2014人教A版高中数学必修四2.3.4《平面向量的基本定理及坐标表示》教案2
2.3平面向量的基本定理及坐标表示教案(人教A必修4)
2.3平面向量的基本定理及坐标表示§2.3.1 平面向量基本定理教学目的:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.授课类型:新授课教 具:多媒体、实物投影仪教学过程:一、 复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a方向相反;λ=0时λa =2.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量三、讲解范例:例1 已知向量1e ,2e 求作向量-2.51e +32e .例 2 如图 ABCD 的两条对角线交于点M ,且=a,=b ,用a ,b 表示,,和例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4例4(1)如图,,不共线,=t (t ∈R)用,表示.(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线.例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.四、课堂练习:1.设e 1、e 2是同一平面内的两个向量,则有( )A.e 1、e 2一定平行B .e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.24.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).五、小结(略)六、课后作业(略):七、板书设计(略)八、课后记:第5课时§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算 教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.授课类型:新授课教 具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定. 设yj xi +=,则向量的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.=-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=三、讲解范例:例1 已知A(x 1,y 1),B(x 2,y 2),求AB 的坐标.例2 已知a =(2,1), b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.例3 已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,由=得D 1=(2, 2)当平行四边形为ACDB 时,得D 2=(4, 6),当平行四边形为DACB 时,得D 3=(-6, 0) 例4已知三个力1F (3, 4), 2F (2, -5), 3F (x , y)的合力1F +2F +3F =,求3F 的坐标. 解:由题设1F +2F +3F = 得:(3, 4)+ (2, -5)+(x , y)=(0, 0)即:⎩⎨⎧=+-=++054023y x ∴⎩⎨⎧=-=15y x ∴3F (-5,1) 四、课堂练习:1.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标 2.若A(0, 1), B(1, 2), C(3, 4) , 则-2= .3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD 是梯形.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:第6课时§2.3.4 平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教 具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=二、讲解新课:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0 探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠ ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)01221=-=⇔y x y x λ 三、讲解范例:例1已知a =(4,2),b =(6, y),且a ∥b ,求y.例2已知A(-1, -1), B(1,3), C(2,5),试判断A ,B ,C 三点之间的位置关系. 例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1) 当点P 是线段P 1P 2的中点时,求点P 的坐标;(2) 当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.例4若向量a =(-1,x)与b =(-x , 2)共线且方向相同,求x解:∵a =(-1,x)与b =(-x , 2) 共线 ∴(-1)×2- x •(-x )=0∴x=±2 ∵a 与b 方向相同 ∴x=2例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量AB 与CD 平行吗?直线AB 与平行于直线CD 吗?解:∵AB =(1-(-1), 3-(-1))=(2, 4) , CD =(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴∥又 ∵ =(1-(-1), 5-(-1))=(2,6) ,=(2, 4),2×4-2×6 0 ∴与不平行∴A ,B ,C 不共线 ∴AB 与CD 不重合 ∴AB ∥CD四、课堂练习:1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( )A.-3 B .-1 C.1 D.33.若=i +2j , =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量). 与共线,则x 、y 的值可能分别为( )A.1,2 B .2,2 C.3,2 D.2,44.已知a =(4,2),b =(6,y ),且a ∥b ,则y = .5.已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .6.已知□ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = .五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:。
平面向量的基本定理及坐标表示(教学设计)
2.3 平面向量的基本定理及坐标表示(1)(教学设计)2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示[教学目标]一、知识与能力:1. 了解平面向量基本定理。
2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示;3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.二、过程与方法:体会数形结合的数学思想方法;培养学生转化问题的能力.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算教学难点:平面向量基本定理.一、复习回顾:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、师生互动,新课讲解:思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?.在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式.1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.(2)向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB=θ(0︒≤θ≤180︒)叫做向量a 与b 的夹角,当θ=0︒时,a 与b 同向;当θ=180︒时,a 与b 反向.如果a 与b 的夹角是90︒,则称a 与b 垂直,记作a ⊥b .例1 (课本P94例1)已知向量e 1、e 2,求作向量-2.5e 1+3e 2。
高中数学必修四人教A版 教案2-3平面向量的基本定理及
2.3.4平面向量共线的坐标表示1.知识与技能(1)理解两向量共线的坐标表示.(2)会用两向量共线的坐标表示解决向量共线、点共线、直线平行等问题.2.过程与方法通过对平面向量共线定理的坐标表示形式的探究和应用,培养学生的分析问题、解决问题的能力和体会化归与转化的数学思想方法.3.情感、态度与价值观通过本节学习和运用实践,培养学生的探索精神,体会数学的科学价值与应用价值.重点:用坐标表示两向量共线.难点:两向量共线坐标表示的灵活应用.1.已知平面向量a=(x,1),b=(-x,x2),则向量a+b()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线解析:∵a=(x,1),b=(-x,x2),∴a+b=(0,1+x2).∵a+b的横坐标为0,纵坐标为1+x2>0,∴a+b平行于y轴.答案:C2.平面上有A(2,-1),B(1,4),D(4,-3)三点,点C在直线AB上,且,连接DC延长至E,使||=|,则点E的坐标为.解析:∵,∴A为BC的中点.∴点C坐标为(3,-6).又||=|,且E在DC的延长线上,∴=-.设E(x,y),则(x-3,y+6)=-(4-x,-3-y),得解得答案:3.如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,M为CE的中点,用向量的方法证明:(1)DE∥BC;(2)D,M,B三点共线.证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设||=1,则||=1,||=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形.∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1),A(-1,0).(1)∵=(-1,1)-(0,0)=(-1,1),=(0,1)-(1,0)=(-1,1),∴.∴,即DE∥BC.(2)连接MB,MD,∵M为EC的中点,∴M,∴=(-1,1)-,=(1,0)-.∴=-.∴.又有公共点M,∴M,B,D三点共线.。
高中数学人教A版必修4示范教案:第二章第三节平面向量的基本定理及坐标表示(第一课时) Word版含解析
第二章第三节平面向量的基本定理及坐标表示第一课时整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.三维目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.课时安排1课时教学过程导入新课思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度v cosα和沿竖直方向的速度v sinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过对多个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.图1活动:如图1,在平面内任取一点O ,作OA →=e 1,OB →=e 2,OC →=a .过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N .由向量的线性运算性质可知,存在实数λ1、λ2,使得OM →=λ1e 1,ON →=λ2e 2.由于OC →=OM →+ON →,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? ②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:已知两个非零向量a 和b (如图2),作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.图2显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .由平面向量的基本定理,对平面上的任意向量a ,均可以分解为不共线的两个向量λ1a 1和λ2a 2,使a =λ1a 1+λ2a 2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.例如,重力G 沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?活动:如图3,在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x 、y ,使得图3a =x i +y j . ①这样,平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). ②其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,②式叫做向量的坐标表示.显然,i =(1,0),j =(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a 与有序实数对(x ,y )一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,A 1B 1→是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x =x 2-x 1,y =y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下: a =x i +y j ⇔a 的坐标为(x ,y )⇔a =OA →,A (x ,y )讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).②是一一对应的.应用示例思路1例1如图4,在ABCD 中,AB →=a ,AD →=b ,H 、M 是AD 、DC 的中点,F 使BF =13BC ,以a ,b 为基底分解向量AM →与HF →.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a . HF →=AF →-AH →=AB →+BF →-AH →=AB →+13BC →-12AD → =AB →+13AD →-12AD →=a -16b . →→→→.变式训练已知向量e 1、e 2(如图5(1)),求作向量-2.5e 1+3e 2.图5作法:(1)如图5(2),任取一点O ,作OA →=-2.5e 1,OB →=3e 2.(2)作OACB .故OC →就是求作的向量.图6活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =AA 1→+AA 2→=x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).变式训练i ,j 是两个不共线的向量,已知AB →=3i +2j ,CB →=i +λj ,CD →=-2i +j ,若A 、B 、D三点共线,试求实数λ的值.解:∵BD →=CD →-CB →=(-2i +j )-(i +λj )=-3i +(1-λ)j ,个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A .①②B .②③C .①③D .①②③活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解析:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2例1如图7,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →.图7活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a=a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎩⎪⎨⎪⎧a 1=b 1,a 2=b 2. 解:∵AM →=AN →+NM →,BM →=BN →+NM →,∴由AM →+2BM →+3CM →=0,得(AN →+NM →)+2(BN →+NM →)+3CM →=0.∴AN →+3NM →+2BN →+3CM →=0.又∵A 、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设AN →=λBN →,CM →=μNM →,∴λBN →+3NM →+2BN →+3μNM →=0.∴(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,∴⎩⎪⎨⎪⎧ λ+2=0,3+3μ=0.∴⎩⎪⎨⎪⎧λ=-2,μ=-1. ∴CM →=-NM →=MN →.∴CN →=CM →+MN →=2CM →=2a .点评:这里选取BN →,NM →作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式例2如图8,△ABC 中,AD 为△ABC 边上的中线且AE =2EC ,求AG GD 及BG GE的值.图8活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设AG GD =λ,BG GE=μ. ∵BD →=DC →,即AD →-AB →=AC →-AD →,∴AD →=12(AB →+AC →). 又∵AG →=λGD →=λ(AD →-AG →),∴AG →=λ1+λAD →=λ2(1+λ)AB →+λ2(1+λ)AC →. ① 又∵BG →=μGE →,即AG →-AB →=μ(AE →-AG →), ∴(1+μ)AG →=AB →+μAE →,AG →=11+μAB →+μ1+μAE →. 又AE →=23AC →,∴AG →=11+μAB →+2μ3(1+μ)AC →. ② 比较①②,∵AB →、AC →不共线, ∴⎩⎨⎧ λ2(1+λ)=11+μ,λ2(1+λ)=2μ3(1+μ).解之,得⎩⎪⎨⎪⎧λ=4,μ=32.∴AG GD =4,BG GE =32. 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对1.已知G 为△ABC 的重心,设AB →=a ,AC →=b ,试用a 、b 表示向量AG →.答案:如图9,AG →=23AD →, 图9而AD →=AB →+BD →=AB →+12BC →=a +12(b -a )=12a +12b , ∴AG →=23AD →=23(12a +12b )=13a +13b . 点评:利用向量加法、减法及数乘的几何意义.2.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),求x .答案:∵A (1,2),B (3,2),∴AB →=(2,0).∵a =AB →,∴(x +3,x 2-3x -4)=(2,0).∴⎩⎪⎨⎪⎧ x +3=2,x 2-3x -4=0,解得⎩⎪⎨⎪⎧x =-1,x =-1或x =4. ∴x =-1.点评:先将向量AB →用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法、定义法、归纳与类比、数形结合、几何作图.作业课本习题2.3 A 组1.设计感想1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给予引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.备课资料一、三角形三条中线共点的证明如图10所示,已知在△ABC 中,D 、E 、L 分别是BC 、CA 、AB 的中点,设中线AD 、BE 相交于点P .图10 求证:AD 、BE 、CL 三线共点.分析:欲证三条中线共点,只需证明C 、P 、L 三点共线.证明:设AC →=a ,AB →=b ,则AL →=12b ,CL →=AL →-AC →=-a +12b . 设AP →=mAD →,则AC →+CP →=m (AC →+CD →),CP →=(-1+m )AC →+mCD →=(-1+m )a +m [12(b -a )]=(-1+12m )a +12m b . ① 又设EP →=nEB →,则CP →-CE →=n (EC →+CB →),∴CP →=(1-n )CE →+nCB →=-12(1-n )a +n (b -a )=(-12-12n )a +n b . ② 由①②得⎩⎨⎧ -1+12m =-12-12n ,12m =n .解之,得⎩⎨⎧m =23,n =13. ∴CP →=-23a +13b =23(-a +12b )=23CL →. ∴C 、P 、L 三点共线.∴AD 、BE 、CL 三线共点.二、备用习题1.如图11所示,已知AP →=43AB →,AQ →=13AB →,用OA →、OB →表示OP →,则OP →等于( )图11A.13OA →+43OB → B .-13OA →+43OB → C .-13OA →-43OB → D.13OA →-43OB → 答案:B2.已知e1,e2是两非零向量,且|e1|=m,|e2|=n,若c=λ1e1+λ2e2(λ1,λ2∈R),则|c|的最大值为( )A.λ1m+λ2n B.λ1n+λ2mC.|λ1|m+|λ2|n D.|λ1|n+|λ2|m答案:C。
平面向量基本定理及其坐标表示教案
平面向量基本定理及其坐标表示教案一、教学目标1. 理解平面向量的基本定理,掌握平面向量的分解。
2. 学会用坐标表示平面向量,理解向量坐标与向量运算之间的关系。
3. 能够运用平面向量基本定理及其坐标表示解决实际问题。
二、教学内容1. 平面向量的基本定理:任何一个平面向量都可以唯一地表示为两个不共线向量的线性组合。
2. 向量的分解:将一个向量表示为两个不共线向量的线性组合。
3. 向量的坐标表示:用坐标表示向量,掌握向量坐标的运算规则。
4. 向量运算与坐标表示:理解向量加法、减法、数乘在坐标表示下的具体运算。
三、教学重点与难点1. 重点:平面向量的基本定理,向量的分解,向量的坐标表示。
2. 难点:理解向量坐标与向量运算之间的关系,熟练运用平面向量基本定理及其坐标表示解决实际问题。
四、教学方法1. 采用讲授法,系统地讲解平面向量的基本定理及其坐标表示。
2. 利用多媒体演示,直观地展示向量的分解和坐标表示。
3. 结合例题,引导学生运用平面向量基本定理及其坐标表示解决问题。
4. 开展小组讨论,加强学生之间的互动交流。
五、教学安排1. 课时:2课时2. 教学过程:第一课时:1. 导入新课,介绍平面向量的基本定理。
2. 讲解向量的分解,引导学生理解平面向量基本定理。
3. 介绍向量的坐标表示,讲解坐标运算规则。
4. 课堂练习,巩固所学知识。
第二课时:1. 复习上节课的内容,回顾平面向量基本定理及其坐标表示。
2. 讲解向量加法、减法、数乘在坐标表示下的运算。
3. 结合例题,引导学生运用平面向量基本定理及其坐标表示解决实际问题。
4. 课堂练习,提高学生运用知识解决问题的能力。
5. 总结本节课的内容,布置课后作业。
六、教学评价1. 课后作业:布置有关平面向量基本定理及其坐标表示的练习题,巩固所学知识。
2. 课堂练习:评价学生在课堂上运用平面向量基本定理及其坐标表示解决问题的能力。
3. 小组讨论:评价学生在小组讨论中的参与程度和合作能力。
平面向量基本定理及其坐标表示教案
平面向量基本定理及其坐标表示教案一、教学目标1. 让学生理解平面向量的基本定理,掌握平面向量的坐标表示方法。
2. 培养学生运用向量知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平面向量的基本定理(1)定理:设有两个向量a 和b,如果存在实数x 和y,使得a = xb + yb,则称向量a 可以由向量b 和向量b 的线性组合表示。
(2)推论:设有两个向量a 和b,如果向量a 可以由向量b 和向量b 的线性组合表示,存在唯一实数对(x, y),使得a = xb + yb。
2. 平面向量的坐标表示(1)定义:在二维空间中,以原点O(0,0) 为起点,设向量a 的终点为点A(x, y),则向量a 的坐标表示为(x, y)。
(2)性质:设向量a 的坐标表示为(x, y),向量b 的坐标表示为(m, n),则向量a + b 的坐标表示为(x+m, y+n),向量a b 的坐标表示为(x-m, y-n)。
(3)运算规律:设向量a 和向量b 的坐标表示分别为(x1, y1) 和(x2, y2),则向量a + b 的坐标表示为(x1+x2, y1+y2),向量a b 的坐标表示为(x1-x2, y1-y2)。
三、教学方法1. 讲授法:讲解平面向量的基本定理及其坐标表示的定义、性质和运算规律。
2. 案例分析法:分析实际问题,引导学生运用向量知识解决问题。
3. 小组讨论法:分组讨论,培养学生的团队协作能力和逻辑思维能力。
四、教学步骤1. 导入新课:回顾平面向量的概念,引导学生思考如何表示平面向量。
2. 讲解基本定理:阐述平面向量的基本定理,并通过图形示例帮助学生理解。
3. 讲解坐标表示:介绍平面向量的坐标表示方法,讲解坐标表示的定义、性质和运算规律。
4. 案例分析:选取实际问题,引导学生运用向量知识解决问题。
5. 小组讨论:分组讨论,让学生运用所学知识分析问题,培养团队协作能力和逻辑思维能力。
平面向量基本定理及其坐标表示教案
平面向量基本定理及其坐标表示教案教学目标:1. 理解平面向量的基本定理;2. 学会用坐标表示平面向量;3. 掌握平面向量的坐标运算。
教学重点:1. 平面向量的基本定理;2. 坐标表示平面向量;3. 平面向量的坐标运算。
教学难点:1. 平面向量的基本定理的理解;2. 坐标表示平面向量的推导;3. 平面向量的坐标运算的熟练运用。
教学准备:1. 教材或教案;2. 投影仪或黑板;3. 粉笔或教鞭。
教学过程:一、导入(5分钟)1. 引导学生回顾初中阶段学习的向量知识,如向量的定义、向量的加法、减法等;2. 提问:向量是否可以只有大小没有方向?为什么?二、平面向量的基本定理(15分钟)1. 介绍平面向量的基本定理:任意两个平面向量都可以唯一地分解为两个互垂直的向量的和;2. 用图形和实例来说明基本定理的意义;3. 引导学生理解基本定理的重要性。
三、坐标表示平面向量(15分钟)1. 介绍坐标系的概念,如直角坐标系、平面极坐标系等;2. 推导平面向量的坐标表示方法,即用坐标表示向量的位置;3. 举例说明如何用坐标表示平面向量。
四、平面向量的坐标运算(15分钟)1. 介绍平面向量的坐标运算,如坐标加法、减法、数乘等;2. 用公式和实例来说明坐标运算的规则;3. 引导学生熟练掌握坐标运算的方法。
五、巩固练习(10分钟)1. 给出一些关于平面向量的练习题,让学生独立完成;2. 针对学生的疑问进行解答和讲解;3. 强调平面向量基本定理及其坐标表示的重要性。
教学反思:在教学过程中,要注意通过实例和图形来帮助学生理解平面向量的基本定理及其坐标表示,以及坐标运算的规则。
要鼓励学生积极参与课堂讨论,提出疑问,以提高他们的学习兴趣和动力。
六、向量加法的平行四边形法则(15分钟)1. 介绍平行四边形法则,即以两个向量首尾相接所构成的平行四边形的对角线所代表的向量等于这两个向量的和;2. 用图形和实例来说明平行四边形法则的应用;3. 引导学生理解并掌握平行四边形法则。
(新课程)高中数学《2.3.4平面向量的基本定理及坐标表示》教案 新人教A版必修4
§2.3.4 平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教 具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x --=二、讲解新课:a ∥b (b ≠)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠)01221=-=⇔y x y x λ三、讲解范例: 例1已知a =(4,2),b =(6, y),且a ∥b ,求y.例2已知A(-1, -1), B(1,3), C(2,5),试判断A ,B ,C 三点之间的位置关系. 例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1) 当点P 是线段P 1P 2的中点时,求点P 的坐标;(2) 当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.例4若向量a =(-1,x)与b =(-x , 2)共线且方向相同,求x解:∵a =(-1,x)与b =(-x , 2) 共线 ∴(-1)×2- x •(-x )=0∴x=±2 ∵a 与b 方向相同 ∴x=2例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线AB 与平行于直线CD 吗?解:∵=(1-(-1), 3-(-1))=(2, 4) , =(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴∥又 ∵ =(1-(-1), 5-(-1))=(2,6) ,=(2, 4),2×4-2×6≠0 ∴与AB 不平行∴A ,B ,C 不共线 ∴AB 与CD 不重合 ∴AB ∥CD四、课堂练习:1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( )A.-3B.-1C.1D.33.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量). AB与DC共线,则x、y的值可能分别为()A.1,2B.2,2C.3,2D.2,44.已知a=(4,2),b=(6,y),且a∥b,则y= .5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为 .6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= .五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:。
人教A版高中数学必修4教学案2.3平面向量的基本定理及坐标表示
第1课时平面向量基本定理1.预习教材,问题导入根据以下提纲,预习教材P93~P94的内容,回答下列问题.(1)观察教材P93图2.3-2的作图过程,思考:如果e1,e2是两个不共线的确定向量,那么与e1,e2在同一平面内的任意向量a能否用e1,e2表示?根据是什么?提示:可以.根据是数乘向量和平行四边形法则.(2)平面内的任意两个向量都可以平移至公共起点,它们存在夹角吗?提示:存在.(3)两个非零向量夹角θ的取值范围是什么?当非零向量a与b共线时,它们的夹角是多少?提示:两个非零向量夹角θ的范围是0°≤θ≤180°.当非零向量a与b共线时,它们的夹角是0°或180°.2.归纳总结,核心必记(1)平面向量基本定理e1、e2是同一平面内的两个不共线向量.条件结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.条件两个非零向量a和b作向量=a,=b,则∠AOB叫做向量产生过程a与b的夹角续表范围[0,π]特殊情况 θ=0°a 与b 同向 θ=90°a 与b 垂直,记作a ⊥bθ=180°a 与b 反向 [问题思考](1)0能与另外一个向量a 构成基底吗?提示:不能.基向量是不共线的,而0与任意向量是共线的. (2)平面向量的基底是唯一的吗?提示:不是.平面内任何不共线的两个向量都可以作为基底,基底一旦确定,平面内任何一向量都可以用这一基底唯一表示.(3)如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 提示:不一定,当a 与e 1共线时可以表示,否则不能表示.[课前反思](1)平面向量基本定理: ; (2)基底: ;(3)基向量: ;(4)向量的夹角: .讲一讲1.如图,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若试用a ,b 表示[尝试解答]如图所示,连接CN,则四边形ANCD是平行四边形.用基底表示向量的方法将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至能用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.练一练1.如图所示,已知在▱ABCD中,E,F分别是BC,DC边上的中点.若,试用a,b为基底表示向量解:∵四边形ABCD是平行四边形,E,F分别是BC,DC边上的中点,讲一讲2.已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b与a的夹角又是多少?即a+b与a的夹角是30°,a-b与a的夹角是60°.两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角.(2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.练一练2.如图,已知△ABC是等边三角形.(1)求向量的夹角;(2)若E为BC的中点,求向量的夹角.解:(1)∵△ABC为等边三角形,∴∠ABC=60°.如图,延长AB至点D,使AB=BD,∵∠DBC=120°,(2)∵E为BC的中点,∴AE⊥BC,∴的夹角为90°.讲一讲3.如图,在矩形OACB 中,E 和F 分别是边AC 和BC 上的点,满足AC =3AE ,BC =3BF ,若,其中λ,μ∈R ,求λ,μ的值.(1)平面向量基本定理唯一性的应用设a ,b 是同一平面内的两个不共线向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎪⎨⎪⎧x 1=x 2,y 1=y 2.(2)重要结论设e 1,e 2是平面内一组基底,练一练3.如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.所以λ⎝⎛⎭⎫12b +12c -μ⎝⎛⎭⎫23c -b =b , 即⎝⎛⎭⎫12λ+μb +⎝⎛⎭⎫12λ-23μc =b . 又因为b 与c 不共线,所以⎝ ⎛12λ+μ=1,12λ-23μ=0.解得⎝ ⎛λ=45,μ=35.故即AP ∶PM =4∶1.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是平面向量基本定理及其应用、平面向量的夹角,难点是平面向量基本定理的应用.2.本节课要重点掌握以下三个问题 (1)用基底表示向量,见讲1; (2)求向量的夹角,见讲2;(3)用平面向量基本定理解决相关问题,见讲3. 3.本节课的易错点有两处(1)向量的夹角和直线的夹角范围是不同的,它们分别是[0,π]和⎣⎢⎡⎦⎥⎤0,π2.(2)两非零向量的夹角是将两个向量的起点移到同一点所成的角如练2.课下能力提升(十七) [学业水平达标练]题组1 用基底表示向量1.已知e 1,e 2是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是( )A .e 1,e 1+e 2B .e 1-2e 2,e 2-2e 1C .e 1-2e 2,4e 2-2e 1D .e 1+e 2,e 1-e 2解析:选C 因为4e 2-2e 1=-2(e 1-2e 2),从而e 1-2e 2与4e 2-2e 1共线.A.23b +13cB.53c -23bC.23b -13cD.13b +23c3.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.试以a ,b 为基底表示向量题组2 向量的夹角问题4.若向量a 与b 的夹角为60°,则向量-a 与-b 的夹角是( ) A .60° B .120° C .30° D .150°解析:选A 平移向量a ,b 使它们有公共起点O ,如图所示,则由对顶角相等可得向量-a 与-b 的夹角也是60°.5.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.解析:由题意可画出图形,如图所示.在△OAB 中,因为∠OAB =60°,|b |=2|a |, 所以∠ABO =30°,OA ⊥OB , 即向量a 与c 的夹角为90°. 答案:90°解:如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,在Rt △OCD 中,即λ=4,μ=2,∴λ+μ=6. 题组3 平面向量基本定理的应用7.设向量e 1与e 2不共线,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数x ,y 的值分别为( )A .0,0B .1,1C .3,0D .3,4 解析:选D ∵向量e 1与e 2不共线,∴⎩⎪⎨⎪⎧3x =4y -7,10-y =2x ,解得⎩⎪⎨⎪⎧x =3,y =4. 8.在▱ABCD 中,E 和F 分别是边CD 和BC 的中点.若,其中λ,μ∈R ,则λ+μ的值为________.答案:439.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为以a ,b 为基向量的线性组合,即e 1+e 2=________.解析:设e 1+e 2=m a +n b (m ,n ∈R ), ∵a =e 1+2e 2,b =-e 1+e 2, ∴e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2) =(m -n )e 1+(2m +n )e 2. ∵e 1与e 2不共线,∴⎩⎪⎨⎪⎧m -n =1,2m +n =1,∴⎩⎨⎧m =23,n =-13.∴e 1+e 2=23a -13b .答案:23a -13b10.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2,⇒⎩⎪⎨⎪⎧λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底. (2)设c =m a +n b (m 、n ∈R ),则 3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2) =(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1,⇒⎩⎪⎨⎪⎧m =2,n =1.∴c =2a +b . (3)由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2.∴⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3,⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.[能力提升综合练]1.以下说法中正确的是( )A .若a 与b 共线,则存在实数λ,使得a =λbB .设e 1和e 2为一组基底,a =λ1e 1+λ2e 2,若a =0,则λ1=λ2=0C .λa 的长度为λ|a |D .如果两个向量的方向恰好相反,则这两个向量是相反向量 解析:选B A 错,a ≠0,b =0时,λ不存在. C 错,λ<0时不成立.D 错,相反向量的模相等,故选B .2.A ,B ,O 是平面内不共线的三个定点,且,点P 关于点A 的对称点为Q ,点Q 关于点B 的对称点为R ,则等于( )A .a -bB .2(b -a )C .2(a -b )D .b -a3. 已知e 1,e 2不共线,且a =k e 1-e 2,b =e 2-e 1,若a ,b 不能作为基底,则k 等于________.解析:向量a ,b 不能作为基底,则向量a ,b 共线,可设a =λb ,则⎩⎪⎨⎪⎧k =-λ,-1=λ,则k =1.答案:14.如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH 的中点.若则λ+μ=________.解析:因为AB =2,BC =3,∠ABC =60°, AH ⊥BC , 所以BH =1,BH =13BC .因为点M 为AH 的中点,即λ=12,μ=16,所以λ+μ=23.答案:235.如图所示,在正方形ABCD 中,E 为AB 的中点,P 是以A 为圆心,AB 为半径的圆弧BD ︵上的任意一点,设∠PAB =θ,向量 (λ,μ∈R ),若μ-λ=1,则θ=________.所以-λ+μsin θ=1,μsin θ=1+λ=μ, 所以sin θ=1,θ=90°. 答案:90°6.如图所示,平行四边形ABCD 中,M 为DC 的中点,N 是BC 的中点,(1)试以b ,d 为基底表示; (2)试以m ,n 为基底表示.7.如图所示,在△ABC 中,点M 是AB 的中点,且,BN 与CM 相交于点E ,设=a ,=b ,试用基底a ,b 表示向量.解得⎩⎨⎧m =35,n =45,所以AE ―→=25a +15b .第2课时 平面向量的正交分解及坐标表示平面向量的坐标运算 平面向量共线的坐标表示[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P94~P100的内容,回答下列问题.(1)在平面内,规定e1,e2为基底,那么一个向量关于e1,e2的分解是唯一的吗?提示:唯一.(2)在平面直角坐标系中,分别取与x 轴、y轴方向相同的两个单位向量i、j作为基底,任作一向量.根据平面向量基本定理,=x i+y j,那么(x,y)与A 点的坐标相同吗?提示:相同.(3)如果向量也用(x,y)表示,那么这种向量与实数对(x,y)之间是否一一对应?提示:一一对应.(4)已知a=(x1,y1),b=(x2,y2),如何求a+b,a-b,λa的坐标?提示:a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1).(5)若A(x1,y1),B (x2,y 2),你能求出的坐标吗?提示:能.=(x2-x1,y2-y1).2.归纳总结,核心必记(1)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.(2)平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,有且只有一对实数x、y,使得a=x i+y j,则(x,y)叫做向量a的坐标,记作a=(x,y),此式叫做向量的坐标表示.(3)向量i,j,0的坐标表示i=(1,0),j=(0,1),0=(0,0).(4)平面向量的坐标运算文字符号加法两个向量和的坐标等于这两个向量相应坐标的和若a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2)减两个向量差的坐标等于这两个向量相应若a=(x1,y1),b=(x2,y2),a-b=(x1-x2,(1)在平面直角坐标系中,若a =b ,那么a 与b 的坐标具有什么特点?为什么? 提示:若a =b ,那么它们的坐标相同,根据平面向量基本定理,相等向量在平面直角坐标系中的分解是唯一的,所以相等向量的坐标相同.(2)与坐标轴平行的向量的坐标有什么特点?提示:与x 轴平行的向量的纵坐标为0,即a =(x ,0),与y 轴平行的向量的横坐标为0,即b =(0,y ).(3)点的坐标与向量坐标有什么区别和联系?提示:区别:①表示形式不同,向量a =(x ,y )中间用等号连接,而点的坐标A (x ,y )中间没有等号.②意义不同,点A (x ,y )的坐标表示点A 在平面直角坐标系中的位置,向量a =(x ,y )的坐标既表示大小,又表示方向;另外(x ,y )既可以表示点,也可以表示向量,叙述时应指明点(x ,y )或向量(x ,y ).联系:当平面向量的起点在原点时,平面向量的坐标与向量终点坐标相同. (4)两向量a =(x 1,y 1),b =(x 2,y 2)共线的坐标条件能表示为x 1x 2=y 1y 2吗?提示:不一定,为使分式有意义,需分母不为0,可知只有当x 2y 2≠0时才能这样表示. (5)如果两个非零向量共线,你能通过其坐标判断它们是同向还是反向吗?提示:将b 写成λa 的形式,根据λ的符号判断,如a =(-1,2),b =⎝⎛⎭⎫16,-13=-16(-1,2)=-16a ,故a ,b 反向.[课前反思](1)平面向量的正交分解: ;(2)平面向量的坐标表示: ;(3)平面向量的坐标运算: ;(4)平面向量共线的坐标表示: .讲一讲1.如图所示,在边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角.求点B 和点D 的坐标和的坐标.[尝试解答] 由题知B 、D 分别是30°,120°角的终边与单位圆的交点. 设B (x 1,y 1),D (x 2,y 2). 由三角函数的定义,得 x 1=cos 30°=32,y 1=sin 30°=12,∴B ⎝⎛⎭⎫32,12. x 2=cos 120°=-12,y 2=sin 120°=32,∴D ⎝⎛⎭⎫-12,32.∴=⎝⎛⎭⎫32,12,=⎝⎛⎭⎫-12,32.求点和向量坐标的常用方法(1)在求一个向量时,可以先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.(2)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.练一练1.已知O是坐标原点,点A在第一象限,||=43,∠xOA=60°,(1)求向量的坐标;(2)若B(3,-1),求的坐标.解:(1)设点A(x,y),则x=43cos 60°=23,y=43sin 60°=6,即A(23,6),=(23,6).(2)=(23,6)-(3,-1)=(3,7).讲一讲2.(1)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b 的坐标;(2)已知A(-2,4),B(3,-1),C(-3,-4),且,,求M,N及的坐标.[尝试解答](1)a+b=(-1,2)+(3,-5)=(2,-3),a-b=(-1,2)-(3,-5)=(-4,7),3a=3(-1,2)=(-3,6),2a+3b=2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(7,-11).(1)平面向量坐标运算的方法①若已知向量的坐标,则直接利用向量和、差及向量数乘运算的坐标运算法则求解. ②若已知有向线段两端点的坐标,则可先求出向量的坐标,再利用向量的坐标运算法则求解.(2)坐标形式下向量相等的条件及其应用①条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.②应用:利用坐标形式下向量相等的条件,可以建立相等关系,由此可求某些参数的值. 练一练 2.已知a =,B 点坐标为(1,0),b =(-3,4),c =(-1,1),且a =3b -2c ,求点A 的坐标.解:∵b =(-3,4),c =(-1,1),∴3b -2c =3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),即a =(-7,10)=.又B (1,0),设A 点坐标为(x ,y ),则=(1-x ,0-y )=(-7,10),∴⎩⎪⎨⎪⎧1-x =-7,0-y =10⇒⎩⎪⎨⎪⎧x =8,y =-10,即A 点坐标为(8,-10).讲一讲3.(1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2 (2)设向量=(k ,12),=(4,5),=(10,k ),求当k 为何值时,A 、B 、C 三点共线.[尝试解答] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2).由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12.法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12.∴(4-k ,-7)=λ(10-k ,k -12),即⎩⎪⎨⎪⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. ∴当k =-2或11时,A 、B 、C 三点共线.∴(4-k )(k -12)+7(10-k )=0,即k 2-9k -22=0,解得k =-2或k =11. ∴当k =-2或11时,A 、B 、C 三点共线. 答案:(1)A(1)向量共线的判定方法①利用向量共线定理,由a =λb (b ≠0)推出a ∥b . ②利用向量共线的坐标表达式x 1y 2-x 2y 1=0直接求解. (2)三点共线的实质与证明步骤①实质:三点共线问题的实质是向量共线问题.两个向量共线只需满足方向相同或相反,两个向量共线与两个向量平行是一致的.②证明步骤:利用向量平行证明三点共线需分两步完成:(ⅰ)证明向量平行;(ⅱ)证明两个向量有公共点.练一练3.(1)已知a =(1,2),b =(-3,2),当实数k 为何值时,(k a +b )∥(a -3b )?这两个向量的方向是相同还是相反?(2)已知点A (x ,0),B (2x ,1),C (2,x ),D (6,2x ).①求实数x 的值,使向量 共线;②当向量共线时,点A ,B ,C ,D 是否在一条直线上?解:(1)∵a =(1,2),b =(-3,2),∴k a +b =(k -3,2k +2),a -3b =(10,-4). 由题意得(k -3)×(-4)-10(2k +2)=0,解得k =-13.此时k a +b =-13a +b =-13(a -3b ),∴当k =-13时,(k a +b )∥(a -3b ),并且它们的方向相反.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是平面向量的坐标表示及运算、平面向量共线的坐标表示. 2.本节课要重点掌握以下三个问题 (1)向量的坐标表示,见讲1; (2)向量的坐标运算,见讲2; (3)向量共线的坐标表示,见讲3. 3.要正确理解向量平行的条件(1)a ∥b (b ≠0)⇔a =λb .这是几何运算,体现了向量a 与b 的长度及方向之间的关系. (2)a ∥b ⇔a 1b 2-a 2b 1=0,其中a =(a 1,b 1),b =(a 2,b 2).这是代数运算,由于不需引进参数λ,从而简化代数运算.(3)a ∥b ⇔a 1b 1=a 2b 2,其中a =(a 1,b 1),b =(a 2,b 2)且b 1≠0,b 2≠0.即两向量的对应坐标成比例.通过这种形式较易记忆向量共线的坐标表示,而且不易出现搭配错误.课下能力提升(十八)[学业水平达标练]题组1向量的坐标表示1.已知=(-2,4),则下面说法正确的是()A.A点的坐标是(-2,4)B.B点的坐标是(-2,4)C.当B是原点时,A点的坐标是(-2,4)D.当A是原点时,B点的坐标是(-2,4)解析:选D由任一向量的坐标的定义可知:当A点是原点时,B点的坐标是(-2,4).()A.(-2,3) B.(2,-3)C.(2,3) D.(-2,-3)3.若A(2,-1),B(4,2),C(1,5),则解析:∵A(2,-1),B(4,2),C(1,5),=(2,3)+(-6,6)=(-4,9).答案:(-4,9)题组2平面向量的坐标运算4.设平面向量a=(3,5),b=(-2,1),则a-2b=()A.(6,3) B.(7,3)C.(2,1) D.(7,2)解析:选B∵a=(3,5),b=(-2,1),∴a-2b=(3,5)-2(-2,1)=(3,5)-(-4,2)=(7,3).5.若向量a =(x -2,3)与向量b =(1,y +2)相等,则( ) A .x =1,y =3 B .x =3,y =1 C .x =1,y =-5 D .x =5,y =-1解析:选B 由题意,知⎩⎪⎨⎪⎧x -2=1,3=y +2,解得⎩⎪⎨⎪⎧x =3,y =1.6.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4.设 (λ∈R ),则λ=________.解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所以(-2,0)=λ(-3,0), 故λ=23.答案:23∴(x 1+1,y 1-2)=13(3,6)=(1,2),(-1-x 2,2-y 2)=-13(-3,-6)=(1,2).则有⎩⎪⎨⎪⎧x 1+1=1,y 1-2=2,⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2, 解得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=-2,y 2=0. ∴C ,D 的坐标分别为(0,4)和(-2,0),因此=(-2,-4).题组3 向量共线的坐标表示8.已知A (2,-1),B (3,1),则与AB ―→平行且方向相反的向量a 是( ) A .(2,1) B .(-6,-3) C .(-1,2) D .(-4,-8) 解析:选D=(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.9.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:=(x +1,-6),=(4,-1),∵∥,∴-(x +1)+24=0,∴x =23.答案:23证明:设E (x 1,y 1),F (x 2,y 2),所以(x 1+1,y 1)=⎝⎛⎭⎫23,23,故E ⎝⎛⎭⎫-13,23;所以(x 2-3,y 2+1)=⎝⎛⎭⎫-23,1, 故F ⎝⎛⎭⎫73,0. 所以=⎝⎛⎭⎫83,-23. 又因为4×⎝⎛⎭⎫-23-83×(-1)=0,11.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),回答下列问题: (1)求3a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ;(3)若(a +k c )∥(2b -a ),求实数k .解:(1)3a +b -2c =3(3,2)+(-1,2)-2(4,1) =(9,6)+(-1,2)-(8,2) =(9-1-8,6+2-2)=(0,6). (2)∵a =m b +n c ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n ,2m +n ). ∴-m +4n =3且2m +n =2,解得m =59,n =89.(3)∵(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), ∴2×(3+4k )-(-5)×(2+k )=0. ∴k =-1613.[能力提升综合练]1.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于C ,且,则实数a等于( )A .2B .1 C.45 D.53解析:选A 设C (x 0,y 0),则y 0=12ax 0,∴=⎝⎛⎭⎫x 0-7,12ax 0-1,=⎝⎛⎭⎫1-x 0,4-12ax 0,∵,∴⎩⎪⎨⎪⎧x 0-7=2(1-x 0),12ax 0-1=2⎝⎛⎭⎫4-12ax 0,∴⎩⎪⎨⎪⎧x 0=3,a =2. 2.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D ∵四条有向线段首尾相接构成四边形,则对应向量之和为零向量,即4a +(4b -2c )+2(a -c )+d =0,∴d =-6a -4b +4c =-6(1,-3)-4(-2,4)+4(-1,-2)=(-2,-6).3.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向 D .k =-1且c 与d 反向解析:选D ∵a =(1,0),b =(0,1),若k =1,则c =a +b =(1,1),d =a -b =(1,-1),显然c 与d 不平行,排除A 、B.若k =-1,则c =-a +b =(-1,1),d =a -b =-(-1,1),即c ∥d 且c 与d 反向.4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn 等于( )A .-12 B.12C .-2D .2解析:选A 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.∴x (-y +2)-(-x -4)y =0,即x +2y =0. 答案:06.已知P 1(2,-1),P 2(-1,3),P 在直线P 1P 2上,且.则P 点的坐标为________.∴(x -2,y +1)=23(-1-x ,3-y ),∴⎩⎪⎨⎪⎧x =2+23×(-1)1+23,y =-1+23×31+23,即⎩⎨⎧x =45,y =35.故P 点坐标为⎝⎛⎭⎫45,35.∴(x -2,y +1)=-23(-1-x ,3-y ),∴⎩⎪⎨⎪⎧x =2-23×(-1)1-23,y =-1-23×31-23,即⎩⎪⎨⎪⎧x =8,y =-9.故P 点坐标为(8,-9).综上可得,P 点坐标为⎝⎛⎭⎫45,35或(8,-9). 答案:⎝⎛⎭⎫45,35或(8,-9)7.已知点O (0,0),A (1,2),B (4,5),且,试问:(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 可能为平行四边形吗?若可能,求出相应的t 值;若不可能,请说明理由.解:由题可知=(1,2),=(3,3),=(1,2)+t (3,3)=(1+3t ,2+3t ). (1)若P 在x 轴上, 则有2+3t =0,t =-23;若P 在y 轴上,则有1+3t =0, t =-13;若P 在第二象限,则有⎩⎪⎨⎪⎧1+3t <0,2+3t >0,解得-23<t <-13.(2)=(-1-3t ,-2-3t )+(4,5)=(3-3t ,3-3t ).若四边形OABP 是平行四边形,则有即⎩⎪⎨⎪⎧3-3t =1,3-3t =2,方程组显然无解. ∴四边形OABP 不可能是平行四边形.8.如图所示,已知△AOB 中,A (0,5),O (0,0),B (4,3),AD 与BC 相交于点M ,求点M 的坐标.∴74x -4⎝⎛⎭⎫y -54=0, 即7x -16y =-20.②联立①②,解得x =127,y =2,故点M 的坐标为⎝⎛⎭⎫127,2.。
平面向量基本定理及其坐标表示教案
平面向量基本定理及其坐标表示教案教学目标:1. 理解平面向量的基本定理;2. 学会将平面向量用坐标表示;3. 掌握平面向量的坐标运算。
教学内容:1. 平面向量的基本定理;2. 向量的坐标表示;3. 向量的坐标运算。
教学步骤:一、导入(5分钟)1. 通过复习预备知识,引导学生回顾向量的定义及基本性质。
2. 提问:我们已经学习了向量的哪些运算?这些运算有什么应用?二、平面向量的基本定理(10分钟)1. 介绍平面向量的基本定理的内容。
2. 通过示例,解释平面向量的基本定理的应用。
3. 引导学生通过图形直观地理解平面向量的基本定理。
三、向量的坐标表示(10分钟)1. 介绍向量的坐标表示方法。
2. 通过示例,解释如何用坐标表示一个向量。
3. 引导学生通过坐标系直观地理解向量的坐标表示。
四、向量的坐标运算(10分钟)1. 介绍向量的坐标运算规则。
2. 通过示例,解释如何进行向量的坐标运算。
3. 引导学生通过坐标系直观地理解向量的坐标运算。
五、巩固练习(10分钟)1. 提供一些有关平面向量的基本定理及其坐标表示的练习题。
2. 引导学生独立完成练习题,巩固所学知识。
3. 对学生的练习结果进行点评和指导。
教学评价:1. 通过课堂讲解和示例,评价学生对平面向量的基本定理及其坐标表示的理解程度;2. 通过练习题,评价学生对平面向量的坐标运算的掌握程度;3. 通过学生的提问和参与程度,评价学生的学习兴趣和积极性。
教学资源:1. 教学PPT或黑板;2. 练习题。
教学建议:1. 在讲解平面向量的基本定理时,可以通过图形和实际例子来说明定理的意义和应用;2. 在讲解向量的坐标表示时,可以借助坐标系,直观地展示向量的坐标表示方法;3. 在讲解向量的坐标运算时,可以通过示例和练习题,让学生熟练掌握运算规则;4. 在巩固练习环节,可以提供不同难度的练习题,以满足不同学生的学习需求;5. 在教学过程中,鼓励学生提问和参与讨论,以提高学生的学习兴趣和积极性。
高中数学教案 必修4教案 第二章 平面向量 2.3.3-2.3.4平面向量的坐标运算,平面向量共线的坐标表示
2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示整体设计教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.三维目标1.通过经历探究活动,使学生掌握平面向量的和、差、实数与向量的积的坐标表示方法.理解并掌握平面向量的坐标运算以及向量共线的坐标表示.2.引入平面向量的坐标可使向量运算完全代数化,平面向量的坐标成了数与形结合的载体.3.在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.重点难点教学重点:平面向量的坐标运算.教学难点:对平面向量共线的坐标表示的理解.课时安排1课时教学过程导入新课思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?推进新课新知探究提出问题①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗?②如图1,已知A(x 1,y 1),B(x 2,y 2),怎样表示的坐标?你能在图中标出坐标为(x 2-x 1,y 2-y 1)的P 点吗?标出点P 后,你能总结出什么结论?活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:图1a +b =(x 1i+y 1j )+(x 2i+y 2j )=(x 1+x 2)i+(y 1+y 2)j ,即a +b =(x 1+x 2,y 1+y 2).同理a -b =(x 1-x 2,y 1-y 2).又λa =λ(x 1i+y 1j )=λx 1i+λy 1j .∴λa =(λx 1,λy 1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A 与坐标原点O 重合,则平移后的B 点位置就是P 点.向量的坐标与以原点为始点,点P 为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系. 学生通过平移也可以发现:向量的模与向量的模是相等的.由此,我们可以得出平面内两点间的距离公式:||=|OP |=221221)()(y y x x -+-.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能. ②=-=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题①如何用坐标表示两个共线向量?②若a =(x 1,y 1),b =(x 2,y 2),那么2211x y x y =是向量a 、b 共线的什么条件? 活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),即⎪⎩⎪⎨⎧==.,2121y y x x λλ消去λ后得x 1y 2-x 2y 1=0.这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b (b ≠0)共线.又我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y 1是等价的,但这与2211x y x y =是不等价的.因为当x 1=x 2=0时,x 1y 2-x 2y 1=0成立,但2211x y x y =均无意义.因此2211x y x y =是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线.②充分不必要条件.提出问题a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢?活动:教师引导推证:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠a ,由a =λb ,(x 1,y 1)=λ(x 2,y 2)⎪⎩⎪⎨⎧==⇒.,2121y y x x λλ消去λ,得x 1y 2-x 2y 1=0. 讨论结果:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.教师应向学生特别提醒感悟:1°消去λ时不能两式相除,∵y 1、y 2有可能为0,而b ≠0,∴x 2、y 2中至少有一个不为0. 2°充要条件不能写成2211x y x y =(∵x 1、x 2有可能为0). 3°从而向量共线的充要条件有两种形式:a ∥b (b ≠0)⎩⎨⎧===⇔.01221y x y x b a λ应用示例思路1例1 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5);a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练1.(2007海南高考,4) 已知平面向量a =(1,1),b =(1,-1),则向量21a 23-b 等于( ) A.(-2,-1) B.(-2,1) C.(-1,0) D.(-1,2) 答案:D2.(2007全国高考,3) 已知向量a =(-5,6),b =(6,5),则a 与b …( )A.垂直B.不垂直也不平行C.平行且同向D.平行且反向答案:A图2 例2 如图2,已知ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D 的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量OD 的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D 的坐标为(x,y). ∵=(-1-(-2),3-1)=(1,2),=(3-x,4-y).由=,得(1,2)=(3-x,4-y).∴⎩⎨⎧-=-=.42,31x x ∴⎩⎨⎧==.2,2y x ∴顶点D 的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知+=+==(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1), 而OD =OB +=(-1,3)+(3,-1)=(2,2),∴顶点D 的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练图3如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,仿例二得:D 1=(2,2);当平行四边形为ACDB 时,仿例二得:D 2=(4,6);当平行四边形为DACB 时,仿上得:D 3=(-6,0).例3 已知A(-1,-1),B(1,3),C(2,5),试判断A 、B 、C 三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C 三点共线.下面给出证明. ∵=(1-(-1),3-(-1))=(2,4), AC =(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴AB ∥AC ,且直线AB 、直线AC 有公共点A,∴A 、B 、C 三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练已知a =(4,2),b =(6,y),且a ∥b ,求解:∵a ∥b ,∴4y-2×6=0.∴y=3.思路2例2 设点P 是线段P 1P 2上的一点,P 1、P 2的坐标分别是(x 1,y 1)、(x 2,y 2).(1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当21PP P P =λ时,点P 的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法: 由P P 1=λ2PP ,知(x-x 1,y-y 1)=λ(x 2-x,y 2-y), 即⎪⎪⎩⎪⎪⎨⎧++=++=⇒⎪⎩⎪⎨⎧-=--=-.1,1)()(21212121λλλλλλy y y x x x y y y y x x x x 这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P 点位置的影响,也可鼓励学生课后探索.图4解:(1)如图4,由向量的线性运算可知=21 (1+2)=(.2,22121y y x x ++). 所以点P 的坐标是(.2,22121y y x x ++) (2)如图5,当点P 是线段P 1P 2的一个三等分点时,有两种情况,即21PP P P =21或21PP P P =2. 如果21PP P P =21,那么图5OP =1OP +P P 1=1+3121P P =1OP +31(2OP -1OP ) =321OP +312OP =(32,322121y y x x ++). 即点P 的坐标是(32,322121y y x x ++). 同理,如果21PP P P =2,那么点P 的坐标是.32,322121y y x x ++ 点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练在△ABC 中,已知点A(3,7)、B(-2,5).若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.解:(1)若AC 的中点在y 轴上,则BC 的中点在x 轴上,设点C 的坐标为(x,y),由中点坐标公式,得,025,023=+=+y x ∴x=-3,y=-5,即C 点坐标为(-3,-5).(2)若AC 的中点在x 轴上,则BC 的中点在y 轴上,则同理可得C 点坐标为(2,-7).综合(1)(2),知C 点坐标为(-3,-5)或(2,-7).例2 已知点A(1,2),B(4,5),O 为坐标原点,=+t .若点P 在第二象限,求实数t 的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知=(4,5)-(1,2)=(3,3).∴OP =(1,2)+t(3,3)=(3t+1,3t+2).若点P 在第二象限,则3132023013-<<-⇒⎩⎨⎧>+<+t t t 故t 的取值范围是(32-,31-). 点评:此题通过向量的坐标运算,将点P 的坐标用t 表示,由点P 在第二象限可得到一个关于t 的不等式组,这个不等式组的解集就是t 的取值范围.变式训练已知OA =(cosθ,sinθ),OB =(1+sinθ,1+cosθ),其中0≤θ≤π,求||的取值范围.解:∵AB =OB -OA =(1+sinθ,1+cosθ)-(cosθ,sinθ)=(1+sinθ-cosθ,1+cosθ-sinθ).∴||2=(1+sinθ-cosθ)2+(1+cosθ-sinθ)2=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2=2+2(sinθ-cosθ)2=2+2(1-2sinθcosθ)=4-4sinθcosθ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故||的取值范围是[2,6].知能训练课本本节练习.解答:1.(1)a +b =(3,6),a -b =(-7,2);(2)a +b =(1,11),a -b =(7,-5);(3)a +b =(0,0),a -b =(4,6);(4)a +b =(3,4),a -b =(3,-4).2.-2a +4b =(-6,-8),4a +3b =(12,5).3.(1)AB =(3,4),BA =(-3,-4);(2)AB =(9,-1),BA =(-9,1);(3)=(0,2),=(0,-2);(4)=(5,0),=(-5,0). 4.∥.证明:=(1,-1),=(1,-1),所以=.所以AB ∥CD.点评:本题有两个要求:一是判断,二是证明.通过作图发现规律,提出猜想,然后再证明结论是一个让学生经历数学化的过程.5.(1)(3,2);(2)(1,4);(3)(4,-5).6.(310,1)或(314,-1). 7.解:设P(x,y),由点P 在线段AB 的延长线上,且||=23||,得 (x-2,y-3)=23(x-4,y+3), 即⎩⎨⎧+=--=-.9362.12342y y x x 解之,得⎩⎨⎧-==.15,8y x 所以点P 的坐标为(8,-15).点评:本题希望通过向量方法求解,培养学生应用向量的意识.课堂小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.作业设计感想1.本节课中向量的坐标表示及运算实际上是向量的代数运算.这对学生来说学习并不困难,可大胆让学生自己探究.本教案设计流程符合新课改精神.教师在引导学生探究时,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构基础上,进一步熟悉向量的坐标表示以及运算法则、运算律,能熟练向量代数化的重要作用和实际生活中的应用,并加强数学应用意识,提高分析问题、解决问题的能力.2.平面向量的坐标运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等.3.通过平面向量坐标的加、减代数运算,结合图形,不但可以建立向量的坐标与点的坐标之间的联系,而且教师可在这两题的基础上稍作推广,就可通过求向量的模而得到直角坐标系内的两点间的距离公式甚至可以推出中点坐标公式.它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.。
高中数学 必修四 (2.3.4 平面向量共线的坐标表示)教案 新人教A版必修4
2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示教学过程导入新课思路 1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y 的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?推进新课新知探究提出问题①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗?②如图1,已知A(x1,y1),B(x2,y2),怎样表示AB的坐标?你能在图中标出坐标为(x2-x1,y2-y1)的P点吗?标出点P后,你能总结出什么结论?活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:图1a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j,即a+b=(x1+x2,y1+y2).同理a-b=(x1-x2,y1-y2).又λa=λ(x1i+y1j)=λx1i+λy1j.∴λa=(λx1,λy1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A与坐标原点O重合,则平移后的B点位置就是P点.向量的坐标与以原点为始点,点P为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量的模与向量的模是相等的.由此,我们可以得出平面内两点间的距离公式: ||=||=221221)()(y y x x -+-.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能. ②AB =OB -OA =(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题①如何用坐标表示两个共线向量?②若a =(x 1,y 1),b =(x 2,y 2),那么2211x y x y =是向量a 、b 共线的什么条件? 活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),即⎪⎩⎪⎨⎧==.,2121y y x x λλ消去λ后得x 1y 2-x 2y 1=0. 这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b (b ≠0)共线.又我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y 1是等价的,但这与2211x y x y =是不等价的.因为当x 1=x 2=0时,x 1y 2-x 2y 1=0成立,但2211x y x y =均无意义.因此2211x y x y =是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线.②充分不必要条件.提出问题a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢?活动:教师引导推证:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠a ,由a =λb ,(x 1,y 1)=λ(x 2,y 2)⎪⎩⎪⎨⎧==⇒.,2121y y x x λλ消去λ,得x 1y 2-x 2y 1=0. 讨论结果:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.教师应向学生特别提醒感悟:1°消去λ时不能两式相除,∵y 1、y 2有可能为0,而b ≠0,∴x 2、y 2中至少有一个不为0. 2°充要条件不能写成2211x y x y =(∵x 1、x 2有可能为0).3°从而向量共线的充要条件有两种形式:a ∥b (b ≠0)⎩⎨⎧===⇔.01221y x y x b a λ应用示例 思路1例1 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5);a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练1.(2007海南高考,4) 已知平面向量a =(1,1),b =(1,-1),则向量21a 23-b 等于( ) A.(-2,-1) B.(-2,1) C.(-1,0)D.(-1,2)答案:D2.(2007全国高考,3) 已知向量a =(-5,6),b =(6,5),则a 与b …( )A.垂直B.不垂直也不平行C.平行且同向D.平行且反向答案:A图2 例2 如图2,已知ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D 的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量OD 的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D 的坐标为(x,y). ∵AB =(-1-(-2),3-1)=(1,2),DC =(3-x,4-y).由AB =DC ,得(1,2)=(3-x,4-y).∴⎩⎨⎧-=-=.42,31x x∴⎩⎨⎧==.2,2y x∴顶点D 的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知+=+==(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1), 而=+=(-1,3)+(3,-1)=(2,2),∴顶点D 的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练图3如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,仿例二得:D 1=(2,2);当平行四边形为ACDB 时,仿例二得:D 2=(4,6);当平行四边形为DACB 时,仿上得:D 3=(-6,0).例3 已知A(-1,-1),B(1,3),C(2,5),试判断A 、B 、C 三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C 三点共线.下面给出证明. ∵=(1-(-1),3-(-1))=(2,4), AC =(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴AB ∥AC ,且直线AB 、直线AC 有公共点A,∴A、B 、C 三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练已知a =(4,2),b =(6,y),且a ∥b ,求解:∵a ∥b ,∴4y -2×6=0.∴y=3.思路2例2 设点P 是线段P 1P 2上的一点,P 1、P 2的坐标分别是(x 1,y 1)、(x 2,y 2).(1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当21PP P P =λ时,点P 的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法: 由P P 1=λ2PP ,知(x-x 1,y-y 1)=λ(x 2-x,y 2-y), 即⎪⎪⎩⎪⎪⎨⎧++=++=⇒⎪⎩⎪⎨⎧-=--=-.1,1)()(21212121λλλλλλy y y x x x y y y y x x x x 这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P 点位置的影响,也可鼓励学生课后探索.图4解:(1)如图4,由向量的线性运算可知=21 (1+2)=(.2,22121y y x x ++). 所以点P 的坐标是(.2,22121y y x x ++) (2)如图5,当点P 是线段P 1P 2的一个三等分点时,有两种情况,即21PP P P =21或21PP P P =2. 如果21PP P P =21,那么图5=1+P P 1=1+3121P P =1OP +31(2OP -1OP ) =321OP +312OP =(32,322121y y x x ++). 即点P 的坐标是(32,322121y y x x ++). 同理,如果21PP P P =2,那么点P 的坐标是.32,322121y y x x ++ 点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练在△A BC 中,已知点A(3,7)、B(-2,5).若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.解:(1)若AC 的中点在y 轴上,则BC 的中点在x 轴上,设点C 的坐标为(x,y),由中点坐标公式,得,025,023=+=+y x ∴x=-3,y=-5,即C 点坐标为(-3,-5).(2)若AC 的中点在x 轴上,则BC 的中点在y 轴上,则同理可得C 点坐标为(2,-7). 综合(1)(2),知C 点坐标为(-3,-5)或(2,-7).例2 已知点A(1,2),B(4,5),O 为坐标原点,=+t .若点P 在第二象限,求实数t 的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知=(4,5)-(1,2)=(3,3).∴OP =(1,2)+t(3,3)=(3t+1,3t+2).若点P 在第二象限,则3132023013-<<-⇒⎩⎨⎧>+<+t t t 故t 的取值范围是(32-,31-). 点评:此题通过向量的坐标运算,将点P 的坐标用t 表示,由点P 在第二象限可得到一个关于t 的不等式组,这个不等式组的解集就是t 的取值范围.变式训练已知=(cos θ,sin θ),=(1+sin θ,1+cos θ),其中0≤θ≤π,求||的取值范围.解:∵=-=(1+sin θ,1+cos θ)-(cos θ,sin θ)=(1+sin θ-cos θ,1+cos θ-sin θ). ∴|AB |2=(1+sin θ-cos θ)2+(1+cos θ-sin θ)2=[1+(sin θ-cos θ)]2+[1-(sin θ-cos θ)]2=2+2(sin θ-cos θ)2=2+2(1-2sin θcos θ)=4-4sin θcos θ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故||的取值范围是[2,6].知能训练课本本节练习.解答:1.(1)a +b =(3,6),a -b =(-7,2);(2)a +b =(1,11),a -b =(7,-5);(3)a +b =(0,0),a -b =(4,6);(4)a +b =(3,4),a -b =(3,-4).2.-2a +4b =(-6,-8),4a +3b =(12,5).3.(1)=(3,4),=(-3,-4);(2)=(9,-1),=(-9,1); (3)=(0,2),=(0,-2);(4)=(5,0),=(-5,0).4.AB ∥CD .证明:=(1,-1),=(1,-1),所以=.所以AB ∥CD.点评:本题有两个要求:一是判断,二是证明.通过作图发现规律,提出猜想,然后再证明结论是一个让学生经历数学化的过程.5.(1)(3,2);(2)(1,4);(3)(4,-5).6.(310,1)或(314,-1). 7.解:设P(x,y),由点P 在线段AB 的延长线上,且|AP |=23|PB |,得 (x-2,y-3)=23(x-4,y+3), 即⎩⎨⎧+=--=-.9362.12342y y x x 解之,得⎩⎨⎧-==.15,8y x 所以点P 的坐标为(8,-15).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3.4 平面向量共线的坐标表示
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量的坐标表示
分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=
把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =
其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,
)0,1(=i ,)1,0(=j ,)0,0(0=.
2.平面向量的坐标运算
若),(11y x a =,),(22y x b =,
则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.
若),(11y x A ,),(22y x B ,则()1212,y y x x --=
二、讲解新课:
a ∥
b (b )的充要条件是x 1y 2-x 2y 1=0
设a =(x 1, y 1) ,b =(x 2, y 2) 其中b a . 由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2
121y y x x λλ 消去λ,x 1y 2-x 2y 1=0
探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ∴x 2, y 2中至少有
一个不为0
(2)充要条件不能写成2
211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b )01221=-=⇔y x y x λ
三、讲解范例: 例1已知a =(4,2),b =(6, y),且a ∥b ,求y.
例2已知A(-1, -1), B(1,3), C(2,5),试判断A ,B ,C 三点之间的位置关系. 例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).
(1) 当点P 是线段P 1P 2的中点时,求点P 的坐标;
(2) 当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.
例4若向量a =(-1,x)与b =(-x , 2)共线且方向相同,求x
解:∵a =(-1,x)与b =(-x , 2) 共线 ∴(-1)×2- x •(-x )=0
∴x=±2 ∵a 与b 方向相同 ∴x=2
例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线
AB 与平行于直线CD 吗?
解:∵=(1-(-1), 3-(-1))=(2, 4) , =(2-1,7-5)=(1,2)
又 ∵2×2-4×1=0 ∴∥
又 ∵ =(1-(-1), 5-(-1))=(2,6) ,=(2, 4),2×4-2×6
0 ∴与AB 不平行
∴A ,B ,C 不共线 ∴AB 与CD 不重合 ∴AB ∥CD
四、课堂练习:
1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )
A.6 B .5 C.7 D.8
2.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( )
A.-3
B.-1
C.1
D.3
3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量). AB与共线,则x、y的值可能分别为()
A.1,2
B.2,2
C.3,2
D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y= .
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为 .
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= .
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:。