福州市高一上学期数学期末考试试卷(II)卷
福建福州市2023-2024高一上学期期末质量检测数学试卷及答案
2023-2024学年第一学期福州市四校教学联盟1月期末学业联考高一数学试卷考试范围:必修一命题教师:审核教师:考试时间:1月3日完卷时间:120分钟满分:150分一、单项选择题:本大题共8小题,每小题5分,满分40分。
在每小题所给出的四个选项中,只有一个选项是符合题意的。
1.集合A={x∣−2<x≤2},B={−2,−1,0,1},则A∩B=A.{−1,1,2}B.{−2,−1,0,1}C.{−1,0,1}D.{−2,−1,0,1,2}2.若a>b>0,c>d,则下列结论正确的是3.函数y=−|ln(x−1)|的图象大致是A.B.C.D.4.命题p:α是第二象限角或第三象限角,命题q:cosα<0,则p是q的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件A.110%B.120%C.130%D.140%7.命题“对∀x∈[1,2],ax2−x+a>0”为真命题的一个充分不必要条件可以是8.已知f(x)=ax2−1是定义在R上的函数,若对于任意−3≤x1<x2≤−1,都有f(x1)−f(x2)<2,则实数x1−x2a的取值范围是二、多项选择题:本大题共4小题,每小题5分,满分20分。
在每小题所给出的四个选项中,有多个选项是符合题意的。
9.下列大小关系正确的是A.20.3<20.4B.30.2<40.2C.log23<log48D.log23>log32 10.设正实数x,y满足x+y=2,则下列说法正确的是A.当k>1,有1个零点B.当k>1时,有3个零点C.当k<0时,有9个零点D.当k=−4时,有7个零点三、填空题:本大题共4小题,每小题5分,满分20分。
13.已知扇形的圆心角是2rad,其周长为6cm,则扇形的面积为cm2.四、解答题:本大题共6小题,满分70分。
除第17小题10分以外,每小题12分。
福建省2020学年高一数学上学期期末考试试题 (2)
高一数学上学期期末考试试题考试时间:120分钟 试卷总分:150分 本试卷分第I 卷和第II 卷两部分 第I 卷(选择题、填空题)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。
1.终边落在y 轴上的角的集合是( )A .},2|{Z k k ∈=πααB .},|{Z k k ∈=πααC .},2|{Z k k ∈+=ππαα D .},22 |{Z k k ∈+=ππαα2.对于R α∈,下列等式恒成立的是( ) A .sin(2)sin παα-= B .cos()cos αα-=- C .ααπsin 2cos =⎪⎭⎫⎝⎛+ D .tan()tan(2)παπα-=- 3.下列各函数值:①sin2;②cos3;③tan4;其中符号为负的有( )A .①B .②C .①、③D .②、③ 4.点C 是线段AB 的中点,则2AB AC +等于( )A .3ACB .4AC C .0D .2BA5.已知3=a ,5=b ,且12⋅=a b ,则向量a 在向量b 上的投影为( )A .512B .3C .4D .5 6.设11(1,0),(,)22==a b ,下列结论中,正确的是( )A .=a bB .2⋅=a b C .//a b D .()-⊥a b b 7.在函数|sin |y x =、sin ||y x =,tan()3y x π=+,cos(2)3y x π=+中,最小正周期为π的函数的个数为( )A .1B .2C .3D .48.四边形ABCD 中,,AC AB AD AC BD =+=,则四边形ABCD 一定是( )A .正方形B .菱形C .矩形D .等腰梯形9.已知△ABC 是锐角三角形,P =sin A +sin B ,Q =cos A +cos B ,则( )A .P <QB .P >QC .P =QD .P 与Q 的大小不能确定10.已知(cos 2,sin ),(1,2sin 1),(,)2πααααπ==-∈a b ,若25⋅=a b ,则tan()4πα+等于( )A .17 B .27 C .13 D .2311.如图,BCD ∆与ABC ∆,点P 是区域BCD 内 的任意一点(含边界),且(,)AP AB AC λμλμ=+∈R ,则λμ+的 取值范围是( )A. B.1,2] C. D.1]12.已知函数13sin(),0623()log (3)2,6x x f x x x ππ⎧-≤≤⎪=⎨-+≥⎪⎩,若,,a b c 互不相等,且满足()()()f a f b f c ==,则a b c ++的取值范围是( )A .(12,36)B .(9,33)C .(12,18)D .(6,30) 二、填空题 :本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.............。
2024届福建福州市第一高级中学高一数学第一学期期末经典试题含解析
2024届福建福州市第一高级中学高一数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知角(0360)αα≤<︒︒终边上A 点的坐标为(sin120,cos120)︒︒,则α=() A.330︒ B.300︒ C.120︒D.60︒2.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为() A.125 B.135 C.165D.1703.已知函数()cos2f x x x =--,将()f x 的图象上所有点沿x 轴平移()0θθ>个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,且函数()g x 的图象关于y 轴对称,则θ的最小值是() A.12πB.6πC.4π D.3π 4.设函数()2sin()3f x x π=+,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1﹣x 2|的最小值是( )A.4πB.2πC.πD.2π 5.函数()cos lg f x x x =-零点的个数为() A.4 B.3 C.2D.06.cos120︒的值是A. B.12-C.12D.327.已知α,β为锐角,()1sin 25αβ+=,1cos 3β=,则()sin αβ+的值为()A.18315+ B.18315± C.262215+D.18315- 8.已知()y f x =是奇函数,且满足(1)(1)f x f x +=-,当(0,1)x ∈时,21()log 1f x x=-,则()y f x =在(1,2)内是A.单调增函数,且()0f x <B.单调减函数,且()0f x >C.单调增函数,且()0f x >D.单调减函数,且()0f x <9.已知函数317(),3()28log ,03x x f x x x ⎧+≥⎪=⎨⎪<<⎩,若函数()()=-g x f x k 恰有两个零点,则实数k 的取值范围是 A.7(,1)8B.7[,1)8C.7[,1]8D.(0,1)10.已知2x >-,则42x x ++的最小值为( ) A.2 B.3 C.4D.5二、填空题:本大题共6小题,每小题5分,共30分。
福建省福州市鼓楼区福州一中2023-2024学年数学高一上期末综合测试试题含解析
福建省福州市鼓楼区福州一中2023-2024学年数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.直线l :mx y 10-+=与圆C :22x (y 1)5+-=的位置关系是( )A.相切B.相离C.相交D.不确定2.已知函数()f x 在区间[]22-,上单调递增,若()()()24log log 2f m f m <+成立,则实数m 的取值范围是( ) A.1,24⎡⎫⎪⎢⎣⎭B.1,14⎡⎫⎪⎢⎣⎭C.(]1,4D.[]2,43.若α是钝角,则2α-是() A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角4.已知a b >,那么下列结论正确的是() A.0a b -< B.0a b -> C.0a b +<D.0a b +>5.过原点和直线1:340l x y -+=与2:250l x y ++=的交点的直线的方程为() A.1990x y -= B.9190x y += C.3190x y +=D.1930x y +=6.如图所示,在ABC 中,2BD DC =.若AB a =,AC b =,则AD =()A.2133a bB.2133a b - C.1233a b + D.1233a b - 7.已知函数()()2122x x f x g x x ⎧->⎪=⎨≤⎪⎩,,,在R 上是单调函数,则()g x 的解析式可能为( )A.21x +B.()ln 3x -C.21x -D.12x⎛⎫ ⎪⎝⎭8.为了得到sin(2)6y x π=-的图象,可以将sin 2y x =的图象( )A.向左平移1112π个单位 B.向左平移12π个单位C.向右平移6π个单位 D.向右平移3π个单位 9.命题2:,10∀∈+>R p x x ,则命题p 的否定是() A.2,10∃∈+≤R x x B.2R 10,xxC.2,10∀∈+≤R x xD.2,10∀∉+>R x x 10.已知,,,则的大小关系A. B. C.D.11.设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 A.32παβ-= B.32παβ+= C.22παβ-=D.22παβ+=12.已知函数()21,12,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则()()3f f =( )A.53 B.3 C.23D.139二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.写出一个同时具有下列性质①②的函数()f x =______.(注:()f x 不是常数函数) ①()102f =;②()()πf x f x +=. 14.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________15.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.16.8πtan3等于_______. 三、解答题(本大题共6个小题,共70分。
2023—2024学年福建省福州市高一上学期期末质量检测数学试卷
2023—2024学年福建省福州市高一上学期期末质量检测数学试卷一、单选题1. ()A.B.C.D.2. 命题“,”的否定是()A.,B.,C.,D.,3. 在下列区间中,方程的实数解所在的区间为()A.B.C.D.4. 已知集合,,则()A.B.C.D.5. 设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6. 已知,,,则()A.B.C.D.7. 已知,则()A.B.C.D.8. 某工厂产生的废气经过过滤后排放.已知过滤过程中废气的污染物含量(单位:)与时间(单位:h)的关系为(且,且),其图象如下,则污染物减少至少需要的时间约为()(参考数据:,)A.23小时B.25小时C.42小时D.44小时二、多选题9. 已知,则下列不等式成立的是()A.B.C.D.10. 已知函数的部分图象如下所示,则()A.B.在上单调递增C.的图象关于直线对称D.将的图象向左平移个单位长度后所得的图象关于原点对称11. 已知函数的定义域为,、都有,且,则()A.B.C.是增函数D.是偶函数12. 已知函数若关于的方程有3个实数解,则()A.B.C.D.关于的方程恰有3个实数解三、填空题13. 已知函数(且)的图象经过定点,则的坐标是______ .14. 已知扇形的弧长是,面积是,则扇形的圆心角(正角)的弧度数为 ______ .15. 已知函数不恒为0,且同时具备下列三个性质:①;②是偶函数;③,,.写出一个函数______ .16. 用表示函数在闭区间上的最大值,已知.(1)若,则的取值范围是 ______ .(2)若,则的取值范围是 ______ .四、解答题17. 已知函数.(1)求的最小值;(2)若恒成立,求的取值范围.18. 已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求,,的值;(2)将的终边按顺时针方向旋转,此时终边所对应的角为,求的值.19. 已知函数,.(1)求的单调递增区间;(2)求在区间上的最大值和最小值.20. 已知是自然对数的底数,.(1)判断函数在上的单调性并证明;(2)解不等式.21. 已知函数为奇函数,.(1)求实数的值;(2) ,,使得,求实数的取值范围.22. 筒车是我国古代发明的一种水利灌溉工具.如图,假定在水流量稳定的情况下,一个半径为的筒车开启后按逆时针方向做匀速圆周运动,每分钟转1圈、筒车的轴心距离水面的高度为.设筒车上的某个盛水筒到水面的距离为(单位:)(在水面下则为负数).若以盛水筒刚浮出水面时开始计算时间,则与时间(单位:s)之间的关系为.(1)求,,,的值;(2)若盛水筒在不同时刻,距离水面的高度相等,求的最小值;(3)若筒车上均匀分布了12个盛水筒,在筒车运行一周的过程中,求相邻两个盛水筒距离水面的高度差的最大值.。
福建省福州市2022-2023学年高一上学期期末质量检测数学试题(含解析)
2022-2023学年第一学期福州市高一期末质量抽测数学试卷(完卷吋间:120分钟;满分:150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自已的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2540A x x x =-+>,{}03B x x =≤≤,则A B = ()A.{}01x x ≤≤ B.{}01x x ≤< C.{}13x x <≤ D.{|3x x ≤或4}x >【答案】B 【解析】【分析】解一元二次不等式化简集合A ,再利用交集的定义求解作答.【详解】解不等式2540x x -+>,得1x <或>4x ,则{|1A x x =<或4}x >,而{}03B x x =≤≤,所以{|01}A B x x ⋂=≤<.故选:B2.已知命题():0,p x ∀∈+∞,3x x >,则命题p 的否定是()A.()0,x ∀∈+∞,3x x ≤B.()0,x ∃∈+∞,3x x ≤C.()0,x ∃∈+∞,3x x <D.()0,x ∀∉+∞,3x x>【答案】B 【解析】【分析】“任一个都成立”的否定为“存在一个不成立”.【详解】“任一个都成立”的否定为“存在一个不成立”.故命题p 的否定为:()0,x ∃∈+∞,3x x ≤.故选:B.3.在平面直角坐标系中,角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,终边经过点()4,3P -,则cos α=()A.45 B.45-C.34-D.35-【答案】A 【解析】【分析】根据给定条件,利用三角函数定义直接计算作答.【详解】依题意,||5OP ==,所以4cos 5α=.故选:A4.若函数()()sin f x x ϕ=+是奇函数,则ϕ可取的一个值为()A.π-B.2π-C.4π D.3π【答案】A 【解析】【分析】sin x 的图象左右平移π,k k Z ∈仍为奇函数,即可求得ϕ.【详解】sin x 的图象左右平移π,k Z k ∈仍为奇函数,则π,k k Z ϕ=∈.故选:A.5.函数()21x f x x =-的图象大致为()A. B.C.D.【答案】B 【解析】【分析】由()00f =可排除C ,D ,当0x <时,()0f x <可排除A ,即可得正确答案.【详解】由()00f =可排除C ,D ;当0x <时,()201x f x x =<-,排除A .故选:B .6.已知函数()22,1,1log ,1x x f x x x ⎧≤=⎨->⎩,若()0f a =,则a 的值为()A.12-B.0C.1D.2【答案】D 【解析】【分析】根据题意,由()0f a =求解对数方程,即可得到结果.【详解】由题意可得,当1x ≤时,20x >,且()0f a =,则21log 0a -=,解得2a =故选:D7.设函数()()sin cos 0f x x x ωωω=+>在[,]-ππ的图象大致如下图所示,则函数()f x 图象的对称中心为()A.()ππ,0Z 28k k ⎛⎫-∈⎪⎝⎭B.()ππ,0Z 8k k ⎛⎫-∈ ⎪⎝⎭C.()2ππ,0Z 36k k ⎛⎫-∈⎪⎝⎭ D.()4ππ,0Z 36k k ⎛⎫-∈⎪⎝⎭【答案】C 【解析】【分析】化简()π4f x x ω⎛⎫=+ ⎪⎝⎭,由题意可得312,Z 25k k ω=+∈,由图可得:524322T T ππ⎧<⎪⎪⎨⎪≥⎪⎩,解不等式即可求出32ω=,令3ππ,Z 24x k k +=∈,即可求出()f x 图象的对称中心.【详解】()πsin cos 4f x x x x ωωω⎛⎫=+=+ ⎪⎝⎭,因为()f x的图象过点5π,6⎛ ⎝,所以5ππ3π2π,Z 642k k ω⋅+=+∈,解得:312,Z 25k k ω=+∈,因为由图可得:525225344332422222T T πππωωπππω⎧⎧⋅<<⎪⎪⎪⎪⇒⇒<≤⎨⎨⎪⎪≥⋅≥⎪⎪⎩⎩,所以32ω=,()3πsin cos 24f x x x x ωω⎛⎫=+=+ ⎪⎝⎭,令3ππ,Z 24x k k +=∈,解得:2ππ,Z 36x k k =-∈,则函数()f x 图象的对称中心为()2ππ,0Z 36k k ⎛⎫-∈ ⎪⎝⎭.故选:C .8.设2log 3a =,3log 4b =,5log 8c =,则()A.b a c<< B.a b c<<C.c b a <<D.b<c<a【答案】D 【解析】【分析】利用对数的换底公式,得到2lg 23lg 2,lg 3lg 5b c ==,化简lg 2(lg 25lg 27)0lg 3lg 5b c -=<⋅-,得到b c <,再由对数函数的单调性,求得312c <<且32a >,即可求解.【详解】因为35lg 42lg 2lg83lg 2log 4,log 8lg 3lg 3lg 5lg 5b c ======,则2lg 23lg 22lg 2lg53lg 2lg3lg 2(2lg53lg3)lg 2(lg 25lg 27)0lg3lg5lg3lg5lg3lg5lg3lg5b c ⋅-⋅---=-===<⋅⋅⋅,所以b c <,又因为3255553log 5log 8log log 52<<==,所以312c <<,又由322223log 3log log 22a =>=,所以32a >,所以b<c<a .故选:D.二、多项选择题:本题共4小题,毎小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合A ,B 是全集U 的两个子集,A B ⊆,则()A.A B B ⋃=B.A B B =C.B ⋃()U A =ðUD.B ()U A =∅ð【答案】AC 【解析】【分析】根据集合的包含关系,借助韦恩图对各选项进行判断.【详解】由A B ⊆,根据子集的定义,如图,对于A ,A B ⊆⇒A B B ⋃=,所以A 正确;对于B ,A B ⊆⇒A B A = ,所以B 不正确;对于C ,由韦恩图知,B ⋃()U A =ðU ,所以C 正确;对于D ,由韦恩图知,B ()U BA A =痧,所以D 不正确;故选:AC .10.若()0,απ∈,1sin cos 5αα-=,则()A.4tan 3α=B.12sin225α=C.sin co 7s 5αα+= D.7cos225α=-【答案】ACD 【解析】【分析】由sin cos αα与sin cos αα±的关系,结合角的范围,可求得sin cos αα、,即可逐个判断.【详解】()()222sin cos sin cos 12sin cos 225αααααα+--==,∵()0,απ∈,则sin 0,cos 0α>>,∴0,2πα⎛⎫∈ ⎪⎝⎭.对C ,sin cos 57αα+==,C 对;对A ,sin cos sin cos 543sin ,cos 25αααααα-+=+===,sin 4tan cos 3ααα==,A 对;对B ,24sin22sin cos 25ααα==,B 错;对D ,227cos2cos sin 25ααα=-=-,D 对.故选:ACD.11.若33x <是关于x 的不等式210x ax a ---<成立的必要条件,则a 的值可以是()A.1B.0C.2- D.12【答案】BC 【解析】【分析】首先求出这两个不等式的解集A 、B ,根据题意可得B A ⊆,即可求出a 的取值范围.【详解】因为33x <,解得:1x <,设{}1A x x =<,设不等式210x ax a ---<的解集为B ,因为33x <是关于x 的不等式210x ax a ---<成立的必要条件,所以B A ⊆,因为210x ax a ---<,则()()110x x a +-+<⎡⎤⎣⎦,当11a +=-即2a =-,B =∅,满足题意;当11a +<-即2a <-,则11a x +<<-,所以{}11B x a x =+<<-,所以B A ⊆符合题意;当11a +>-即2a >-,则11x a -<<+,所以{}11B x x a =-<<+,因为B A ⊆,所以11a +≤,解得:0a ≤,所以20a -<≤.综上所述,a 的取值范围为:(],0-∞.故选:BC .12.在一个面积为4的直角三角形ABC 的内部作一个正方形,其中正方形的两个顶点落在斜边AB 上,另外两个顶点分别落在AC ,BC 上,则()A.AB 的最小值为B.AB 边上的高的最大值为2C.正方形面积的最大值为2D.ABC 周长的最小值为4+【答案】BD 【解析】【分析】根据给定条件,可得8AC BC ⋅=,利用勾股定理、均值不等式求解判断ABD ;建立角A 的正余弦及正方形边长的关系,再结合函数的单调性求解判断C 作答.【详解】在Rt ABC △中,AC BC ⊥,142AC BC ⋅=,即有8AC BC ⋅=,对于A ,4AB =≥=,当且仅当AC BC ==时取等号,A 错误;对于B ,Rt ABC △斜边AB 边上的高82AC BC h AB AB⋅==≤,当且仅当4AB =,即AC BC ==时取等号,B 正确;对于D ,ABC 的周长4AB AC BC AC BC ++=+≥+=++,当且仅当AC BC ==时取等号,D 正确;对于C ,如图,正方形DEFG 是符合题意的Rt ABC △的内接正方形,令π(0,)2A θ∠=∈,则BFE FGC A θ∠=∠=∠=,cos ,sin sin cos DE DEAC AG GC DE BC BF FC DE θθθθ=+=+=+=+,22111(cos )(sin )(2sin cos )8sin cos sin cos AC BC DE DE θθθθθθθθ⋅=++=++=,于是28162142sin 24sin 2sin 22sin 2DE θθθθ==++++,令sin 2(0,1]t θ=∈,则44sin 2()sin 2f t t tθθ+==+在(0,1]t ∈上单调递减,1212,(0,1],t t t t ∀∈<,1212121212444()()()()(1f t f t t t t t t t t t -=+-+=--,因为1201t t <<≤,则121240,10t t t t -<-<,即有12()()0f t f t ->,12()()f t f t >,因此函数()f t 在(0,1]上单调递减,则当1t =,即π4θ=时,min ()5f t =,正方形DEFG 的面积2DE 取得最大值169,C 错误.故选:BD【点睛】思路点睛:涉及图形上的点变化引起的线段长度、图形面积等问题,若点的运动与某角的变化相关,可以设此角为自变量,借助三角函数解决.第Ⅱ卷三、填空题:本大题井4小题,每小题5分,共20分.13.2223=______.【答案】9【解析】【分析】由指数运算性质化简求值.【详解】()(22222222222233393+====.故答案为:9.14.若点()cos ,sin A θθ与点ππ(cos())55B θθ++关于y 轴对称,写出一个符合题意的θ=______.【答案】2π5(答案不唯一)【解析】【分析】根据给定条件,利用诱导公式列式,即可求解作答.【详解】因为点()cos ,sin A θθ与点ππ(cos(),sin())55B θθ++关于y 轴对称,则πcos cos 5πsin sin 5θθθθ⎧⎛⎫+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,因此π()π2π,Z 5k k θθ++=+∈,解得2ππ,Z 5k k θ=+∈,取2π5θ=.故答案为:2π515.中国折扇有着深厚的文化底蕴,这类折扇上的扇环部分的作品构思奇巧,显出清新雅致的特点.已知某扇形的扇环如图所示,其中外弧线的长为54cm ,内弧线的长为18cm ,连接外弧与内弧的两端的线段的长均为16cm ,则该扇环的面积为______2cm.【答案】576【解析】【分析】设该扇形內弧半径为r ,根据弧长公式可得r ,进一步求出外弧半径,最后利用扇形的面积计算公式即可求解.【详解】设该扇形內弧半径为cm r ,由弧长公式和已知可得:541618r r+=,解得:8cm r =,则外弧半径为81624cm +=,所以该扇环的面积为2115424188576cm 22⨯⨯-⨯⨯=,故答案为:576.16.记{}max ,a b 表示a ,b 中较大的数.若关于x 的方程{}1max ,x x t x-=-的所有实数根的绝对值之和为6,则t 的值为______.【答案】3【解析】【分析】由题意可将原方程化为()2100x t x x -+=≠,讨论0x >和0x <,可得所有实数根的绝对值之和为6,即26t =,即可求出t 的值.【详解】由于{}1max ,x x t x-=-,所以原方程化为1x t x +=,即()2100x t x x -+=≠,当0x >时,依题意可知,方程210x tx -+=有根,设其两根分别为12,x x ,则1210x x ⋅=>,所以方程210x tx -+=有两正根12,x x ,且12x x t +=,当0x <时,同理可得,方程210x tx ++=有两负根34,x x ,且34x x t +=-,所以34x x t +=,所以26t =,解得:3t =,检验符合.故答案为:3.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()2f x x bx c =++,且()()130f f ==.(1)求()f x 的解析式;(2)求()f x 在区间[]2,5-上的取值范围.【答案】(1)2()43f x x x =-+;(2)[]1,15-.【解析】【分析】(1)根据给定条件,利用待定系数法求解作答.(2)利用二次函数的单调性,求出函数()f x 在给定区间上的最值作答.【小问1详解】函数()2f x x bx c =++,且()()130f f ==,则10390b c b c ++=⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,有2()43f x x x =-+,所以()f x 的解析式是2()43f x x x =-+.【小问2详解】由(1)知,[]2,5x ∈-,函数2()(2)1f x x =--在[2,2]-上单调递减,在[]2,5上单调递增,因此min ()(2)1f x f ==-,而()()215,58f f -==,则()()max 215f x f =-=,所以()f x 在区间[]2,5-上的取值范围是[]1,15-.18.已知tan 2α=.(1)求()()πcos 2sin πcos 3πααα⎛⎫+ ⎪⎝⎭-++的值;(2)若β为钝角,且sin 10β=,求()tan αβ-的值.【答案】(1)2-;(2)7.【解析】【分析】(1)根据给定条件,利用诱导公式化简,再利用齐次式计算作答.(2)利用同角公式求出tan β,再利用差角的正切公式求解作答.【小问1详解】因为tan 2α=,所以πcos()sin tan 22sin(π)cos(3π)sin cos 1tan αααααααα+-===--++--.【小问2详解】因为β为钝角,sin 10β=,则310cos 10β===-,sin 1tan cos 3βββ==-,所以12()tan tan 3tan()711tan an 12()3αβαβαβ----===++⨯-.19.设0a >,()e e x xaf x a =+为偶函数.(1)求a 的值;(2)判断()f x 在区间()0,∞+上的单调性,并给予证明.【答案】(1)1a =(2)单调递增,证明见解析【解析】【分析】(1)根据偶函数的定义得出()()f x f x -=,即可列式解出1a =;(2)根据函数单调性的定义证明,任取1x 、[)20,x ∈+∞,当12x x <时,得出()()12f x f x <,即可证明.【小问1详解】()f x 为偶函数,()()f x f x ∴-=,即()()e 1e e e e ex x x x x x a a f x a f x a a a ---=+=+==+⋅,即11e e x x a a a a -⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭,对任意x ∈R 恒成立,所以1a =;所以()e e 1xxf x =+.【小问2详解】()f x 在区间()0,∞+上单调递增.理由如下:任取1x 、()20,x ∞∈+,当12x x <时,()()()2112121212121212e e e e e e e e e e e 111e1x x x x x x x x x x x x x x f x f x ++-⎛⎫⎛⎫-=+-+=-+=-- ⎪ ⎪⎝⎭⎝⎭.由于120x x ≤<,所以12e e 0x x -<,12110ex x +->,所以()()120f x f x -<,故()()12f x f x <,所以()f x 在区间()0,∞+上单调递增.20.在①函数()f x 的一个零点为0;②函数()f x 图象上相邻两条对称轴的距离为π2;③函数()f x 图象的一个最低点的坐标为2π,33⎛⎫-⎪⎝⎭,这三个条件中任选两个,补充在下面问题中,并给出问题的解答.问题:已知函数()()π2sin 103,02f x x ωϕωϕ⎛⎫=+-<<<< ⎪⎝⎭,满足______.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)求使()()πf x f ≥成立的x 的取值集合.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)()π2sin 216f x x ⎛⎫=+- ⎪⎝⎭;()πππ,πZ 36k k k ⎡⎤-++∈⎢⎥⎣⎦(2)()πππZ 3x k x k k ⎧⎫≤≤+∈⎨⎬⎩⎭【解析】【分析】(1)选①②,由①可求出ϕ,由②可求出ω,即可求出()f x 的解析式;令()πππ2π22πZ 262k x k k -+≤+≤+∈,解不等式即可求出()f x 的单调递增区间;选①③,由①可求出ϕ,由③可求出ω,即可求出()f x 的解析式,下同选①②;选②③,由②可求出ω,由③可求出ϕ,即可求出()f x 的解析式,下同选①②;(2)因为()()πf x f ≥,所以π2sin 2106x ⎛⎫+-≥ ⎪⎝⎭,解不等式即可求出答案.【小问1详解】选①②,因为函数()f x 的一个零点为0,所以()00f =,所以2sin 10ϕ-=,所以1sin 2ϕ=,又因为π02ϕ<<,所以π6ϕ=,因为函数()f x 图象上相邻两条对称轴的距离为π2,所以π2π2T =⨯=,又因为03ω<<,所以2ππω=,解得:2=ω,所以函数()f x 的解析式为()π2sin 216f x x ⎛⎫=+- ⎪⎝⎭,令()πππ2π22πZ 262k x k k -+≤+≤+∈,解得:()ππππZ 36k x k k -+≤≤+∈,所以函数()f x 的单调递增区间为:()πππ,πZ 36k k k ⎡⎤-++∈⎢⎥⎣⎦.选①③,因为函数()f x 的一个零点为0,所以()00f =,所以2sin 10ϕ-=,所以1sin 2ϕ=,又因为π02ϕ<<,所以π6ϕ=,因为函数()f x 图象的一个最低点的坐标为2π,33⎛⎫-⎪⎝⎭,所以2ππ2sin 1336ω⎛⎫+-=- ⎪⎝⎭,所以2ππsin 136ω⎛⎫+=- ⎪⎝⎭,所以()2πππ2π,Z 362k k ω+=-+∈,解得:()31Z k k ω=-∈,又因为03ω<<,解得:2=ω,所以函数()f x 的解析式为()π2sin 216f x x ⎛⎫=+- ⎪⎝⎭,下同选①②.选②③,因为函数()f x 图象上相邻两条对称轴的距离为2π,所以π2π2T =⨯=,又因为03ω<<,所以2ππω=,解得:2=ω,因为函数()f x 图象的一个最低点的坐标为2π,33⎛⎫-⎪⎝⎭,所以2π2sin 2133ϕ⎛⎫⨯+-=- ⎪⎝⎭,所以4πsin 13ϕ⎛⎫+=- ⎪⎝⎭,所以()4ππ2π,Z 32k k ϕ+=-+∈,解得:()11π2πZ 6k k ϕ=-+∈,又因为π02ϕ<<,所以π6ϕ=,所以函数()f x 的解析式为()π2sin 216f x x ⎛⎫=+- ⎪⎝⎭,下同选①②.【小问2详解】由(1)知,()π2sin 216f x x ⎛⎫=+- ⎪⎝⎭,因为()()πf x f ≥,所以π2sin 2106x ⎛⎫+-≥ ⎪⎝⎭,所以π1sin 262x ⎛⎫+≥ ⎪⎝⎭,所以()ππ5π2π22πZ 666k x k k +≤+≤+∈,解得:()πππZ 3k x k k ≤≤+∈,所以使()0f x ≥成立的x 的取值集合为:()πππZ 3x k x k k ⎧⎫≤≤+∈⎨⎬⎩⎭21.人类已进入大数据时代.目前,数据量已经从()TB 1TB 1024GB =级别跃升到PB ()PB 1024TB =乃至EB()1EB 1024PB =乃至()ZB 1ZB 1024EB =级别.国际数据公司(IDC)的研究结果表明,2008年起全球每年产生的数据量如下表所示:年份2008200920102011…2020数据量(ZB )0.50.81.21.5…80(1)设2008年为第一年,为较好地描述2008年起第x 年全球产生的数据量(单位:ZB )与x 的关系,根据上述信息,从函数()f x kx b =+和()xg x ab =中选择一个,应选择哪一个更合适?(不用说明理由)(2)根据(1)中所选的函数模型,若选取2008年和2020年的数据量来估计该模型中的参数,预计到哪一年,全球产生的数据量将达到2020年的111210倍?(注:lg20.3≈)【答案】(1)选择()xg x ab =(2)2025【解析】【分析】(1)描点,根据图象选择;(2)由待定系数法求得参数,列指数不等式结合对数运算求解.【小问1详解】由题意得x 1234…13y0.50.81.21.5…80画出散点图如下:由图易得,5个点在一条曲线上,应选择()xg x ab =【小问2详解】由题意得,()()11213112116010.521380160a g ab g ab b -⎧=⨯⎪⎧==⎪⇒⎨⎨==⎪⎩⎪=⎩,则()11211602x g x -=⨯则()1113111212121111801016010131318lg1604lg 21x g x x -≥⨯⇒≥⇒≥+=+≈+,即20081812025+-=年.预计到2025年,全球产生的数据量将达到2020年的111210倍.22.已知函数()πcos 2f x x x =-,x ∈R .(1)求()()πf x f x -+;(2)如图所示,小杜同学画出了()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象,试通过图象变换,在图中画出()f x 在区间π3π,22⎡⎤⎢⎥⎣⎦上的示意图;(3)证明:函数()()π4h x f x x =+有且只有一个零点0x .【答案】(1)()()ππf x f x -+=(2)见解析(3)见解析【解析】【分析】(1)求出()πf x -,即可得出()()πf x f x -+的值;(2)由(1)知,函数()f x 的图象关于点ππ22⎛⎫ ⎪⎝⎭,对称,则函数()f x 在区间π3π,22⎡⎤⎢⎥⎣⎦的图象由对称性即可得出;(3)()()ππcos 024h x x x x =-≥,设函数())()()ππ0,cos 042g x x x u x x x =-≥=-≥,分别讨论104x ≤≤,1π4x ≤≤和πx >时,()(),g x u x 的单调性,即可求出()h x 的单调性和值域,结合零点存在性定理即可证明.【小问1详解】因为()πcos 2f x x x =-,所以()()ππππcos ππcos 22f x x x x x -=---=-+,所以()()ππππcos cos π22f x f x x x x x -+=-++-=.【小问2详解】由(1)知,函数()f x 的图象关于点ππ22⎛⎫⎪⎝⎭,对称,则函数()f x 在区间π3π,22⎡⎤⎢⎥⎣⎦的图象如下图所示,【小问3详解】因为()()π4h x f x =-,所以()()ππcos 024h x x x x =--+≥,设函数())()()ππ0,cos 042g x x x u x x x =≥=-≥,①当104x ≤≤时,因为函数()21124g x ⎫=--⎪⎭在10,4⎡⎤⎢⎥⎣⎦单调递减,所以()()00g x x g =-≤=,因为函数()u x 在10,4⎡⎤⎢⎥⎣⎦单调递增,所以()ππππ1πππcos cos cos 042424423u x x =-≤-<-=,所以()0h x <,所以函数()h x 在区间10,4⎡⎤⎢⎥⎣⎦没有零点.②当1π4x ≤≤时,因为函数()21124g x ⎫=--⎪⎭在1,π4⎡⎤⎢⎥⎣⎦单调递增,函数()u x 在1,π4⎡⎤⎢⎥⎣⎦单调递增,所以()h x 在1,π4⎡⎤⎢⎥⎣⎦单调递增,又11π1ππ1π1πππ11cos cos 0442442442344h --⎛⎫=--=-+<-+=-⎪⎝⎭,()ππ7πππ0244h =+-+=>,根据零点存在性定理,存在唯一0x ∈1,π4⎛⎫⎪⎝⎭,使得()00h x =.③当πx >时,函数()21124g x ⎫=--⎪⎭在[]π,+∞单调递增,所以()()ππg x g >=-()πππππcos 42424u x x =-≥-=-,所以()π3ππ044h x >=>,所以函数()h x 在区间)π,+⎡∞⎣没有零点.综上,函数()()π4h x f x =+有且只有一个零点0x .。
福建省2020版高一上学期数学期末考试试卷(II)卷
福建省2020版高一上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)若集合A={-2<x<1},B={0<x<2},则集合A∩B=()A . {x|-1<x<1}B . { x|-2<x<1}C . { x|-2<x<2}D . {x|0<x<1}2. (2分)函数的定义域为()A .B .C .D .3. (2分)tan600°的值是()A .B .C .D .4. (2分) (2016高一下·宜春期中) 要得到函数y=2cosx•sin(x+ )﹣的图象,只需将y=sinx的图象()A . 先向左平移个单位长度,再将所有点的横坐标缩短为原来的倍(纵坐标不变)B . 先向左平移个单位长度,再将所有点的横坐标缩短为原来的2倍(纵坐标不变)C . 先将所有点的横坐标缩短为原来的2倍(纵坐标不变),再向左平移个单位长度D . 先将所有点的横坐标缩短为原来的倍(纵坐标不变),再向左平移个单位长度5. (2分)函数f(x)=ex-的零点所在的区间是()A .B .C .D .6. (2分)(2017·深圳模拟) 下列函数中既是偶函数,又在区间(0,1)上单调递增的是()A . y=cosxB .C . y=2|x|D . y=|lgx|7. (2分) (2019高一上·宁乡期中) 国内快递1 000 g以内的包裹的邮资标准如表:运送距离x(km)0<x≤500500<x≤1 0001 000<x≤1 500…邮资y(元) 5.00 6.007.00…如果某人在西安要邮寄800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是()A . 5.00元B . 6.00元C . 7.00元D . 无法确定8. (2分)已知函数且,则实数的值为()A . -3B . 1C . -3或1D . -3或1或3二、填空题 (共6题;共6分)9. (1分) (2019高三上·梅县月考) 已知向量与的夹角为且 ,则________.10. (1分) (2017高一上·怀柔期末) sin11°cos19°+cos11°sin19°的值是________.11. (1分) (2018高一下·毕节期末) 函数的部分图象如图所示,则的值是________.12. (1分)(2018·滨海模拟) 在平行四边形中,,,,为的中点,若是线段上一动点,则的取值范围是________13. (1分) (2019高三上·黑龙江月考) 已知函数的图象向右平移个单位得到函数的图象,则函数在上的单调增区间是________.14. (1分) (2017高二下·黄山期末) 函数y=x3+x的递增区间是________.三、解答题 (共6题;共55分)15. (5分)化简与求值:(1)化简:;(2)已知α,β都是锐角,cosα=, cos(α+β)=﹣,求cosβ的值.16. (10分) (2020高一上·黄山期末)(1)设,且与的夹角为,求的值;(2)设,求与的夹角 .17. (10分) (2020高一下·吉林期中) 已知函数f(x) sin2x+cos2x.(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)的单调递增区间.18. (10分) (2017高一上·廊坊期末) 已知函数f(x)= [cos(2x+ )+4sinxcosx]+1,x∈R.(1)求函数f(x)的最小正周期;(2)令g(x)=af(x)+b,若函数g(x)在区间[﹣, ]上的值域为[﹣1.1],求a+b的值.19. (10分) (2020高一上·淮南期末) 已知函数的最大值为 .(1)求的值;(2)若 , 在第三象限,求的值.20. (10分) (2017高一上·武汉期中) 经市场调查,东方百货超市的一种商品在过去的一个月内(以30天计算),销售价格f(t)与时间(天)的函数关系近似满足,销售量g(t)与时间(天)的函数关系近似满足g(t)= .(1)试写出该商品的日销售金额W(t)关于时间t(1≤t≤30,t∈N)的函数表达式;(2)求该商品的日销售金额W(t)的最大值与最小值.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共6题;共55分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:。
福建省2021年高一上学期期末数学试卷(II)卷(新版)
福建省2021年高一上学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·南平模拟) 集合A={x|x2﹣2x﹣8≤0},B={x|2x<8},则A∩B=()A . (﹣∞,2]B . [﹣2,3)C . [﹣4,3)D . (﹣∞,3]2. (2分) (2019高一上·攀枝花月考) 已知偶函数满足,且,则的值为()A . -2B . -1C . 0D . 23. (2分) (2020高三上·泸县期末) 在中,边上的中线的长为,,则()A .B .C .D .4. (2分)(2019·肇庆模拟) 下列函数中,既是奇函数,又在其定义域上单调递增的是()A .B .C .D .5. (2分) (2016高二下·珠海期末) 已知函数y=x3+3x2+a有且仅有两个零点x1和x2(x1<x2),则x2﹣x1的值为()A . 1B . 2C . 3D . 46. (2分) (2019高一下·大庆期中) 在中.已知是延长线上一点.点为线段的中点.若 .且 .则()A .B .C .D .7. (2分)(2019·莆田模拟) 已知函数,若方程有四个不同的解,则的取值范围是()A .B .C .D .8. (2分) (2017高一上·舒兰期末) 下列函数中,既不是奇函数又不是偶函数的是()A . y=x2+|x|B . y=2x﹣2﹣xC . y=x2﹣3xD . y= +9. (2分)在△ABC中,∠C=90°,则k的值是()A . 5B . -5C .D .10. (2分)已知函数f(x)=若函数f(x)的值域为R,则实数a的取值范围为()A . a≤﹣B . a<C . ﹣≤a<D . a>二、填空题 (共8题;共8分)11. (1分) (2020高二上·长沙开学考) 已知函数(,且)的图像恒过定点,则 ________.12. (1分) (2016高一上·河北期中) 已知f(x)为定义在R上的奇函数,当x∈(0,+∞)时,f(x)=2x+1,则当x∈(﹣∞,0)时,f(x)=________13. (1分) (2016高一上·湖州期中) 若函数f(x)=2•ax﹣b+1(a>0且a≠1)的图像经过定点(2,3),则b的值是________.14. (1分) (2016高一上·宿迁期末) 在平面直角坐标系xOy中,,分别是与x轴、y轴方向相同的单位向量,已知 = +2 , =3 +4 , =2t +(t+5),若与共线,则实数t的值为________.15. (1分) (2016高一上·锡山期中) 已知函数,若函数g(x)=|f(x)|﹣a有四个不同零点x1 , x2 , x3 , x4 ,且x1<x2<x3<x4 ,则的最小值为________16. (1分)(2019·赣州模拟) 四边形的两条对角线与相交于点,且,,过点作,垂足为,若,则四边形的面积为________.17. (1分)设集合A={x∈Q|x>﹣1},则 ________A.(用适当的符号填空)18. (1分) (2016高一上·南京期中) 函数f(x)= 的定义域为R (常数a>0,a≠1),则实数k的取值范围为________.三、解答题 (共4题;共30分)19. (10分) (2020高一上·上饶期中) 已知函数f(x)的定义域为A,函数g(x)(﹣1≤x≤0)的值域为B.(1)求A∩B;(2)若C={x|a≤x≤2a﹣1}且C⊆B,求a的取值范围.20. (5分)已知:A(cosx,sinx),其中0≤x<2π,B(1,1), + = ,f(x)=| |2(Ⅰ)求f(x)的对称轴和对称中心;(Ⅱ)求f(x)的单调递增区间.21. (10分) (2019高一上·南充月考) 已知定义域为的单调减函数是奇函数,当时,.(1)求的解析式;(2)若对任意的,不等式恒成立,求实数的取值范围22. (5分) (2018高一下·台州期中) 已知二次函数 , ,且的零点满足(I)求的解析式;(Ⅱ)当时,不等式恒成立,求实数的取值范围.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共4题;共30分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州市高一上学期数学期末考试试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)已知集合,则()
A . {x|0<x<}
B . {x|<x<1}
C . {x|0<x<1}
D . {x|1<x<2}
2. (2分)化简后结果是()
A .
B .
C .
D .
3. (2分)已知向量,向量,若,则实数x的值是()
A . 0或2
B . -3
C . 0或-3
D . 2
4. (2分)下列函数中,在其定义域内既是减函数又是奇函数为()
A .
B .
C .
D .
5. (2分)下列关系式中正确的是()
A .
B .
C .
D .
6. (2分)(2016·新课标Ⅲ卷文) 已知向量 =(,), =(,),则∠ABC=()
A . 30°
B . 45°
C . 60°
D . 120°
7. (2分)若函数的图像向右平移个单位后与原函数的图像关于x轴对称,则的最小正值是()
A .
B . 1
C . 2
D . 3
8. (2分)(2017·池州模拟) 若a=()10 , b=(),c=log 10,则a,b.c大小关
系为()
A . a>b>c
B . a>c>b
C . c>b>a
D . b>a>c
9. (2分)若函数f(x)=x2﹣4x﹣m+4在区间[3,5)上有零点,则m的取值范围是()
A . (0,4)
B . [4,9)
C . [1,9)
D . [1,4]
10. (2分)某种产品平均每三年降低价格25%,目前售价为640元,则9年后此产品的价格为()
A . 210
B . 240
C . 270
D . 360
二、填空题 (共5题;共5分)
11. (1分) (2017高一上·泰州期末) 函数的最小正周期为________ .
12. (1分) (2017高一上·天津期中) 已知函数f(x)=logax+b(a>0,a≠1)的定义域、值域都是[1,2],则a+b=________.
13. (1分)关于x的不等式ax2+ax+a﹣1<0对一切实数恒成立,则实数a的取值范围是________.
14. (1分)(2018·滨海模拟) 在平行四边形中,,,,为
的中点,若是线段上一动点,则的取值范围是________
15. (1分)函数f(x)=sin(2x+φ)(﹣π<φ<0)图象的一条对称轴是直线,则φ=________.
三、解答题 (共5题;共50分)
16. (10分)(2018·绵阳模拟) 已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为 .
(1)求和的值;
(2)若,求的值.
17. (10分) (2017高一上·芒市期中) 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,最大月产量是400台.已知总收益满足函数,其中x是仪器的月产量(单位:台).
(1)将利润y(单位:元)表示为月产量x(单位:台)的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润为多少?(总收益=总成本+利润).
18. (10分) (2018高三上·连云港期中) 已知向量= (1,2sinθ),= (sin(θ+ ),1),θ R。
(1)若⊥ ,求tanθ的值;
(2)若∥ ,且θ (0, ),求θ的值
19. (10分) (2016高三上·江苏期中) 在△ABC中,已知角A,B,C所对的边分别为a,b,c,且tanB=2,tanC=3.
(1)求角A的大小;
(2)若c=3,求b的长.
20. (10分)已知函数f(x)=﹣x3+ax2﹣4.
(1)若f(x)在处取得极值,求实数a的值;
(2)在(1)的条件下,若关于x的方程f(x)=m在[﹣1,1]上恰有两个不同的实数根,求实数m的取值范围.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共5分)
11-1、
12-1、
13-1、
14-1、
15-1、答案:略
三、解答题 (共5题;共50分) 16-1、
16-2、
17-1、
17-2、
18-1、
18-2、
19-1、答案:略
19-2、答案:略
20-1、答案:略
20-2、答案:略。