钢结构轴心受力构件PPT课件
合集下载
4-钢结构设计原理-轴心受力构件1 钢结构设计原理
![4-钢结构设计原理-轴心受力构件1 钢结构设计原理](https://img.taocdn.com/s3/m/9dd27dfb84254b35effd3403.png)
第四章 轴心受力构件
4 轴
主要内容:
心
受 力
1、轴心受拉构件的强度和刚度
构
件 设
2、轴心受压构件的强度
计
3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4
轴
心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的
计
分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在
4 轴
主要内容:
心
受 力
1、轴心受拉构件的强度和刚度
构
件 设
2、轴心受压构件的强度
计
3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4
轴
心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的
计
分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在
钢结构课件 轴心受压构件的整体稳定性
![钢结构课件 轴心受压构件的整体稳定性](https://img.taocdn.com/s3/m/2e8ad05f48d7c1c709a14522.png)
N=1000kN, 柱的长度4.2m。柱截面为焊接工字形,具有轧制边 翼缘,尺寸2-10×220, 腹板1-685
4.2.6 轴心受压构件扭转和弯扭屈曲
1、扭转屈曲
根据弹性稳定理论,两端铰支且翘曲无约束的杆件,其扭 转屈曲临界力,可由下式计算:
《钢结构稳定理论与设计》 陈骥 著
NE
fy
弹塑性阶段
N A
Nv0
W 1 N
NE
fy
相对初弯曲 ε0 = v0 / ρ = v0 / (W/A)
N [1 A 1
0
N
] NE
fy
N A
1
1000
i
1
1 N
N
E
fy
上式的解即为Perry-Robertson公式(柏利公式)
i0—截面关于剪心的极回转半径。i02
e02
ix2
i
2 y
引进扭转屈曲换算长细比z :
1、扭转屈曲
满足
I 0
z =5.07b/t
x (y) ≥ z =5.07b/t
z2
25.7
Ai02 It
25.7
Ix
Iy It
2t 2b3 12
25.7 4bt3 3
选择计算 §4.6 板件的稳定和屈曲后强度的利用
§4.3 实腹式柱和格构式柱的截面选择计算
4.3.1 实腹式柱的截面选择计算
1、实腹式轴心压杆的截面形式 ①考虑原则 ②常用截面
2、实腹式轴心压杆计算步骤
§4.3 实腹式柱和格构式柱的截面选择计算
4.2.6 轴心受压构件扭转和弯扭屈曲
1、扭转屈曲
根据弹性稳定理论,两端铰支且翘曲无约束的杆件,其扭 转屈曲临界力,可由下式计算:
《钢结构稳定理论与设计》 陈骥 著
NE
fy
弹塑性阶段
N A
Nv0
W 1 N
NE
fy
相对初弯曲 ε0 = v0 / ρ = v0 / (W/A)
N [1 A 1
0
N
] NE
fy
N A
1
1000
i
1
1 N
N
E
fy
上式的解即为Perry-Robertson公式(柏利公式)
i0—截面关于剪心的极回转半径。i02
e02
ix2
i
2 y
引进扭转屈曲换算长细比z :
1、扭转屈曲
满足
I 0
z =5.07b/t
x (y) ≥ z =5.07b/t
z2
25.7
Ai02 It
25.7
Ix
Iy It
2t 2b3 12
25.7 4bt3 3
选择计算 §4.6 板件的稳定和屈曲后强度的利用
§4.3 实腹式柱和格构式柱的截面选择计算
4.3.1 实腹式柱的截面选择计算
1、实腹式轴心压杆的截面形式 ①考虑原则 ②常用截面
2、实腹式轴心压杆计算步骤
§4.3 实腹式柱和格构式柱的截面选择计算
钢结构课件:轴心受力构件PPT课件
![钢结构课件:轴心受力构件PPT课件](https://img.taocdn.com/s3/m/0b2eae303186bceb18e8bbd4.png)
1)有效比例极限 残余应力的存在,使短柱平均 应力到达A点后,出现一过渡曲线 ABC,然后到达屈服点,亦即残余应 力的存在降低了构件的比例极限,使 构件提前进入弹塑性工作。 A点的应力称为有效比例极限, 记为fp 。
第36页/共171页
§3 受压构件的整体稳定
忽略残余应力
残余应力对轴心受压短柱平均应力~应变曲线的影响
第22页/共171页
§3 受压构件的整体稳定
研究结构极限承载能力,可依屈曲后性能将稳定问题分为如下三类:
P
(1)稳定分岔屈曲
分岔屈曲后,结构还可承受荷载增量。
P
轴心压力作用下的杆以及中面受压的
平板都具有这种特征。
平板具有相当可观的屈曲后强度可工
程设计利用。
第23页/共171页
v v
§3 受压构件的整体稳定
第20页/共171页
§3 受压构件的整体稳定
6) 第一类稳定、第二类稳定
结构丧失稳定时,平衡形式发生改变的,称为丧失了第一类稳定性或称 为平衡分枝失稳。
第二类稳定性的特征是结构丧失稳定时弯曲平衡形式不发生改变,只是
由于结构原来的弯曲变形增大将不能正常工作。也称为极值点失稳。
第21页/共171页
§3 受压构件的整体稳定
§3 受压构件的整体稳定
2) 平衡状态的分枝 3) 临界力、临界应力
随遇(中性)平衡是从稳定平衡过渡到不稳定平衡的临界状态; 中性平衡时的轴心压力,称为临界力; 相应的截面应力,称为临界应力。
无缺陷的轴心受压构件发生弯曲屈曲时,构件的变形发生了性质上的变化 ,即构件由直线形式改变为弯曲形式,且这种变化带有突然性。
图净截面面积的计算
第12页/共171页
§2构件的强度和刚度
第36页/共171页
§3 受压构件的整体稳定
忽略残余应力
残余应力对轴心受压短柱平均应力~应变曲线的影响
第22页/共171页
§3 受压构件的整体稳定
研究结构极限承载能力,可依屈曲后性能将稳定问题分为如下三类:
P
(1)稳定分岔屈曲
分岔屈曲后,结构还可承受荷载增量。
P
轴心压力作用下的杆以及中面受压的
平板都具有这种特征。
平板具有相当可观的屈曲后强度可工
程设计利用。
第23页/共171页
v v
§3 受压构件的整体稳定
第20页/共171页
§3 受压构件的整体稳定
6) 第一类稳定、第二类稳定
结构丧失稳定时,平衡形式发生改变的,称为丧失了第一类稳定性或称 为平衡分枝失稳。
第二类稳定性的特征是结构丧失稳定时弯曲平衡形式不发生改变,只是
由于结构原来的弯曲变形增大将不能正常工作。也称为极值点失稳。
第21页/共171页
§3 受压构件的整体稳定
§3 受压构件的整体稳定
2) 平衡状态的分枝 3) 临界力、临界应力
随遇(中性)平衡是从稳定平衡过渡到不稳定平衡的临界状态; 中性平衡时的轴心压力,称为临界力; 相应的截面应力,称为临界应力。
无缺陷的轴心受压构件发生弯曲屈曲时,构件的变形发生了性质上的变化 ,即构件由直线形式改变为弯曲形式,且这种变化带有突然性。
图净截面面积的计算
第12页/共171页
§2构件的强度和刚度
钢结构课件 轴心受力构件的强度及截面选择
![钢结构课件 轴心受力构件的强度及截面选择](https://img.taocdn.com/s3/m/e53e025d9b6648d7c0c74622.png)
37
对于闭口截面
It 4A2 /
ds t
闭合截面的循环剪力流
截面面积相同的两种截面
It≈1:500 , ≈30:1
38
约束扭转: 翘曲变形受到约束的扭转
悬臂工字梁的约束扭转
39
扭转剪应力分布
上翼缘的内力
MT Ms M
其中 Ms GIt GIt
M Vf h EI
23
F E
(a) 弹性工作阶段OE:疲劳计算、冷弯薄壁型钢 (b) 弹塑性工作阶段EC:一般受弯构件 (c) 塑性工作阶段CF:塑性铰 (d) 应变硬化阶段FD:一般不利用
24
a a
σ
fy
xx
fy
fy
M e Wn f y
M p Wpn f y
Wn — 梁净截面模量 Wpn — 梁塑性净截面模量
Q235,截面无削弱,计算长度为12.2m,承受静力荷载设计值
为900kN,要求验算此拉杆的强度。
y
【解】:
1、截面特性计算:查附表得
x
x
截面面积 :An = 2×28.91 = 57.82cm2
回转半径: ix = 3.83cm, iy = 5.41cm
y
2、强度验算
= N / An = 900/57.82×10 = 155.7 < f = 215 N/mm2, 满足
2
§3.1 轴心受力构件的强度及截面选择
定义:构件只承受轴心力的作用。
承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
3
§3.1 轴心受力构件的强度及截面选择
3.1.1 轴心受力构件的应用和截面形式(了解)
对于闭口截面
It 4A2 /
ds t
闭合截面的循环剪力流
截面面积相同的两种截面
It≈1:500 , ≈30:1
38
约束扭转: 翘曲变形受到约束的扭转
悬臂工字梁的约束扭转
39
扭转剪应力分布
上翼缘的内力
MT Ms M
其中 Ms GIt GIt
M Vf h EI
23
F E
(a) 弹性工作阶段OE:疲劳计算、冷弯薄壁型钢 (b) 弹塑性工作阶段EC:一般受弯构件 (c) 塑性工作阶段CF:塑性铰 (d) 应变硬化阶段FD:一般不利用
24
a a
σ
fy
xx
fy
fy
M e Wn f y
M p Wpn f y
Wn — 梁净截面模量 Wpn — 梁塑性净截面模量
Q235,截面无削弱,计算长度为12.2m,承受静力荷载设计值
为900kN,要求验算此拉杆的强度。
y
【解】:
1、截面特性计算:查附表得
x
x
截面面积 :An = 2×28.91 = 57.82cm2
回转半径: ix = 3.83cm, iy = 5.41cm
y
2、强度验算
= N / An = 900/57.82×10 = 155.7 < f = 215 N/mm2, 满足
2
§3.1 轴心受力构件的强度及截面选择
定义:构件只承受轴心力的作用。
承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
3
§3.1 轴心受力构件的强度及截面选择
3.1.1 轴心受力构件的应用和截面形式(了解)
《钢结构》轴心受力构件图文知识讲解57页文档
![《钢结构》轴心受力构件图文知识讲解57页文档](https://img.taocdn.com/s3/m/9280f6d50722192e4436f68f.png)
END
《钢结构》轴心受力构件图文知识讲 解
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
《钢结构设计原理》教学课件—05轴心受力构件
![《钢结构设计原理》教学课件—05轴心受力构件](https://img.taocdn.com/s3/m/b3a2d7f50722192e4436f68d.png)
假定: A、达到临界力Ncr时杆件挺直; B、杆微弯时,轴心力增加△N,其产生的平均压应力 与弯曲拉应力相等。
临界力和临界应力:
Ncr
2Et I
l2 0
稳定的影响
如前所述,如果将钢材视为理想的弹塑性材料, 则压杆的临界力与长细比的关系曲线(柱子曲线)应为:
初 始
y
1.截面为双轴对称或极对称构件:
x lox ix
y loy i y
x
x
对于双轴对称十字形截面,为了防止扭 转屈曲(torsional buckling),尚应满足:
y
x或 y 5.07 b t
b t 悬伸板件宽厚比。
y
xt
b
x
2.截面为单轴对称构件:
绕非对称轴x轴: x lox i x
y
绕对称轴y轴屈曲时,一般为弯扭屈曲, y
其临界力低于弯曲屈曲,所以计算时, x
x
以换算长细比λyz代替λy ,计算公式如下:
y
1
yz
1 2
y2
z2
y2 z2
2 4 1 e02
i02
y2z2
2
z2 i02 A It 25.7 I l2
式中:
i02 e02 ix2 iy2
时, 可 采p 用欧E拉f公p 式计算临界应力(critical stress);
当 N A 或f p f y rc 时 , 截p 面出E现f塑p 性区, 由切线模量理论知,用截面弹性区的惯性矩Ie代替全 截面惯性矩I,即得柱的临界应力:
N cr
2 EIe
l2
2 EI
l2
Ie I
cr
2E 2
fp
或长细比:
临界力和临界应力:
Ncr
2Et I
l2 0
稳定的影响
如前所述,如果将钢材视为理想的弹塑性材料, 则压杆的临界力与长细比的关系曲线(柱子曲线)应为:
初 始
y
1.截面为双轴对称或极对称构件:
x lox ix
y loy i y
x
x
对于双轴对称十字形截面,为了防止扭 转屈曲(torsional buckling),尚应满足:
y
x或 y 5.07 b t
b t 悬伸板件宽厚比。
y
xt
b
x
2.截面为单轴对称构件:
绕非对称轴x轴: x lox i x
y
绕对称轴y轴屈曲时,一般为弯扭屈曲, y
其临界力低于弯曲屈曲,所以计算时, x
x
以换算长细比λyz代替λy ,计算公式如下:
y
1
yz
1 2
y2
z2
y2 z2
2 4 1 e02
i02
y2z2
2
z2 i02 A It 25.7 I l2
式中:
i02 e02 ix2 iy2
时, 可 采p 用欧E拉f公p 式计算临界应力(critical stress);
当 N A 或f p f y rc 时 , 截p 面出E现f塑p 性区, 由切线模量理论知,用截面弹性区的惯性矩Ie代替全 截面惯性矩I,即得柱的临界应力:
N cr
2 EIe
l2
2 EI
l2
Ie I
cr
2E 2
fp
或长细比:
中南大学《钢结构原理》课件第五章 轴心受力构件
![中南大学《钢结构原理》课件第五章 轴心受力构件](https://img.taocdn.com/s3/m/5afe5812eff9aef8941e06d8.png)
☆措施(确保长细比不是很小,不扭转失稳)
y (x ) 5.07b / t
☆长细较大时,弯曲失稳起控制作用,作弯曲失稳验算。
中南大学桥梁工程系
第五章 轴心受力构件
5.5 轴心受压构件局部稳定性
1、局部稳定的概念
轴心受压柱局部屈曲变形
轴心受压构件翼缘的凸曲现象
中南大学桥梁工程系
第五章 轴心受力构件
1916年因施工问题又发生一次倒塌事故。
前苏联在1951~1977年间共发生59起重大钢结构事故,有17起 属稳定问题。
(设计、制作、安装或使用不当都可能引发稳定事故)
例如:
1957年前苏联古比雪夫列宁冶金厂锻压车间,7榀1200m2屋盖塌落。 起因是一对尺寸相同的拉压杆装配颠倒。 1974年,苏联一个俱乐部观众厅24×39m钢屋盖倒塌。起因是受力 较大的钢屋架端斜杆失稳。
中南大学桥梁工程系
第五章 轴心受力构件
•荷载初始偏心降低稳定承载力
vm e0 (sec
2
N 1) NE
中南大学桥梁工程系
第五章 轴心受力构件
•残余应力降低稳定承载力
中南大学桥梁工程系
第五章 轴心受力构件
(1)使部分截面提前进入塑性状态,截面的弹性区域减少, 干扰后只有弹性区产生抗力增量,故降低了稳定承载力。
N 1 fy A Ry
N 1 fu An Ru
偏安全简化处理
N 1 fy f An Ry
中南大学桥梁工程系
第五章 轴心受力构件
2、刚度计算
•刚度计算的目的:保证在安装、使用过程中正常使用要求
•实例1:九江桥主拱吊杆涡振现象
中南大学桥梁工程系
第五章 轴心受力构件
y (x ) 5.07b / t
☆长细较大时,弯曲失稳起控制作用,作弯曲失稳验算。
中南大学桥梁工程系
第五章 轴心受力构件
5.5 轴心受压构件局部稳定性
1、局部稳定的概念
轴心受压柱局部屈曲变形
轴心受压构件翼缘的凸曲现象
中南大学桥梁工程系
第五章 轴心受力构件
1916年因施工问题又发生一次倒塌事故。
前苏联在1951~1977年间共发生59起重大钢结构事故,有17起 属稳定问题。
(设计、制作、安装或使用不当都可能引发稳定事故)
例如:
1957年前苏联古比雪夫列宁冶金厂锻压车间,7榀1200m2屋盖塌落。 起因是一对尺寸相同的拉压杆装配颠倒。 1974年,苏联一个俱乐部观众厅24×39m钢屋盖倒塌。起因是受力 较大的钢屋架端斜杆失稳。
中南大学桥梁工程系
第五章 轴心受力构件
•荷载初始偏心降低稳定承载力
vm e0 (sec
2
N 1) NE
中南大学桥梁工程系
第五章 轴心受力构件
•残余应力降低稳定承载力
中南大学桥梁工程系
第五章 轴心受力构件
(1)使部分截面提前进入塑性状态,截面的弹性区域减少, 干扰后只有弹性区产生抗力增量,故降低了稳定承载力。
N 1 fy A Ry
N 1 fu An Ru
偏安全简化处理
N 1 fy f An Ry
中南大学桥梁工程系
第五章 轴心受力构件
2、刚度计算
•刚度计算的目的:保证在安装、使用过程中正常使用要求
•实例1:九江桥主拱吊杆涡振现象
中南大学桥梁工程系
第五章 轴心受力构件
《钢结构轴心受力》课件
![《钢结构轴心受力》课件](https://img.taocdn.com/s3/m/de248033a517866fb84ae45c3b3567ec102ddc01.png)
03
轴心受力构件的设计
截面设计
01
02
03
截面形式
根据受力特点,选择合适 的截面形式,如实腹式、 格构式等。
截面尺寸
根据承载力要求,计算截 面的尺寸,确保构件的承 载能力。
截面材料
选择合适的材料,如钢材 、混凝土等,以满足承载 力和耐久性要求。
连接设计
连接方式
根据构件的连接要求,选 择合适的连接方式,如焊 接、螺栓连接等。
保持钢结构轴心受力构件的清洁 ,定期清除表面污垢和尘埃,防
止腐蚀。
防腐涂层保护
定期检查并重新涂覆防腐涂层,以 增强钢结构的耐久性和防腐蚀能力 。
紧固件检查
定期检查所有连接螺栓、铆钉等紧 固件,确保其紧固且无松动。
定期检测与评估
外观检查
定期对钢结构轴心受力构件进行 外观检查,观察是否有变形、裂
纹、锈蚀等现象。
《钢结构轴心受力》 PPT课件
目录
• 钢结构轴心受力概述 • 轴心受力构件的特性 • 轴心受力构件的设计 • 轴心受力构件的施工与安装 • 轴心受力构件的维护与检测
01
钢结构轴心受力概述
定义与特点
定义
轴心受力是指钢结构的受力状态 ,其中力的作用线与杆件轴线重 合,使杆件既不发生弯曲也不发 生扭曲。
04
轴心受力构件的施工与安装
施工方法选择
施工方法选择应根据工程实际情况和设计要求进行,综合考虑安全、质量、进度和 成本等因素。
常用的施工方法包括预制施工法、整体吊装法、高空拼装法等,选择时应根据构件 的尺寸、重量、安装高度和场地条件等因素进行选择。
施工方法的确定还应考虑施工机械设备的性能和数量,以及施工人员的技能水平。
钢结构轴心受力构件
![钢结构轴心受力构件](https://img.taocdn.com/s3/m/bcdce6c36aec0975f46527d3240c844769eaa0a4.png)
2. 残余应力影响下短柱的- 曲线
以热扎H型钢短柱为例:
0.3fy
(A)
fy σ=0.7fy
0.3fy 0.3fy
(B)
fy 0.7fy<σ<fy
σ=N/A
fy C
B
fp
A
σr
fy-σr
σr=0.3fy
(C)
fy σ=fy
0.3fy
0
ε
当N/A<0.7fy时,截面上的应力处于弹性阶段。
当N/A=0.7fy时,翼缘端部应力达到屈服点,该点称为有效比例极限fp=fy-r
y
当>fp=fy-r时,截面出现塑性区,应力分布如图。 临界应力为:
t
h
cr
Ncr A
2EI
l2A
Ie I
2E 2
Ie I
(6.3.8)
x
x
t
柱屈曲可能的弯曲形式有两种:沿强轴(x轴)和
沿弱轴(y轴)因此:
b
对x x轴屈曲时:
b
Etx
EIex Ix
2t(b)h2 4
E 2tbh2 4
E
对y y轴屈曲时:
轴心压力N较小
干扰力除去后,恢复到 原直线平衡状态
N增大
干扰力除去后,不能恢复到原直 线平衡状态,保持微弯状态
N继续增大
干扰力除去后,弯曲变形仍然迅 速增大,迅速丧失承载力
第6章轴心受力构件 理想的轴心受压构件(杆件挺直、荷载无偏心、无初始 应力、无初弯曲、无初偏心、截面均匀等)的失稳形式分为:
弯曲失稳 扭转失稳 弯扭失稳
y
N
力学模型 N
v
v1 y z
y
第6章轴心受力构件
钢结构 ppt课件
![钢结构 ppt课件](https://img.taocdn.com/s3/m/e5447d05c1c708a1284a44f1.png)
东方明珠广播电视塔座落在 上海浦东新区黄浦江畔,以 其468米的度成为亚洲第 一高 塔。她于1991年3月开 始建造,1994年11 月完工, 总重量达12万吨,总投资8.3 亿元人民币。
东方明珠塔由三根直径为九 米的擎天立柱、太空舱、上 球体、下球体、五个小球、 塔座和广场组成。
ppt课件
6
三、钢结构的主要结构形式及组成杆件的分类: 1、结构形式:
1)框架 2)桁架 3)拱架 4)索 5)壳体
2、具体结构应用:
1)厂房钢结构 : 2)轻型钢结构 : 3)大跨度钢结构 :(1)网架结构(图) (2)悬索及索桁架结 构 (3)网壳结构 4)桥梁钢结构 : 5)高耸钢结构 : 6)高层钢结构 : 7) 综合应用
大连远洋大厦
ppt课件
17
长宽各150m,总面积 30277m2,塔高508m,世 界第一高,26层以上以8层 为一单元。主要由巨柱、核
心系统及外伸桁架梁。巨柱 自地下5层至地上90层,最 大尺寸为2.4mx3m。
台北101
直径5.5m,中670t的阻尼器
ppt课件
18
图(4):高耸建筑
电视塔、微波塔、通讯塔等
钢结
概述 建筑钢材 设计方法 钢结构的连接 轴心受力构件 梁(受弯构件) 拉弯与压弯构件 屋架
构
ppt课件
1
第一章 绪论
一、钢结构特点
1、优点: ①轻质(密度/强度)、高强: ②材质好(塑韧性见第P2),可靠性高 ③工业化程度高,工期短 ④抗震性能好:刚性抗能,柔性耗能 ⑤(水\气)密封性能好,耐热性较好 ⑥可重复利用
该工程外部围护结构为钢结构网壳,是半椭圆球形,东西长轴 212.2m,南北短轴143.64m,总高度46.285。内设歌剧院(2416 席)、音乐厅(2017席)及戏剧院(1040席)及公共大厅等。屋面 采用钛金属板,整个网壳外环绕人工湖(35500m2),各种通道及入 口均设在水下 。设计为法国巴黎机场公司安德鲁建筑师,北京市建筑 设计研究院参与主体设计 ,整体pp结t课件构用钢量达6750t,195kg/m。 11
东方明珠塔由三根直径为九 米的擎天立柱、太空舱、上 球体、下球体、五个小球、 塔座和广场组成。
ppt课件
6
三、钢结构的主要结构形式及组成杆件的分类: 1、结构形式:
1)框架 2)桁架 3)拱架 4)索 5)壳体
2、具体结构应用:
1)厂房钢结构 : 2)轻型钢结构 : 3)大跨度钢结构 :(1)网架结构(图) (2)悬索及索桁架结 构 (3)网壳结构 4)桥梁钢结构 : 5)高耸钢结构 : 6)高层钢结构 : 7) 综合应用
大连远洋大厦
ppt课件
17
长宽各150m,总面积 30277m2,塔高508m,世 界第一高,26层以上以8层 为一单元。主要由巨柱、核
心系统及外伸桁架梁。巨柱 自地下5层至地上90层,最 大尺寸为2.4mx3m。
台北101
直径5.5m,中670t的阻尼器
ppt课件
18
图(4):高耸建筑
电视塔、微波塔、通讯塔等
钢结
概述 建筑钢材 设计方法 钢结构的连接 轴心受力构件 梁(受弯构件) 拉弯与压弯构件 屋架
构
ppt课件
1
第一章 绪论
一、钢结构特点
1、优点: ①轻质(密度/强度)、高强: ②材质好(塑韧性见第P2),可靠性高 ③工业化程度高,工期短 ④抗震性能好:刚性抗能,柔性耗能 ⑤(水\气)密封性能好,耐热性较好 ⑥可重复利用
该工程外部围护结构为钢结构网壳,是半椭圆球形,东西长轴 212.2m,南北短轴143.64m,总高度46.285。内设歌剧院(2416 席)、音乐厅(2017席)及戏剧院(1040席)及公共大厅等。屋面 采用钛金属板,整个网壳外环绕人工湖(35500m2),各种通道及入 口均设在水下 。设计为法国巴黎机场公司安德鲁建筑师,北京市建筑 设计研究院参与主体设计 ,整体pp结t课件构用钢量达6750t,195kg/m。 11
钢结构原理-第4章轴心受力构件
![钢结构原理-第4章轴心受力构件](https://img.taocdn.com/s3/m/d453ec4a31b765ce05081470.png)
《钢结构原理》 第4章 轴心受力构件
4.4.4.2 初弯曲的影响
假设构件变形 为正弦曲线:
x
y0 v0 sin l v0为初始挠度
《钢结构原理》 第4章 轴心受力构件
平衡微分方程:
d2y
x
EI dx2 NyNv0sin l
可得:Yy0y1N v0NEsinlx
vm
v0
v
《钢结构原理》 第4章 轴心受力构件
对于有孔洞的构件,在孔洞附近存在着高额应力集 中现象,孔洞边缘的应力较早地达到屈服应力而发展塑 性变形。由于应力重分布,净截面的应力最终可以均匀 地达到屈服强度fy。
孔洞处截面应力分布 (a) 弹性状态应力 (b)极限状态应力
《钢结构原理》 第4章 轴心受力构件
施工中的钢屋架及支撑
济南遥墙机场候机大厅 管桁架及柱
《钢结构原理》 第4章 轴心受力构件
输电塔
广播电视塔
网架
《钢结构原理》 第4章 轴心受力构件
4.1.3 轴心受力构件的截面形式
(a)
y
y
y
x
x
x
x
x
x
y
y
y
y
x
x
y
y
x
x
y
y
x
x
y
(b) x
y x
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
y
(c) x
《钢结构原理》 第4章 轴心受力构件
4.4.4.1 纵向残余应力的影响 残余应力性质:截面内自相平衡的初始应力 产生原因:焊接、轧制、加工切割等 测量方法:锯割法
钢结构1轴心受力构件PPT课件
![钢结构1轴心受力构件PPT课件](https://img.taocdn.com/s3/m/39d11e225fbfc77da369b120.png)
y
+
c 0.3 f y
ox
对强轴(x-x)屈曲时,
Ncr
2EIe
l2
2EI
l2
Ie I
2EI
l2
k
相应的临界应力为:
+
图4-13 工字梁的残余应力分布
cr
2E y2
k
(4.20)
式中: k=Ie/I
第32页/共104页
对弱轴(y-y)屈曲时,
kb t
Ie I
2t(kb)3 /12 2tb3 /12
ym
0
2
4
这类杆件的稳定问题称为第二第类35页稳/共定10问4页题
N/NE~ym曲线
具有初弯曲的实腹式轴向受压构件,如果截面最大压应力等于屈服应
力,则认为这类受压构件失去了稳定,由此确定的承载能力准则是:边
缘应力达到屈服——边缘屈服准则。
N A
Nym W1x
fy
N A
Ny0m
1 N NE W1x
yz
可以得到单轴对称截面轴压杆绕对称轴的换算长细比λyz
1
yz
1 2
y2
z2
y2 z2
2 4 1 a02
i02
y2z2
2
通过换算长细比将弯扭屈曲第问28题页/转共1化04页为弯曲屈曲问题。
(4.16)
2、初始缺陷对轴心受压构件的影响
前面讨论的轴心受压构件是一种理想情况。是基于理想假 定情况下得到的。这些理想化情形在实际工程中是不存在的。
第29页/共104页
(1) 残余应力的影响 残余应力在构件中属于初应力。残余应力由焊接或其它原因引起。 第三章已经讲到一些情况的焊接残余应力分布:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2 轴心受力构件强度和刚度
2. 刚度要求
(2) 长细比限值
max
l0 i
max—x和y中 的 较 大 值
1)在承受静力荷载的结构中,可仅计算受拉构 件在竖向平面内的长细比;
2)在直接或间接承受动力荷载的结构中,计算 单角钢受拉构件的长细比时,应采用单角钢 的最小回转半径;计算单角钢交叉杆件平面 外的长细比时,应采用角钢肢边平行轴的回 转半径 。
14.2 轴心受力构件强度和刚度
2. 刚度要求
受拉构件的容许长细比
承受静力荷载和间接承
项 次
构件名称
受动力荷载的结构 直接承受
一般建筑结 构
有重级工 作制吊车
厂房
动力荷载 结构
1
桁架的杆件
350
250
250
2
吊车梁或吊车桁架以下 的柱间支撑
300
200
-
2
其他拉杆、支撑、系杆 (张紧的圆钢除外)
400
最小临界压力
2 EI N cr l 2
cr
N cr A
2E li2
2E 2
3. 弹塑性屈曲
当 cr f p 需要考虑弹塑性屈曲
N
N N
NcrNcra
直线平 衡状态
11
l
l
b
屈曲微
弯状态
cr
非细长压杆
N
11
N N
3. 弹塑性屈曲
根据切线模量理论
fy a
Ncra2E 2 atA,cra2E 2 at
N
N
N
整体失稳类形
➢ 弯曲屈曲
➢ 扭转屈曲 ➢ 弯扭屈曲
u
Φ
uΦ
2. 理想压杆的临界力(弹性弯曲屈曲)
N→Ncr A
cr
Ncr A
f( p 比例极限)
欧拉方程的建立
细长压杆
EI d2 y / dz2 N y 0
l
yN
y
EIy
z
z
y
y
B
B
N
弹性屈曲的临界压力
N cr
n 2 2 EI l2
,当 n 1时,
2)刚度验算
查表(P513) ix=30.5mm A 2 1.2 96 31 .5 8c 22 m 2
I y 2 [ 1.5 7 1 1 9 .2 9 ( 6 0 .5 1 2 .8 ) 2 ] 4 7.7 8 c 5 4 8 m 6
iy
Iy A
78 .7856 4.52 cm 5 4.2 5m 5 m 3.5 822
N
N
孔前传力系数
孔前传 递的力
N
净截面处的传力
N N10.5n1
n
净截面处的强度公式 N An f
同时毛截面处还应满足 N / A f
n1:计算截面(最 外列螺栓处)高强 度螺栓数目;
n:节点或拼接处构 件一端连接的高强 度螺栓总数。
1.强度计算
(3) 单面连接的单角钢按轴心受力计算强度时,钢材 的强度设计值应乘以0.85
网架
14.1 轴心受力构件的工程应用
网壳
14.1 轴心受力构件的工程应用
1. 实腹式构件的截面形式
型钢截面
1. 实腹式构件的截面形式
角钢或双角钢组合截面 型钢或钢板组成的组合截面
冷弯薄壁型钢截面
14.1 轴心受力构件的工程应用
2. 格构式构件的截面形式
x
x1Biblioteka 1yyy
y
y
y
x
x
1
1
x
x
y
yy
y
比如单面连接角钢受压杆件,实际上受力是双向 压弯,为了计算简便还是按轴心受压考虑,只是通过 强度乘以折减系数来反映简化计算的不利影响。
14.2 轴心受力构件强度和刚度
2. 刚度要求
(1)长细比过大产生的不利影响: 1)在运输和安装过程中产生弯曲或过大的变形; 2)使用期间因其自重而屈曲; 3)在动力荷载作用下发生较大的振动; 4)压杆的长细比过大时,还将使构件的承载力 降低过多。
验算长细比
xli0xx
30 090.8 4[]35满 0
3.0 5
足
yli0yy
780 107.42 []35满 0
4.5 25
足
作 业 P462
1.思考题 1 2.计算题 1, 2
14.3 实腹式轴心受压构件的整体稳定
1. 理想轴心压杆的整体失稳
理想轴心压杆 杆件完全挺直、荷载沿杆件形心轴 作用,杆件在受荷之前没有初始应力,也没有初弯 曲和初偏心等缺陷,截面沿杆件是均匀的。
350
-
14.2 轴心受力构件强度和刚度
2. 刚度要求
受压构件的容许长细比
项 次
构件名称
柱、桁架和天窗架中的杆件
1 柱的缀条、吊车梁吊车桁架以下的 柱间支撑
支撑(吊车梁吊车桁架以下的柱间
2
支撑除外)
用以减少受压构件长细比的杆件
容许长细比 150 200
例1 某中级工作制吊车的 厂房屋架的下弦拉杆,有 双角钢组成,型号为 L100×10,布置有交错排 列的普通螺栓连接,螺栓 孔直径d0=20mm。已知 轴心拉力设计值N= 620kN,计算长度l0x= 3000mm,l0y=7800。材料 为Q235钢,试验算该杆 件的强度和刚度。
x
x
格构式构件的 虚轴和实轴
l1
l1
l01
40~70
1x
缀条柱
y
y
1x
1a y
缀板柱
y
h
1b
14.1 轴心受力构件的工程应用
3. 轴向受力构件的设计要求
强度和稳定
轴心受拉:强度 轴心受压:强度和稳定(整体和局部)
刚度要求
保证构件不产生过度的变形,用长细比控制。
14.2 轴心受力构件强度和刚度
1.强度计算(以全截面达到屈服应力为极限状态)
傅昶彬课件系列—结构设计原理
第14章 钢结构轴心受力构件 (1)
主要内容
14.1 轴心受力构件的工程应用 14.2 轴心受力构件的强度和刚度 14.3 实腹式轴心受压构件的整体稳定 14.4 实腹式轴心受压构件的局部稳定
四川大学建环学院 2018.3
14.1 轴心受力构件的工程应用
桁架
塔架
14.1 轴心受力构件的工程应用
a
max 塑性变形发展
fy
应力重分布
N
N
N
N
弹性状态应力
孔洞截面处产 生应力集中
极限状态应力
(1) 除摩擦型高强度螺栓连接处外强度计算式
NAnf An —构件的净截面面积
构件净截面面积An及计算截面的选取
Ⅰ
ⅡⅠ
N
N
并列
Ⅰ
ⅡⅠ ⅡⅠ
错列
N
ⅡⅠ
1.强度计算
(2)摩擦型高强度螺栓连接处
由于摩擦阻 力存在,一部分 荷载已由孔前接 触面传递。
fp
令 Et /E,cra2E 2 a
E E t ,
解:1)强度验算 I-I截面
A n 2 (4 1 5 0 4 0 2 5 ) 0 1 0 34 m 2 0m 0 II-II截面
A n 2 ( 4 5 12 0 4 2 0 0 4 2 5 2 0 ) 1 0 3m 12 5
II-II截面起控制作用
N 6 2 13 0 0 1.6 9 N /6 m2 m f 2N 1/m 52m A n 3154