高聚物分子间的作用
高分子化合物名词解释
高分子化合物名词解释高分子化合物:具有一定空间结构的线型或支链型的高分子化合物。
①具有线性结构的高分子化合物。
包括线型高分子、支链高分子及交联高分子等。
前者为原来的高聚物,后两者是在热、光、辐射、机械力等因素作用下,使其分子间发生化学反应而得到的产物。
②线型高分子化合物,又称高聚物。
这类化合物在常温和一般条件下,是以线型结构存在的。
通常所谓高聚物实际上指的是高聚物中含有长度为1~1000μm的长链。
在高聚物中,通过聚集态结构的某些特殊变化,可以使高聚物具有不同于天然高聚物的新性能。
②主要用途。
高聚物在工业中可用作塑料、纤维、橡胶、粘合剂、涂料等。
另外,高聚物还广泛地用作电线、电缆、漆包线、纸管、绳索、胶合板、各种人造革等的基本材料,并可用作海洋船舶、运输车辆、体育器材、医疗器械、农业机械、纺织工业机械、文化用品、日常生活用品等的制造材料。
③高聚物是由相对分子质量较大的低分子化合物在一定条件下(如高温、催化剂、氧气等)加工而成的,是一种重要的工程材料。
④一种使用的高聚物主要根据其聚合方法和组成材料来确定。
按聚合方法可分为熔融缩聚和本体缩聚;按所用单体可分为碳链聚合物和杂链聚合物。
主要用途。
高聚物在工业中可用作塑料、纤维、橡胶、粘合剂、涂料等。
另外,高聚物还广泛地用作电线、电缆、漆包线、纸管、绳索、胶合板、各种人造革等的基本材料,并可用作海洋船舶、运输车辆、体育器材、医疗器械、农业机械、纺织工业机械、文化用品、日常生活用品等的制造材料。
③高聚物是由相对分子质量较大的低分子化合物在一定条件下(如高温、催化剂、氧气等)加工而成的,是一种重要的工程材料。
④一种使用的高聚物主要根据其聚合方法和组成材料来确定。
按聚合方法可分为熔融缩聚和本体缩聚;按所用单体可分为碳链聚合物和杂链聚合物。
3。
交联:使分子间产生化学键联系的聚合物叫做交联高分子。
这种高分子的性能更优越,应用范围也更广泛。
4。
碳链聚合物:含有由碳原子组成的碳链。
物性学——精选推荐
食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。
2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。
各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。
玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。
它与液态主要区别在于黏度。
玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。
4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。
6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。
蛋白质是很好的界面活性物质。
7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。
8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。
二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。
三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。
因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。
这种现象称作马兰高尼效果。
四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。
在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。
高分子物理知识点
构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列柔性:高分子链中单键内旋的能力;高分子链改变构象的能力;高分子链中链段的运动能力;高分子链自由状态下的卷曲程度。
链段:两个可旋转单键之间的一段链,称为链段影响柔性因素:1支链长,柔性降低;交联度增加,柔顺性减低。
2一般分子链越长,构象数越多,链的柔顺性越好。
3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。
分子链的规整性好,结晶,从而分子链表现不出柔性。
控制球晶大小的方法:1控制形成速度;2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶;3外加成核剂,可获得小甚至微小的球晶。
聚合物的结晶形态:1单晶:稀溶液,慢降温,螺旋生长2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出;4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列;5串晶:溶液低温,边结晶边搅拌;6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。
结晶的必要条件:1内因:化学结构及几何结构的规整性;2外因:一定的温度、时间。
结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶;3分子量:M小结晶速度块,M大结晶速度慢;熔融热焓?H m:与分子间作用力强弱有关。
作用力强,?H m 高熔融熵?S m:与分子间链柔顺性有关。
分子链越刚,?S m小聚合物的熔点和熔限和结晶形成的温度T c有一定的关系:结晶温度Tc低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低;结晶温度Tc高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。
取向:在外力作用下,分子链沿外力方向平行排列。
聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。
高分子材料的力学性能
高分子材料的力学性能
01 高聚物的抗拉强度
02 长期强度
高分子材料的力学性能
抗拉强度:
在规定的温度、湿度和加载速度下,在试样上沿轴 向施加拉力直到试样被拉断为止,断裂前试样所承受的 最大载荷与试样截面之比称为抗拉强度。
宽度b
厚度d
P
t
p bd
p A0
抗拉强度越大,说明材料越不易断裂、越结实
高分子材料的力学性能
高分子材料的力学性能
玻璃纤维是将玻璃材料通过拉丝形成的纤维状的玻璃, 没有固定的熔点。是一种综合性能优异的无机非金属材料, 通常作为复合材料增强基材、电绝缘材料、耐热绝热材料、 光导材料、耐蚀材料和过滤材料等,广泛应用于国民经济各 个领域。
玻璃纤维
高分子材料的力学性能
玻璃纤维对高聚物的增强:
短玻璃纤维可以提高热塑性塑料的强度,还可以用玻璃纤维与其 他织物复合而制成玻璃钢。
玻璃钢的性能优越,其强度高于钢,是以玻璃纤维制成玻璃布,
以不同的角度排列,以环氧树脂、酚醛树脂、呋喃树脂的顺序形成涂 层,经加热、层压、固化而成。
材料
拉伸强度/MPa
未增强
23
聚乙烯
右表为一些热塑性
增强
76
塑料用玻璃纤维增
未增强
58
聚苯乙烯
强后其拉伸强度的
增强
96
变化
未增强
62
聚碳酸酯
增强
140
未增强
在高分子材料中长期强度指一定时间后,高分子材料 不发生断裂时的强度值。
长期
t
谢谢!
高分子材料的力学性能
2、应力和缺陷:
缺陷的存在将使材料受力时内部压力分布不平均, 缺陷附近范围内的应力急剧地增加,远远超过压力平均 值,这种现象称为应力集中,缺陷就是应力集中物,包 括裂缝、空隙、缺口、银纹和杂质等,缺陷成为材料的 薄弱环节,材料的破坏就从这些缺陷处开始而扩展到 整个体系,严重降低材料的强度。
高分子物理——第四章 非晶态高聚物ppt课件
(三)、高弹态(橡胶态)
力学特征:ε大,约100 ~1000%,且可逆,具有高 弹性,称为高弹态,为聚合物特有的力学状态。模量 E进一步降低—聚合物表现出橡胶行为
分子运动:链段运动
热运动 T↑,链段运动能力↑,ε↑
外力
蜷曲
伸长
T↑,大分子链柔性↑,回复力↑
高弹形变是链段运动使分子发生伸展
卷
曲的宏观表现。回复力↑(抵抗形变)与流动性
主价力(键合力、化学键)
共价键:由原子的价电子自旋配对所形成的键。 C—C(键长、键角、键能) 特点:不离解、不导电、具饱和性和方向性 类型:σ键(电子云分布轴对称)、π键(对称面)
离子键:由正负离子间的静电相互作用形成的键。 金属键:由金属原子的价电子和金属离子晶格之间的相互作用
形成的
次价力(此作用力的大小决定了分子结构,特别是聚集态结构)
⑴ 静电力(取向力,偶极力) 极性分子、永久偶极间
其大小同
偶极矩
↑而↑
定向程度 有关 ↑而↑
T
↑而↓
它是极性分子间的主要作用力
12~21KJ/mol
⑵ 诱导力 永久偶极与由它引起的诱导偶极间 极性分子之间或极性分子与非极性分子间 6~12KJ/mol
⑶ 色散力 是分子瞬时偶极之间的相互作用力 存在于一切分子中(极性或非极性),具加和
4、晶区的分子运动:晶区缺陷的运动、 晶型转变、晶区的局部松驰、折叠链的“手 风琴式”运动。
2,3,4都是小尺寸运动,或者微布朗运动
在上述运动单元中,对聚合物的物理和力 学性能起决定性作用的、最基本的运动单元, 只有1、2两种,而整链运动是通过各链段协同 运动来实现的,因此链段运动最为重要,高分 子材料的许多性能都与链段运动有直接关系。
高分子物理习题答案
高分子物理部分复习题构象;由于单键(6键)的内旋转,而产生的分子在空间的不同形态。
它是不稳定的,分子热运动即能使其构象发生改变构型;分子中由化学键所固定的原子在空间的排列。
稳定的,要改变构型必需经化学键的断裂、重组柔顺性;高聚物卷曲成无规的线团成团的特性等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。
熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。
蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。
挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。
杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子键接结构、结构单元在高分子链中的联结方式旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。
高聚物结构-问答计算题
1.简述聚合物的结构层次。
答聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构和远程结构。
一级结构包括化学组成,结构单元链接方式,构型,支化与交联。
二级结构包括高分子链大小和分子链形态。
三级结构属于凝聚态结构,包括晶态结构,非态结构,取向态结构和织态结构。
2.高密度聚乙烯,低密度聚乙烯和线形低密度聚乙烯在分子链上的主要差异是什么?答高密度聚乙烯为线形结构,低密度聚乙烯为具有长链的聚乙烯,而线形低密度聚乙烯的支链是短支链,由乙烯和高级的a–烯烃如丁烯,己烯或辛烯共聚合而生成。
共聚过程生成的线形低密度聚乙烯比一般低密度聚乙烯具有更窄的相对分子质量分布。
高密度聚乙烯易于结晶,故在密度,熔点,结晶度和硬度等方面都高于低密度聚乙烯。
3.假假设聚丙烯的等规度不高,能不能用改变构象的方法提高等规度?答不能,提高聚丙烯的等规度须改变构型,而改变构型与构象的方法根本不同。
构象是围绕单键内旋转所引起的分子链形态的变化,改变构象只需克服单键内旋转位垒即可实现;而改变够型必须经过化学键的断裂才能实现。
4.试从分子结构分析比较以下各组聚合物分子的柔顺性的大小:〔1〕聚乙烯,聚丙烯,聚丙烯腈;〔2〕聚氯乙烯,1,4-聚2-氯丁二烯,1,4-聚丁二烯;〔3〕聚苯,聚苯醚,聚环氧戊烷;〔4〕聚氯乙烯,聚偏二氯乙烯。
答〔1〕的柔顺性从大到小排列顺序为:聚乙烯>聚丙烯>聚丙烯腈;〔2〕的柔顺性从大到小排列顺序为:1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯〔3〕的柔顺性从大到小排列顺序为:聚环氧戊烷聚苯醚聚苯〔4〕的柔顺性从大到小排列顺序为:聚偏二氯乙>烯聚氯乙烯5.请排出以下高聚物分子间的作用力的顺序,并指出理由:〔1〕顺1,4-聚丁二烯,聚氯乙烯,聚丙烯腈;〔2〕聚乙烯,聚苯乙烯,聚对苯二甲酸乙二酯,尼龙66。
答〔1〕分子间作用力从大到小的顺序为:聚丙烯腈>聚氯乙烯>顺1,4-聚丁二烯聚丙烯腈含有强极性基团,所以分子间作用力大;聚氯乙烯含有极性基团,分子间作用力较大;顺序1,4-聚丁二烯是非极性分子,不含庞大的侧基,所以分子间力作用小。
高分子物理结晶
性状 橡胶状物质
塑料 纤维
2.2.1 晶体结构的基本概念 晶体:物质内部的质点三维有序周期性排列
把组成晶体的质点抽象成为几何点,由这些等同的几何点的集合所以形成的格子,称为空间格子,也称空 间点阵。 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构单元。 晶体结构=空间点阵+结构单元
点阵 直线点阵——分布在同一直线上的点阵 平面点阵——分布在同一平面上的点阵 空间点阵——分布在三维空间的点阵
两束不同的光通过样品时产生一定的相位差而发生干涉现象,使通过球晶的一部分区域的光可以通过与起 偏器处在正交位置的检偏器,而另一部分区域不能,最后分别形成球晶照片上的亮暗区域。
②球晶的对称性。 样品沿平面方向转动,球晶的黑十字消光图像不变,即球晶的所有半径单元在结晶学上是等价的。
球晶的生长
• 球晶以折叠链晶片为基本结构单元 • 这些小晶片由于熔体迅速冷却或其他条件限制,来不
高分子物理结晶
凝聚态(聚集态)与相态
凝聚态:物质的物理状态, 是根据物质的分子运动在宏观力学性能上的表现来区分的, 通常包括固、 液、气体(态),称为物质三态
相态:物质的热力学状态,是根据物质的结构特征和热力学性质来区分的,包括晶相、液相和气相 (或态)
一般而言,气体为气相,液体为液相,但固体并不都是晶相。如玻璃(固体、液相)
质的主要因素。对于实际应用中的高聚物材料或制品,其使用性能直接决定于在加工成型过程中形成
的聚集态结构。
链结构只是间接影响高聚物材料的性能,而聚集态结构才是直接影响其性能的因素。
链结构是在高分子的合成过程中形成的,而聚集态结构是在高分子加工、成型过程中形成的。
小分子的共价键和次价键
共价键键能: 100-900kJ/mol
生物分离工程填空简答)
《生物分离工程》复习题一(第1~3章)二、填空题1、Cohn方程logS=β-KsI中,Ks越大,β值越小,盐析效果越好。
2、固液分离的主要方法有离心和过滤。
3、对发酵液进行预处理方法主要有加热法、调节PH值、凝聚和絮凝、使用惰性助助滤剂、加入反应剂。
4、根据过滤机理的不同,过滤操作可分为澄清过滤和滤饼过滤两种类型5、盐析的操作方法有加入固体盐、加入饱和溶液法、透析平衡法。
6、核酸的沉淀方法主要有有机溶剂沉淀法、等电点沉淀发、钙盐沉淀法、溶剂沉淀法。
7、蛋白质胶体溶液的稳定性主要靠蛋白质分子间静电排斥作用、蛋白质周围的水化层等因素稳定。
8、为使过滤进行的顺利通常要加入惰性助滤剂。
9、典型的工业过滤设备有半框压滤机和真空转鼓过滤机。
10、常用的蛋白质沉析方法有盐析、等电点和有机溶剂。
二、填空1、常用离心设备可分为离心沉降和离心过滤两大类;2、在一个转子中,将粒子沉降下来的效率可以用 K系数来描述。
3、超离心法是根据物质的沉降系数、质量和形状不同,应用强大的离心力,将混合物中各组分分离、浓缩、提纯的方法。
4、密度梯度离心中,制备密度梯度的常用方法有手工法、梯度混合仪法、离心形成法。
5、阳离子交换树脂按照活性基团分类,可分为强酸型、弱酸型和中等强度;其典型的活性基团分别有磺酸基团、羧基和磷酸基。
7、蛋白质分离常用的层析方法有凝胶层析、多糖基离子交换、亲和层析和疏水层析。
8、离子交换分离操作中,常用的梯度洗脱方法有 PH梯度和离子强度梯度。
10、多糖基离子交换剂包括葡集团离子交换剂和离子交换纤维素两大类。
11、离子交换树脂由载体、活性基团和可交换离子组成。
12、DEAE Sepharose是阴离子交换树脂,其活性基团是二乙基氨基乙基。
13、CM Sepharose是阳离子交换树脂,其活性基团是羧甲基。
14、离子交换操作一般分为动态和静态两种。
15、利用薄层定量测定时,一般控制待测组分的Rf在 0.2-0.5 之间。
第9章高分子的聚集态结构
第一节 高聚物分子间的作用力
高分子的聚集态只有固态(晶态和非晶 态)、液态,没有气态,说明高分子的分子 间力超过了组成它的化学键的键能。
因此,分子间作用力更加重要 !
第一节 高聚物分子间的作用力
通常采用内聚能或内聚能密度来表示高聚物分子 间作用力的大小。
内聚能:克服分子间的作用力,把1mol液体或固体分 子移到其分子间的引力范围之外所需要的能量。
高聚物结晶的形态学
聚合物
聚乙烯 聚丙烯 聚丁二烯 聚4·甲基·1·戊烯 聚乙烯醇 聚丙烯腈 聚偏氟乙烯
聚甲醛 聚氧化乙烯 尼龙6 尼龙66 尼龙610 醋酸纤维素
溶剂
二甲苯 α—氯代苯 醋酸戊酯 二甲苯 三乙基乙二醉 碳酸丙烯酯 一氯代苯(9) 二甲基甲酰胺 环己醇 丁基溶纤剂 甘油 甘油 甘油 硝基甲烷正丁醇
聚
乙
烯
单
层
刚
性
晶
体
照
空心棱锥型聚乙烯单
片
晶立体形状示意图
高聚物结晶的形态学
聚甲醛单晶的电镜照片
(平面正六边形)
聚甲醛单晶的 电子衍射照片
高聚物结晶的形态学
形成条件: • 结晶浓度:一般是在极稀的溶液中(浓度约0.01%)
缓慢结晶形成的。 (避免分子链的相互缠结,增加结晶的复杂性)
浓度约为0.1%时发展成多层片晶; 浓度大于1%时则形成接近于本体结晶时的球晶。
第一节 高聚物分子间的作用力
内聚能密度大小与高聚物的物理性质之间的对应关系:
• CED < 290兆焦/米3 的高聚物都是非极性高聚物, 可用作橡胶;
• CED > 420兆焦/米3 的高聚物由于分子链上有强极性基团, 或者分子链间能形成氢键, 分子间作用力大,可做纤维材料;
高分子的聚集态结构
3.2 聚合物结晶的形态学 晶体:是由原子或分子在空间按一定规律周期重复地 排列构成的固体物质。晶体中原子或分子的排列具有 三维空间的周期性,隔一定的距离重复出现,这种周 期性规律是晶体结构最基本的特征。 结晶的形态学研究的对象是单个晶粒的大小、形状以 及它们的聚集方式。 形态学的研究手段:广角X射线衍射(WAXD),偏光 显微镜(PLM),电子显微镜(TEM、SEM),电子 衍射(ED)、原子力显微镜(AFM)、小角X射线衍 射(SAXD)等。
μ1,μ2:分别为两种极性分子的偶极矩; R:分子间距离;k:波尔兹曼常数;T:温度。 静电力的作用能量一般在13-21kJ/mol。 PVC、 PVA 、PMMA等分子
山东大学化学与化工学院
3.1.1 范德华力与氢键
◆诱导力:极性分子的永久偶极与它在其他分子上
引起的诱导偶极之间的相互作用力。诱导力存在 于极性分子与非极性分子之间,以及极性分子与 极性分子之间。
山东大学化学与化工学院
3.1 聚合物分子间的作用力 由于分子间存在着相互作用,才使相同的或不同的 高分子聚集在一起成为有用的材料。 3.1.1 范德华力与氢键 分子间的作用力:范德华力(静电力、诱导力和色散力); 氢键
山东大学化学与化工学院
3.1 高聚物分子间的作用力
◆静电力:极性分子之间的引力。
I:分子的电离能; α:分子极化率; R:分子间距离。
山东大学化学与化工学院
3.1.1 范德华力与氢键 色散力的作用能一般在0.8-8kJ/mol。 在一般非极性高分子中,例如, PE、PP、PS中, 色散力占分子间作用总能量的80~100%。
◆以上三种力统称为范德华力,是永久存在于一切分
子之间的一种吸引力。
聚合物的分子间作用力与凝聚态
现在您浏览到是三页,共十八页。
聚合物的分子间作用力
一、范德华力
特点:没有饱和性和方向性 。
范
静电力
德
华
诱导力
力
色散力
现在您浏览到是四页,共十八页。
聚合物的分子间作用力
1. 静电力
静电力是发生在极性分子间的相互作用力,是由极 性基团的永久偶极之间相互作用引起的。
276
66
聚对苯二甲酸乙二酯
477
114
276
66
尼龙66
774
185
305
73
聚丙烯腈
992
237
现在您浏览到是十五页,共十八页。
聚合物的分子间作用力 (1)CED < 290 MJ/m3的高聚物
该类是非极性高聚物,如聚乙烯、天然橡胶等分子间作用力
主要是色散力,相互作用较弱,加上分子链柔性好。除聚乙烯用 做塑料外,其余大都易变形,弹性好,可用做橡胶材料 。
聚合物的分子间作用力
3. 色散力
色散力分子瞬时偶极之间的相互作用力,它存在于一切 极性和非极性分子中。
色散力的作用能量一般在0.8~8KJ/mol,在一般非极 性高分子(如PE、PP等)中,其分子间作用力主要是 色散力 。
现在您浏览到是九页,共十八页。
聚合物的分子间作用力
二、氢键
氢键是极性很强的X—H键上的氢原子,与另外一个键 上电负性很大的原子Y上的孤对电子相互吸引而形成的一种键。 X—H………Y。氢键既有方向性也有饱和性。
13聚合物的分子间作用力聚合物的分子间作用力高聚物ced高聚物ced卡厘米3聚乙烯25962聚甲基丙烯酸甲酯34783聚异丁烯27265聚醋酸乙烯酯36888天然橡胶28067聚氯乙烯38191聚丁二烯27666聚对苯二甲酸乙二酯477114丁苯橡胶27666尼龙66774185聚苯乙烯30573聚丙烯腈992237线型高聚物的内聚能密度14聚合物的分子间作用力聚合物的分子间作用力1ced290mjm3的高聚物该类是非极性高聚物如聚乙烯天然橡胶等分子间作用力主要是色散力相互作用较弱加上分子链柔性好
高聚物的聚集态结构.
以上三种力统称范德华力,永远存在于分子中, 这种力没有饱和性和方向性,每摩尔的能量比 化学键小1~2个数量级。 (4)氢键:
极性很强的X—H键上的氢原子H,与另外一个
键上电负性很大的原子Y相互吸引而形成的一 种键(X—H · · ·Y)
一、高聚物分子间的作用力
X.Y电负性↑,原子半径↓,则氢键强度↑
二、高聚物的非晶态
高聚物无气态,只有液、固态
• 结晶高聚物多为两相结构,有晶相及非晶 相,晶相中常有缺陷
二、高聚物的非晶态
1.线性非晶态高聚物的力学状态 (1)温度-形变曲线
二、高聚物的非晶态
(2)力学三态分子运动机理
玻璃态: Tb<T<Tg
T低,热运动能量不足以使大分子和链段运动,只仅
链段运动冻 结 链段运动 分子链相对 运动
二、高聚物的非晶态
(3)温度-形变曲线的指导意义
高聚物可作何种材料使用
常温<Tg: 塑料或纤维 Tg 高:材料耐热性好 Tg<常温<Tf : 橡胶 Tg低:材料耐寒性好 Tf高:材料耐热性好 Tf <常温:粘合剂、涂料
二、高聚物的非晶态
(2)指导成型方法及工艺条件、配方
成型须经粘流态 成型加工温度范围: Tf~Td
热塑性塑料成型实际上就是高聚物力学状态的相互转变过 程 例:PVC, Tf~Td范围小, 热敏性树脂 加入热稳定剂: ↑ Td 加入增塑剂: ↓ Tf ↓受热时间,设备不能有死角
二、高聚物的非晶态
2 非晶态高聚物的转变 (1)玻璃化转变
自由体积理论 液、固相物体总体积由两部分组成:
外力消除后,普弹形变立即恢复,而构象改变产生
高分子物理-第二章.
静电力
范德华力 诱导力
高聚物分子间作用力
色散力
氢键
一、静电力
静电力:存在于极性分子与极性分子之间的引力。
偶极矩:极性分子带有的电荷与正负电荷距离的乘积。
qr
静电力相互作用能
Ek
2 3
12
2 2
R 6KT
(12.6~20.9 KJ/mol)
K——波尔兹曼常数
对于聚乙烯醇、聚丙烯腈、PVC、PMMA 之间分子间作用
力主要是静电力。
二、 诱导力
诱导力:极性分子的永久偶极与它在分子上引起的诱导偶极
之间的相互作用力。
诱导偶极的相互作用能为:
E0
112
2
2 2
R6
(6.3~20.9 KJ/mol)
——极化率
诱导力不仅存在于极性与非极性分子之间,也存在于极性与
极性分子之间。
三、 色散力
色散力:存在于一切分子中,是范德华力中最普遍的 一种,分子瞬时偶极之间的相互作用力
色散力作用能:
EL
3 2
I1I I1
2
I
2
1 R6
2
(0.8~8.4 KJ/mol)
I——分子的电离能力
在非极性分子中,分子间的作用力主要是色散力
静电力、诱导力和色散力统称为范德华力,没有方向性和
饱和性。
四、 氢键
氢键:氢键是极性很强 X—H 键的氢原子,与另外一个键
上电负性很大的原子 Y 上的孤对电子相互吸引而形成的
完善晶体
结晶聚合物
无定形物质
衍射仪法
衍射仪主要由X射线机、测角仪、X射线探测器、 信息记录与处理装置组成
只检测平行于 表面的晶面
大学本科高分子物理第二章《聚合物的凝聚态结构》课件
===90
Three perpendicular two-fold rotation axis
Monoclinic
a bc ==90; 90One two-fold rotation axis
Triclinic
a bc 90
None
a,b,c – unit vectorial distances
第二章 聚合物的凝聚态结构
本章课时 6
1
固体
凝聚态为物质的物理状态
液体
气体
晶态 液态
相态为物质的热力学状态
气态
高分子凝聚态是指高分子链 之间的几何排列和堆砌状态
液体 固体 液晶态
取向结构
晶态 非晶态
织态结构
2
高分子的 凝聚态结构
决 聚合物的基本 决 定 性能特点 定
材料的 性能
控制成型 加工条件
=bc;= ac;= ab
20
Structure of PE、PP crystal cell
左图:PE的晶体结构 上图:PP的晶体结构
21
晶胞密度求解
c
MZ N AV
M是结构单元分子量;
Z为单位晶胞中单体(即链结构单元)的数目;
V为晶胞体积;
NA为阿佛加德罗常数
22
2.2.2聚合物的结晶形态(晶体的外形)
24
Maltese Cross in Isotactic Polystyrene
偏光显微镜照片
25
Maltese Cross的形成原因
26
Maltese Cross
27
电镜观察的球晶结构
Spherulite model and the Microscopy of PE spherulite 球晶模型及PE球晶的电镜照片
高聚物的结构与性能要点解析
(2)侧基---取代基
①取代基极性 极性取代基将增加分子内的相互作用,使内旋转困难。侧
基的极性越大,相互作用越强,单键内旋转越困难,分子链柔 顺性越差。
分子主链上极性取代基的密度越大,其内旋转越困难,柔 性也越差。
50
②取代基的体积 空间位阻效应:对于非极性取代基, 取代基的体积
越大, 内旋转越困难, 柔性越差。 ③取代基的对称性
53
(4)支链和交联
短支链会阻碍单键内旋转,使高分子链柔顺性减小。但增大 分子链之间的距离,削弱了分子间的相互作用,提高高分子链的 柔顺性起主导作用,所以短支链对链柔性有一定改善作用;长支 链则阻碍单键内旋转起主导作用,导致柔顺性下降。
交联时,交联点附近的单键内旋转便受到很大的阻碍,分子 链的柔顺性减小。不过,当交联点的密度较低,交联点之间的链 足够长时,交联点间的距离大于链段长度,仍然能表现出相当的 柔性。如含硫2-3%的橡胶,对链的柔顺性影响不大。随着交联 密度的增加,交联点之间的链长缩短,链的柔顺性便迅速减小。 交联点密度足够高时,高分子可能完全失去柔顺性。如交联度达 到一定程度的橡胶(含硫30%以上),因不能旋转而变成硬橡胶。
例:塑料制品、橡胶制品等冬天硬、夏天软。聚苯乙烯,室 温下链的柔顺性差,聚合物可作为塑料使用,但加热至一定 温度时,也呈现一定的柔性。顺式聚1,4-丁二烯,室温时 柔顺性好可用作橡胶,但冷却至-120℃,却变得硬而脆。
56
②外力 外力作用时间长(作用速度缓慢),柔性容易显示;
外力作用时间短(外力作用速度快),高分子链来不及通 过内旋转而改变构象,柔性无法体现出来,分子链表现刚 性。
28
③ 嵌段共聚
— A—A — A—A—B — B—B—A—A — A—
高分子物理试题库参考答案
高分子物理试题库+参考答案一、单选题(共70题,每题1分,共70分)l、下列方法中,可以降低熔点的是()。
A、降低结晶度B、加入增塑剂C、主链上引入芳杂环D、提高分子量正确答案:B2、“是高聚物链段运动开始发生的温度.”是下列选项中哪一个名词的解释。
()A、构型B、熔融指数C、玻璃化温度D、泊松比正确答案: C3、GPC测定相对分子质量分布时,从色谱柱最先分离出来的是()。
A、相对分子质量最大的B、相对分子质量最小的C、依据所用的溶剂不同,其相对分子质量大小的先后次序正确答案:A4、聚苯乙烯分子中可能呈现的构象是()。
A、螺旋链B、无规线团C、折叠链正确答案:B5、“联系起两银文面的束状或高度取向的聚合物。
”是下列选项中哪一个名词的解释。
()A、银纹质(体)B、力学状态C、银纹D、解聚反应正确答案:A6、下列哪种聚合物不存在旋光异构体?()A、聚甲基丙烯酸甲酣B、聚异戊二烯C、聚乙烯D、聚丙烯正确答案: C7以下哪个专业术语是"ma cro mol ecu le"的中文解释。
()A解聚反应B、粘弹性C、高分子D、D高聚物正确答案: C8、下列一组高聚物中,内聚能密度最大的是()。
A、橡胶B、纤维C、塑料正确答案:B9以下哪个专业术语是"polyaddition reaction"的中文解释。
()A双轴取向B、加聚反应C、解聚反应D、键接异构正确答案:B10、下列聚合物中分子链柔性最大是()。
A聚丙烯B、聚氯乙烯C、聚乙烯D、聚丙烯腊正确答案: C11反1,4-聚异戊二烯的Tg比顺14-聚异戊二烯的Tg()。
A、低B、差不多C、高正确答案: C12、以下三种聚合物,内聚能密度最大的是()。
A橡胶B、纤维C、塑料正确答案:B13、WLF方程不能用于()。
A测松弛时间B、测黏度C、测结晶度正确答案: C14、“材料拉伸时横向应变与纵向应变比值之负数,是一个反映材料性质的重要参数。
【高聚物的结构与性能课件】高分子间相互作用的特点及意义
H ≈ 10
−19
J 时
干型高分子粘合剂的仿生探索设计能获得类似于刚毛的粘合力
几种可能的纳制造、微制造技术
1. 纳模塑法(nanomolding) 2. 反应性等离子体干刻蚀法 (dry etching using reactive plasmas) 3. 静电诱导刻蚀法 (electrostatic lithography) 4. 软刻蚀法(soft lithography)
高分子间作用力与高聚物的使用性能
CED < 300 J / cm
非极性高聚物: 色散力为主,较弱 分子链的柔顺性较好 例如: PBu,NR 例外:PE(易结晶而失去弹性)
3
可用作橡胶
高分子间作用力与高聚物的使用性能
CED > 400 J / cm
3
分子链上有强极性基团,或能形成氢键 分子间的作用力大 较好的机械强度和耐热性 分子链结构规整,易于结晶、取向,强度很高 例如: PET, PCN
1. 2. 耦合效应 (柔顺主链的热运动干扰液晶基元的有序排列) 聚合困难 (如:含有硝基等官能团的单体) 3. 对外界响应滞后 (大分子运动缓慢,只有当温度高于它的玻璃化温度时,其响应 才能达到秒的数量级,这显然与实际要求相差甚远)
氢键诱导侧链液晶高分子:
1. 去耦作用(柔顺主链与液晶基元之间:氢键) 2. 自组装,不存在聚合(含有硝基等官能团的单体与高 分子混合) 3. 对外界响应不再滞后(功能小分子对外界响应)
特殊的高聚物溶解过程
先溶胀后溶解
特殊的高聚物溶解过程—先溶胀后溶解
a. 溶剂分子渗透到高分子线团里,高聚物胀大, 就好象链单元间作用着相斥力 (溶剂分子的单向渗透,整个高分子链并没有松 动) b. 溶剂分子-链单元间的作用逐步克服链单元间 的吸引力,直至克服高分子间的吸引力,拆散高 分子—如同揭下胶布 c. 溶解度与链的柔性:聚乙烯醇+水 溶解 纤维素+水 不溶解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华
力 色散 力 各种分子之间的瞬间偶极 距相互作用的吸引力
§3-1
高聚物分子间的相互作用Fra bibliotek★氢键 氢键是特殊的范德华力,具有方向性和饱和性。 氢键的形成条件是一个电负性强、半径小的原子X与氢原子H形成的共价键 (X-H),而这个氢原子又与另外一个电负性强、半径小的原子Y以一种特殊的偶 极作用结合成氢键(X-H· · · Y)。 氢键的形成可以是分子内,也可以是分子间。分子间形成氢的高聚物有聚丙 烯酸、聚酰胺等。
Tg Tmax Tm
高聚物结晶速率与温度的关系
高聚物非结晶结构
非晶高聚物的结构是指玻璃态、橡胶态、熔融态及结晶高聚物中的非晶区中 的结构。在非晶高聚物中高分子链的排列为远程有序,近程无序。
缨状-胶束模型 均相无规线团模型 折叠链缨状胶束模型 可折叠球模型 回文波形模型
非晶高聚物结构模型
均相无规线团模型
~ C-C C C C C ~ C-C O-H O
H-O
C-C C O O
~ C
O C- H-O
C
O-H O
C
C -C
O O-H
H-O
C-C
C ~
聚丙烯酸分子间的氢键示意
§3-1
高聚物分子间的相互作用
★次价力与高聚物的使用 次价力小于4.4×103J/mol的高聚物用作橡胶;次价力大于2.1×103J/mol的高 聚物用作纤维;次价力介于两者之间的高聚物用作塑料。 ★次价力的描述 内聚能 将一摩尔分子聚集在一起的全部能量 内聚能密度(CED) 单位体积的内聚能 ★内聚能密度与高聚物的使用 内聚能密度小于290J/cm3的高聚物分子间作用力较小,分子链较柔顺,容易 变形,具有较好弹性,一般可以作为橡胶使用;内聚能密度较高的高聚物,分子 链较刚性,属于典型的塑料;内聚能密度大于400J/cm3的高聚物,具有较高的强 度,一般作为纤维使用。 总之:分子间作用力是使高分子聚集而成聚集态的主要原因之一,其作用的 大小也决定了高聚物的类型和使用性能。
共价键 主价力(又称化学键) 配位键 作用力的类型 离子键 次价力(又称分子间力,包括:范德华力、氢键)
§3-1
高聚物分子间的相互作用
高分子链的形成主要靠主价力(化学键),高分子链聚集成高聚物主要靠次价力(分 子间的力)。
类型 取向 力 范 德 诱导 力 极性分子与非极性分子、 极性分子作用产生的诱导 偶极之间的吸引力 与极性分子偶极距的平方成正比, 静电引 力 与被诱导分子的变形性成正比; 距离大,诱导力小;与温度无关。 范围:0.6×104~1.2×104J/mol 具有普遍性、加和性,与温度无 关。分子变形大、电离程度大, 色散力大;距离大,色散力小 范围:0.8×103~8.4×103J/mol 静电引 力 定义 极性分子永久偶极之间的 静电相互作用产生的吸引 力 特点 分子极性越大,取向力越大;温 度高、距离大,取向力越小。 范围:4.2×104~2.1×104J/mol 本质 静电引 力
项目3
课件一
高聚物分子间的作用
§3-1
高聚物分子间的相互作用
高聚物聚集态
★高聚物聚集态与小分子物质的聚集态、相态的对应关系
气态 小分子物质的聚集态 液态 (力学、分子热运动特征分类) 固态
粘流态 非晶态 固 态 晶 态
气相 液相 小分子物质的相态 晶相 (热力学特征分类)
一、分子间的相互作用力 ★作用力的类型
折叠链缨状胶束模型
可折叠球模型
回文波模型
(a)
折叠链片晶结构模型
(b)
晶区 非晶区 晶区
(a)近邻规则折叠结构模型
(b)松散环圈折叠结构模型
(c)拉线板折叠结构模型
(c)
多层片晶结构模型
高聚物结晶结构
三、高聚物的结晶过程
分子链轴方向 链带发展方向 单晶
高分子链 折叠链带
晶片 (或针状晶体)
球晶
☆结晶度 定义:高聚物中结晶部分所占的质量分数或体积分数。 测定方法:X-线衍射法、红外光谱法、密度法
项目3 课件二
高聚物结晶与非晶结构
高聚物结晶结构
一、高聚物的结晶形态
稀溶液,缓慢降温 浓溶液或熔体冷却
单晶 球晶
高聚物的结晶形态
挤出、吹塑、拉伸
纤维状晶体 柱晶
伸直链晶体
熔体在应力下冷却
极高压力下慢慢结晶
高聚物结晶结构
二、结晶高聚物的结构模型
(a) (b)
缨状-胶束模型
(a)非取向高聚物
(b)取向高聚物
四、影响高聚物结晶的因素
高分子链的化学结构 内因 相对分子质量 影响高聚物结晶的因素 高分子链形状 外因 温度 压力、杂质
高聚物结晶结构
▲内因 △高分子链的化学结构对结晶的影响 高分子链的化学结构简单、对称性好、结构规整性好、分子间作用力大等利 于结晶。 △高聚物相对分子质量对结晶的影响 在相同温度下,相对分子质量越低,结晶速率越快;在同一高聚物中相对分 子质量低的部分结晶度大于相对分子质量高的部分。 △高分子链的形状对结晶的影响 线型高分子链容易结晶,结晶度大;支链型次之;体型难于结晶。 ▲外因 △温度 温度是最主要的外部条件。 3 4 结 1-晶核生成速率 在玻璃化温度与熔融温度之间 1 2 晶 速 2-晶体成长速率 存在最佳的结晶温度,一般情况下, 率 3-结晶总速率 最佳的结晶温度为: 4-黏度