(完整版)同角三角函数与诱导公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同角三角函数基本关系
1,平方关系:sin 2α+cos 2α=1;
2,商数关系:tanα=α
αcos sin 3,同角三角函数的关系式的基本用途:
根据一个角的某一个三角函数值,求出该角的其他三角函数值;化简同角三角函数式;证明同角的三角恒等式.
题型一,同角间的计算
利用基本关系计算,开方时注意正负
1,若sin α=45
,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43
2,化简1-sin 2160°的结果是( )
A .cos160°
B .-cos160°
C .±cos160°
D .±|cos160°|
3,若cos α=-817
,则sin α=________,tan α=________
4,若α是第四象限的角,tan α=-512
,则sin α等于( ) A.15 B .-15 C.315 D .-513
5,若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α
的值为( ) A .3 B .-3 C .1 D .-1
6,计算1-2sin40°·cos40°sin40°-1-sin 240°
=________。
7,已知8
1cos sin =⋅αα,则ααsin cos -的值等于( ) A .±34 B .±23 C .23 D .-2
3
8,已知
2cos sin cos sin =-+θ
θθθ,求θθcos sin ⋅的值。
9,已知sin α·cos α=
81,且2
4παπ<<,则cos α-sin α的值是多少?
10,已知sin θ +cos θ=51,θ∈(0,π),求值:
(1)tan θ;
(2)sin θ-cos θ;(3)sin 3θ+cos 3θ。
11,求证:
()x
x x x x x x x cos sin 1sin cos 2cos 1sin sin 1cos ++-=+-+。
题型二,齐次式
齐次式特征:关于弦的分式,且分子分母的每一项次数均相等。
命题形式:给切求弦的分式,反之亦可。
1,已知2tan =α,求下列各式的值: (1)ααα
αsin cos 3sin 3cos 2++; (2)2cos sin 2sin 2+-ααα;
(3) αααα2222cos 9sin 4cos 3sin 2-- (4)4sin 2
α
-3sin αcos α-5cos 2α
2,若2cos sin 2cos sin =-+ααα
α,则=αtan ( )
A .1
B .- 1
C .43
D .34-
3,若3tan =α,则ααα
α333
3cos 2sin cos 2sin -+的值为
4,已知tan α=-3,则1-sin αcos α
2sin αcos α+cos 2α=________。
诱导公式
口诀:奇变偶不变,符号看象限
诱导公式(一)
tan )2tan(cos )2(cos sin )2sin(ααπα
απααπ=+=+=+k k k
说明:①终边相同的角的同一三角函数值相等 ②可以把求任意角的三角函数值问题转化为求0~π2角的三角函数值问题。
诱导公式(二)
tan )tan(cos )cos( sin )sin(ααα
ααα-=-=--=-
诱导公式(三) tan )tan(cos )cos( sin )sin(ααπα
απααπ=+-=+-=+
诱导公式(四) tan )tan(cos )cos( sin )sin(ααπα
απααπ-=--=-=- 诱导公式(五) sin )2cos( cos )2sin(ααπ
ααπ=-=- 诱导公式(六) sin )2
cos( cos )2sin(
ααπααπ-=+=+ 诱导公式生效范围:角度中出现2π的整数倍 题型一:给角求角问题 先利用2
π的倍数将角化小,若出现特殊角,诱导公式直接生效,若未出现特殊角,则首先利用诱导公式,再利用同角公式。
1、求下列各三角函数值:
(1)cos225°; (2)sin480°; (3)cos330°。
2,求值
(1)10sin()3π-
= __________; (2)29cos()6
π= __________; (3)0tan(855)-= _______ ___; (4)16sin()3π-= ________。
3,求下列函数值:
580tan )4( ,670sin )3( ),4
31sin()2( ,665cos
)1(︒-ππ
4,sin
34π·cos 6
25π·tan 45π的值是( )
A .-43
B .4
3 C .-43 D .43
5,计算:cos (-2640°)+sin1665°= 。
6,已知a = 200sin ,则 160tan 等于 ( ) A 、21a a -- B 、21a a
- C 、a a 21-- D 、a a 2
1-
7,若()
k =-0100cos ,则080tan 等于 。
题型二,化简求值问题
直接消角找出特殊角,通过加减找出特殊角,然后利用诱导公式
1,化简:)
(cos )5sin()4sin()3(sin )(cos )4cos(222πθθππθπθπθπθ--+-+++= 。