,交AB 于点G . 求证:G 为AB 的中点 .
复习巩固
如图,在△ABC 中,∠ABC =50°,∠ACB =80°,延长 CB至D,使DB =BA,延长BC 至E,使CE =CA,连接 AD,AE .求∠D,∠E,∠DAE 的度数 .
复习巩固 如图,AD =BC,AC=BD,求证:△EAB 是等腰三角形 .
复习巩固
综合应用
试确定如图所示的正多边形的对称轴的条数,一般地 ,一个正n边形有多少条对称轴?
综合应用
如图,从图形Ι 到图形Ⅱ是进行了平移还是轴对称?如果 是轴对称,找出对称轴;如果是平移,是怎样平移?
综合应用
如图,AD是△ABC 的角平分线,DE,DF 分别是△ABD 和△ACD的高 . 求证:AD 垂直平分EF .
综合应用
如图,在等边三角形 ABC 的三边上,分别取点D,E,F ,使AD =BE =CF . 求证△DEF 是等边三角形 .
你能要自己的语言重新描述一下问题吗? C是l上一个动点, 当点C在l的什么位置时,AC+BC最小?
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
拓广探索
在纸上画五个点,使任意三个点组成的三角形都 是等腰三角形 . 这五个点应该怎样画?
拓广探索
如图,△ABC 是等边三角形,BD 是中线,延长BC 至 E,使CE =CD . 求证DB =DE .
拓广探索
如图,△ABC 是等腰三角形,AC =BC,△BDC 和△ACE 分别为等边三角形,AE 与BD 相较于F,连接CF 并延长 ,交AB 于点G . 求证:G 为AB 的中点 .
复习巩固
如图,在△ABC 中,∠ABC =50°,∠ACB =80°,延长 CB至D,使DB =BA,延长BC 至E,使CE =CA,连接 AD,AE .求∠D,∠E,∠DAE 的度数 .
复习巩固 如图,AD =BC,AC=BD,求证:△EAB 是等腰三角形 .
复习巩固
综合应用
试确定如图所示的正多边形的对称轴的条数,一般地 ,一个正n边形有多少条对称轴?
综合应用
如图,从图形Ι 到图形Ⅱ是进行了平移还是轴对称?如果 是轴对称,找出对称轴;如果是平移,是怎样平移?
综合应用
如图,AD是△ABC 的角平分线,DE,DF 分别是△ABD 和△ACD的高 . 求证:AD 垂直平分EF .
综合应用
如图,在等边三角形 ABC 的三边上,分别取点D,E,F ,使AD =BE =CF . 求证△DEF 是等边三角形 .
最短路径问题(新)课件人教版八年级数学上册ppt优秀课件
问题转化为:当点N在直线b的什么位置时,A′N+NB最小?
A
连接A′B,交直线b于点N.
A′
M′
点 N 即为所求.
a
N′ b N
B
初中数学
问题转化为:当点N在直线b的什么位置时,A′N+NB最小?
A
连接A′B,交直线b于点N.
A′
M M′
点 N 即为所求.
a
N′ b N
B
初中数学
初中数学
A
作法:将A沿与河岸垂直的方向
l
A′′
初中数学
初中数学
问题转化为:当点Q在什么位置时,A′Q+QB最小.
a A A′
作A′关于直线l的对称点A′′
B
P′ P Q′ Q
连接A′′B,与直线l交于一点 即为所求点Q.
l
A′′
问题:在直线l上求作两点P,Q , 使得四边形APQB的周长最小.
初中数学
练习 已知线段a,点A、B在直线l的同侧,在直线l上求作 两点P,Q (点P在点Q的左侧)且PQ=a,使得四 边形APQB的周长最小. 作法:
在直线b上任取一点N′ ,
过N′作N′M′⊥a 已连知接线 A′B段,a交,直点线A、b于B在点直N.线l的同侧,在A直线l上求作两点P,Q (点P在点Q的左侧)且PQ=a,使得四边形APQB的周长最小.
② 利用平移,实现线段的转移. 当点Q在什么位置时,AP+PQ+QB+BA最小.
连接AM′,A′N′,N′B
即AM+NB< AM′+N′B
A′
如何证明这条路径AMNB最短? 当点N在直线b的什么位置时,A′N+NB最小? 连接A′B,交直线b于点N. ① 实际问题用数学语言表达.
人教版八年级上册数学课题学习造桥选址问题课件
交所直以线问a题于还点可M以,转当化点为N在:直当线点bN的在什直
么线位b的置什时么,位AM置+时M,N+ANMB+最N小B最?小?
思维分析
人教版八年级上册数学课题学习造桥 选址问 题课件
人教版八年级上册数学课题学习造桥 选址问 题课件
拓展应用
拓展1:如图,如果A、B两地之间有两
条平行的河,我们要建的桥都是与河岸
垂直的。我们如何找到这个最短的距离
呢?
A
河流1
方法
人教版八年级上册数学课题学习造桥 选址问 题课件
图像
河流2 B
பைடு நூலகம்
人教版八年级上册数学课题学习造桥 选址问 题课件
方法:将点A沿与第一条河流垂直的 方向平移一个河宽到A1,将B沿与第 二条河垂直的方向平移一个河宽到B1, 连接A1B1与两条河分别相交于P、M, 在P、M两处,分别建桥PQ 、 MN, 所得路径AQPMNB最短。
人教版八年级上册数学课题学习造桥 选址问 题课件
13.4 课题学习 最短路径问题(2)
造桥选址问题
人教版八年级上册数学课题学习造桥 选址问 题课件
人教版八年级上册数学课题学习造桥 选址问 题课件
教学目标
1、知识与技能: 理解利用平移的方法,解决最短路径问题。 2、过程与方法: (1)在观察、操作、归纳等探索过程中,培养 学生的实际动手能力; (2)在运用知识解决有关问题的过程中,体验 并掌握探索、归纳最短路径选取的方法。 3、情感、态度与价值观 (1)体会数学与现实生活的联系,增强克服困 难的勇气和信心; (2)会应用数学知识解决一些简单的实际问题, 增强应用意识; (3)使学生进一步形成数学来源于实践,反过 来又服务于实践的辩证唯物主义观点。
最短路径将军饮马造桥选址
最短路径 问题
将军饮马 造桥选址
问题
问题
郧西县河夹中学
段廉洁
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1
如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B 地.牧马 人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
从A点到B点的最短路径
为AM+MN+NP+P
B
Q+QB.
11/16/2019
思维方法二
沿垂直于第一条河岸方 向平移A点至A1 点,沿 垂直于第二条河岸方向平移 B点至B1点,连接 A1B1 分别交A、B的对岸于 N、P 两点,建桥 MN和PQ.
A A1
M N
P
最短路径 AM+MN+NP+PQ+QB 转化为 AA1+A1B1+BB1.
A
C
l
B
② 点A,B分别是直线l同 侧的两个点 B
A l
C
B′
解决问题 1
① 作图
B A
l C
B′
② 证明
B A
C l
C′
B′
A C′ C
B 证明: l
B′
问题 2 (造桥选址问题)如图,A和B两地在一条河的两岸,现要在河 上造一座桥MN ,桥造在何处可使从A到B的路径AMNB 最短?(假定河
M
N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
11/16/2019
思维火花
我们能否在不改变 AM+MN+BN 的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
将军饮马 造桥选址
问题
问题
郧西县河夹中学
段廉洁
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1
如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B 地.牧马 人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
从A点到B点的最短路径
为AM+MN+NP+P
B
Q+QB.
11/16/2019
思维方法二
沿垂直于第一条河岸方 向平移A点至A1 点,沿 垂直于第二条河岸方向平移 B点至B1点,连接 A1B1 分别交A、B的对岸于 N、P 两点,建桥 MN和PQ.
A A1
M N
P
最短路径 AM+MN+NP+PQ+QB 转化为 AA1+A1B1+BB1.
A
C
l
B
② 点A,B分别是直线l同 侧的两个点 B
A l
C
B′
解决问题 1
① 作图
B A
l C
B′
② 证明
B A
C l
C′
B′
A C′ C
B 证明: l
B′
问题 2 (造桥选址问题)如图,A和B两地在一条河的两岸,现要在河 上造一座桥MN ,桥造在何处可使从A到B的路径AMNB 最短?(假定河
M
N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
11/16/2019
思维火花
我们能否在不改变 AM+MN+BN 的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
13.4.最短路径(2)—造桥选址问题电子教案
13.4.最短路径(2)—
造桥选址问题
精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢2
13.4造桥选址问题
一.学习目标:
1、能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
2、在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 二.重点难点:
学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 学习难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 三.合作探究:(同学合作,教师引导) 1.温故知新:
前面我们研究过最短路径问题,求最短路径的依据有:
(1) . (2) . 2.探究新知: 问题2 造桥选址问题
如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)
思维分析:
1.如右图假定任选位置造桥MN,连接AM 和BN,从A 到B 的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
2.利用上面的“求最短路径的依据”解决问题:我们遇到了什么障碍呢?
四.感悟与反思:
A ·
· B
A ·
· B。
人教版数学八年级上册1.2造桥选址问题课件(第四课时28张)
E
M
CF
G B
N
H
归纳新知
最
短
A∙
路 径
造桥选址问题
M
问
A′
a b
题
N
∙B
课后练习
1.如图,l为河岸(视为直线),要想开一条沟将河 里的水从A处引到田地里去,则应从河岸l的何处 开口才能使水沟最短,找出开口处的位置并说 明理由.
解:图略.理由:垂线段最短.
2.【中考·黔南州】如图,直线l外不重合的两点A,B,在直线l上求作 一点C,使得AC+BC的长度最短,作法为: ①作点B关于直线l的对称点B′; ②连接AB′,与直线l相交于点C,则点C为所求作的点. 在解决这个问题时没有运用到的知识或方法是( D ) A.转化思想 B.三角形的两边之和大于第三边 C.两点之间,线段最短 D.三角形的一个外角大于与它不相邻的任意一个内角
解:如图,作A关于射线OM所在直线的对称点E, 再作B关于射线ON所在直线的对称点F,连接EF交 OM 于 C , 交 ON 于 D , 连 接 AC , BD , 则 四 边 形 ABDC即为所求.
6.如图,AB是∠MON内部的一条线段,在∠MON的两 边OM,ON上各取一点C,D组成四边形ABDC,如何 取点才能使该四边形的周长最小?
(2)如图②,点A在直线m外侧,点B在直线 m,n内侧,作点B关于直线n的对称点B′, 连接AB′,分别交直线m,n于点P,Q; (3)如图③,点A,B在直线m,n内侧,分别作点A,B 关于直线m,n的对称点A′,B′, 连接A′B′,分别交直线m,n于点P,Q.
你能用数学语言说明这个问题所表达的意思吗?
如图,直线a,b满足a//b,点A,点B分别在直线a,b
的两侧,MN为直线a,b之间的距离,则点M,N在什
短路径将军饮马造桥选址
M
N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
5/15/2020
思维火花
我们能否在不改变AM+MN+BN的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
各抒己见
5/15/2020
1、把A平移到岸边. 2、把B平移到岸边. 3、把桥平移到和A相连. 4、把桥平移到和B相连.
合作与交流
问题解决
沿垂直于河岸方向依次把 A
A点A1、A2,使AA
1=MN,A1A2 =
A1 A2
PQ ; M
连接A2B交于B点相邻
河岸于Q点,建桥PQ; 连接A1P交A1的对岸
N P
于N点,建桥MN;
Q
从A点到B点的最短路径
为AM+MN+NP+P
B
Q+QB.
5/15/2020
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
5/15/2020
思维方法三
沿垂直于河岸方向依次把 B点平移至B1、B2,使 BB1=PQ,B1B2 =MN ; 连接B2A交于A点相邻河 岸于M点,建桥MN; 连接B1N交B1的对岸于 P点,建桥PQ; 从A点到B点的最短路径 为AM+MN+NP+MN +NP+PQ+QB转化 为AB2+B2B1+B1B.
D
A 图1
C
《造桥选址问题》课件
环保性原则
总结词
在建桥过程中,应尽可能减少对环境的 破坏和污染,保护生态环境和自然资源 。
VS
详细描述
在选址阶段,应充分考虑桥梁建设对周围 环境的影响,包括土地利用、水资源、野 生动植物等。应尽量选择环境影响较小的 地点,避免在生态敏感区域建设桥梁。同 时,在施工过程中应采取有效的环保措施 ,减少粉尘、噪音、废水的排放,降低对 环境的负面影响。
造桥选址的案例分析
长江大桥选址案例
总结词
地理位置重要、工程难度大
详细描述
长江大桥是中国交通网络中的重要节点,连接了多个省份和 城市。由于长江的特殊地理环境和水文条件,选址需要考虑 诸多因素,如河床稳定性、水深、河流通航等,以确保桥梁 的稳定性和安全性。
黄河大桥选址案例
总结词
地质条件复杂、环境保护要求高
4. 形成调查报告,提出 建议。
优点:能够全面了解桥 址周边的实际情况,为 决策提供可靠依据。
缺点:需要大量时间和 人力投入,成本较高。
数学模型法
• 定义:数学模型法是通过建立数学模型,对桥址 进行定量分析和预测,从而确定最优选址方案的 方法。
数学模型法
步骤 1. 确定影响桥址选择的主要因素。
2. 建立数学模型,进行模拟分析。
对环境保护和可持续发展的影响
科学的选址可以减少对环境的破坏,实现可持续发展,保护生态平衡。
02
造桥选址的原则
稳定性原则
总结词
在选址过程中,首要考虑的是桥梁结构的稳定性,以确保桥梁在使用过程中的安全性和 耐久性。
详细描述
桥梁的稳定性取决于地质勘察、水文条件、气候条件等多种因素的综合评估。在选址阶 段,需要对桥墩所在地的地质构造、岩石力学性质、地下水位等进行深入勘察,以确保
《最短路径问题》课件
A A1
符合条件的路径,并标明桥的位置.
ll12
l3 B1 l4 B
课堂小结
最
短
A∙
路 径
造桥选址问题
M
问
A′
a b
题
N
∙B
即AM+NB+MN的值最小.
M′ a M
b
N′
N
∙B
新知探究 跟踪训练
如图,从A地到B地要经过一条小河(河的两岸平行), 现要在河上建一座桥(桥垂直于河的两岸),应如何 选择桥的位置才能使从A地到B地的路程最短?
A
B
解:(1)如图,过点A作AC垂直于河岸,且使得AC的 长等于河宽; (2)连接BC,与河岸GH相交于点N,且过点N作 MN⊥EF于点M,则MN即为所建桥的位置. A
点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.此
时问题转化为,当点N在直线b的什么位置时,A′N+ NB的值最小.A∙ M
a
A′
b
N
∙B
如图,连接A′,B,线段A′B最短.因此,线段A′B与直线 b的交点即为所求的点N的位置,即在此处造桥MN,所 得路径AMNB是最短的.
A∙ M
《最短路径问题》
知识回顾
1.两点一线型.
如图,点A,B分别是直线l异侧的两个点,在直线l上找
一点C,使得AC+BC的值最小,此时点C就是线段AB与
直线l的交点.
A
C
l
B
1.两点一线型.
如图,点A,B是直线l同侧的两
B
点,在直线l上找一点C使得
A
AC+BC的值最小,这时先作点B
造桥选址问题 最短路径.4-造桥选址问题-最短路径(2)课件
pq在中间且方向不能改变仍无法直接利用两点之间线段最短解决问题只有利用平移变换转移到两侧或同一侧先走桥长mn平移pq平移到mn此时问题转化为问题基本题型两点利用基本问题的解决方法确定桥pq确定pq的位置也确定了bqpq此时问题可转化为由点和第一条河确定桥mn的位置a2a1的对岸于n点建桥mn
13.4 课题学习 ---最短路径问题(2)
A·
B
问题延伸一
如图,A和B两地之间 有两条河,现要在两 条河上各造一座桥MN 和PQ.桥分别建在何处 才能使从A到B的路径 最短?(假定河的两 岸是平行的直线,桥 要与河岸垂直)
A
B
思维分析
如图,问题中所走总路径是 AM+MN+NP+PQ+QB. 桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两 点之间,线段最短”解决问题, 只有利用平移变换转移到两侧 或同一侧先走桥长. 平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
1、2两种方法改变了.
怎样调整呢? 把A或B分别向下或上平移一个桥长
那么怎样确定桥的位置呢?
问题解决
如图,平移A到A1,使AA1 等于河宽,连接A1B交河 岸于N作桥MN,此时路 径AM+MN+BN最短.
A
A1
M N
M1 N1
B
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1. AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1. 在△A1N1B中,由三角形三边关系知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
相关主题