高分子物理聚合物的分子运动

合集下载

高分子物理知识点总结及习题

高分子物理知识点总结及习题

聚合物的结构(计算题:均方末端距与结晶度)1.简述聚合物的层次结构。

答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。

一级结构包括化学组成、结构单元链接方式、构型、支化与交联。

二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。

三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。

构型:是指分子中由化学键所固定的原子在空间的几何排列。

(要改变构型,必须经过化学键的断裂和重组。

)高分子链的构型有旋光异构和几何异构两种类型。

旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。

)。

全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。

构象:原子或原子基团围绕单键内旋转而产生的空间分布。

链段:把若干个键组成的一段链作为一个独立运动的单元链节(又称为重复单元):聚合物中组成和结构相同的最小单位高分子可以分为线性、支化和交联三种类型。

其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。

但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。

交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。

高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。

单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。

13西安交大——高分子物理PPT第三章聚合物的分子运动

13西安交大——高分子物理PPT第三章聚合物的分子运动
例2:在倾倒高聚物熔体时,若用一根棍子快速敲打流体,则熔体液流 也会脆性碎掉。 这是高聚物熔体呈现固体力学行为的例子。
3.1.3 分子运动的温度依赖性
温度对高分子运动的两个作用: 1. 使运动单元动能增加,令其活化(使运动 单元活化所需要的能量
称为活化能)。当达到某一运动单元运动所需的能量时,就激发 这一运动单元的运动。 2. 温度升高,体积膨胀,提供了运动单元可以活动的自由空间(自 由体积)。当自由空间增加到某种运动单元所需的大小时,这一 运动单元便可自由运动。
模量-温度曲线
两种转变和三种力学状态
玻璃态转变为高弹态的转变称为玻璃化转变,转变温度,即链 段开始运动或冻结的温度称为玻璃化温度Tg。
高聚物由高弹态向粘流态的转变称为粘流转变,这个转变温度称 为粘流温度,用Tf表示。
为什么非晶态高聚物随温度变化出现三种力学状态和二个转变? 我们来看表,了解一下内部分子处于不同运动状态时的宏观表现
玻璃态 高弹态 粘流态
温度 运动单元
力学性质
Tg
以下
Tgf ~ T f
Tg ~ Tf
链段仍处于冻结状态,侧基、 受力变形很小(0.1~1%),
支链、链节等能够做局部运 去力后立即恢复(可逆),
动及键长、键角发生变化, 弹性(普弹性)模量:
而不能实现构象的。
109~1010Pa。
链段运动,不断改变构象, 但是整个分子链还仍处于被 “冻结”的状态。
●饱和主链
CH3 Si O
n CH3
硅橡胶 Tg = -123℃
CH2 O n
聚甲醛 Tg = -83℃
CH2
CH2 n
PE Tg=-68 ℃
●主链上有芳环、芳杂环:
CH3 O

高分子物理第五章聚合物分子运动与转变

高分子物理第五章聚合物分子运动与转变
有的结晶高聚物Td和Tm都低于Tf,也就是说加热到Tm 还不能流动,只有加热到Tf才流动,但此时已超过Td,已 经分解。 eg: PTFE,不能注射成型,只能用烧结法。 PVA和PAN:在Tm时还是高弹态,不会流动,如再升温则 到时Tf才会流动,但已超过Td,分解,所以不能熔融法纺 丝,采用溶液纺丝。
P131 图5-2
15
5.2.1 非晶态聚合物
形变
三种力学状态: 玻璃态(Tg 以下) 高弹态(Tg ~ Tf) 粘流态(Tf 以上)
高弹态 粘流态 玻璃态
三态两区
Tg
Tf
温度
温度-形变曲线(热-机曲线)
三种状态之间的两个转变: 玻璃态转变为高弹态,转变温度称为玻璃化温度Tg 高弹态转变为粘流态,转变温度称为粘流温度Tf
22
5.2.2 晶态聚合物的力学状态
晶态高聚物中总有非晶区存在,非晶部分高聚物 在不同温度下也要发生上述二种转变,但它的宏 观表现与结晶度大小有关 1,轻度结晶聚合物 2,结晶度高于40%的聚合物
23
1,轻度结晶聚合物
试样存在明显的玻璃化温度转变。温度上升时,非晶部分由玻 璃态转变为高弹态。但由于微晶的存在起着交联点的作用,所 以非晶区不会发生很大的形变,形成皮革状。
高弹态
Tg ~ T f
粘流态
Tf
以上
18
两个转变时的分子运动与宏观表现
玻璃化转变 Glass transition: 整个大分子链还 无法运动,但链段开始发生运动,模量下降3~4 个数量级。 粘流转变 Viscosity flow transition: 分子链重 心开始出现相对位移。模量再次急速下降。聚合 物既呈现橡胶弹性,又呈现流动性。对应的转温 度Tf称为粘流温度。

高分子物理-聚合物的分子运动与转变作业答案(1)

高分子物理-聚合物的分子运动与转变作业答案(1)

第七章聚合物的分子运动与转变一、选择答案1、高分子热运动是一个松弛过程,松弛时间的大小取决于(D )。

A、材料固有性质B、温度C、外力大小D、以上三者都有关系。

2、示差扫描量热仪(DSC)是高分子材料研究中常用的方法,常用来研究( B )。

⑴T g,⑵T m和平衡熔点,⑶分解温度T d,⑷结晶温度T c,⑸维卡软化温度,⑹结晶度,⑺结晶速度,⑻结晶动力学A、⑴⑵⑶⑷⑸⑹⑺⑻B、⑴⑵⑶⑷⑹⑺⑻C、⑴⑵⑶⑷⑸D、⑴⑵⑷⑹3、非晶态聚合物的玻璃化转变即玻璃-橡胶转变,下列说法正确的是(A)。

A、T g是塑料的最低使用温度,又是橡胶的最高使用温度。

B、玻璃态是高分子链段运动的状态。

C、玻璃态可以看作是等自由体积分数状态。

D、玻璃化转变是热力学平衡的一级相转变,不是一个松驰过程。

4、下列四种聚合物中,熔点最高的是( C )。

A、聚乙烯,B、聚丙烯,C、聚己内酰胺,D、聚己二酸乙二醇酯5、T g是表征聚合物性能的一个重要指标。

( D )因素会使T g降低。

A、引入刚性基团B、引入极性基团C、交联D、加入增塑剂6、下列四种方法中,测定T g比其它方法得到的高,并且灵敏度较高的是(B )。

A、热分析(DSC),B、动态力学分析仪(DMA),C、热机械法(TMA),D、膨胀计法7、差示扫描量热仪(DSC)是高分子材料研究中常用的方法,可得到很多信息,如研究结晶度、结晶速度、固化反应等,但下面的温度( D )不用它来测量。

A、玻璃化转变温度B、熔点C、分解温度D、维卡软化温度8、非晶聚合物的分子运动,(A)对应主级松弛。

A、链段运动,B、曲柄运动,C、侧基运动,D、局部松弛9、下列各组聚合物的T g高低比较正确的是(A)。

A、聚二甲基硅氧烷>顺式聚1,4-丁二烯,B、聚丙稀>聚己内酰胺,C、聚己二酸乙二醇酯>聚对苯二甲酸乙二醇酯,D、聚氯乙烯>聚偏二氯乙烯10、下列高聚物中,使用温度下限为Tg的是( C )A聚乙烯;B聚四氟乙烯;C聚二甲基硅氧烷;D环氧塑料11、中等分子量HDPE随温度升高,可依次呈现( B ):A)玻璃态、橡胶态、粘流态:B晶态、粘流态:C)晶态、橡胶态、粘流态。

高聚物的分子运动与力学状态

高聚物的分子运动与力学状态

使用价值——是高聚物材料成型加工不能超过的温度。
5)脆化温度
定义——指高聚物材料在受强外力作用时,从韧性断裂转变为脆性断裂时的
温度。
使用价值——是塑料、纤维的最低使用温度。
2 . 晶态高聚物
皮革态
在轻度结晶的聚合物中,少量的晶区起类似交联点
的作用,当温度升高时,其中非晶区由玻璃态转变为高
弹态,可以观察到Tg的存在,但晶区的链段由于受晶格
生急剧变化;
4)应用——
塑料(Tg在室温以上): Tg为使用上限和耐热指标;
橡胶(Tg在室温以上): Tg为使用下限和耐寒指标。
V: Volume
H: Enthalpy
G’: Storage shear modulus
α: Volume coefficient of expansion
运动十分缓慢,体积松弛和构象重排在实验的时间标尺内不可能实现
,体系很难达到真正的热力学平衡状态,因而出现CP、 α和K的不连续
变化,而其体积、焓及熵连续变化,这些现象恰好与二级转变相似。
dF=-SdT+VdP
• 一级转变——以温度和压力作为变量,与自由能的一阶偏导数有关的
性质如体积、焓及熵在此过程中发生突变,这类相转变称为一级转变.
• 1 . 线形非晶态高聚物
• 2 . 晶态高聚物
• 3 . 交联高聚物
当温度在一定范围内变化时,大分子具有不同
的运动状态,高聚物宏观表现出不同的力学状态。
在恒定应力下,高聚物的温度-形变之间的关系
(温度-形变曲线)可反映出分子运动与温度变化的
关系。不同结构高聚物温度-形变曲线不同。
1 . 线形非晶态高聚物
低温度。

高分子物理——聚合物的转变与松弛

高分子物理——聚合物的转变与松弛

高分子物理——聚合物的转变与松弛不仅具有运动单元的多样性,而且具有运动方式的多样性。

1(1)大尺寸运动单元:分子链。

(2)小尺寸运动单元:链段、链节、支链、侧基等。

2例如:振动、转动、平动、取向等。

1在一定的温度和外力作用下,高分子链的构象从一种平衡态通过分子热运动过渡到另一种与外界相适应的平衡态所需要的时间。

2高聚物分子运动时,由于运动单元所受到内摩擦阻力一般是很大的,这个过程常常是缓慢完成的,因此这个过程叫做“松弛过程”,也叫做“速度过程”。

3运动单元运动时,均需要克服各自的内摩擦阻力;也就是说,分子运动需要一定的时间,不可能瞬间完成,即依赖时间。

4凡与时间有依赖关系的性质,叫做“松弛性质”。

5(1)回缩曲线(2)回缩关系式可以通过后续的蠕变回复,推导如下关系式:Δx(t)=Δxτ-t/ e0式中,Δx是外力除去后t时刻塑料丝增加的长度值(与塑料丝拉伸前的长度相比),Δx是外力除去前塑料丝增加的长度值。

0(3)讨论由上可得:t =τ时,Δx(t)=Δx/e,也就是说,Δx(t)变化到等于Δx的1/e00倍时所需要的时间,叫做松弛时间τ。

τ越小,则Δx(t)越小,故变化(回缩)得快,即松弛过程快和运动快。

τ越大,则Δx(t)越小,故变化(回缩)得慢,即松弛过程慢和运动慢。

综上所述,τ是用来描述松弛过程快慢的物理量。

6(1)低分子物的松弛时间低分子物也具有松弛时间,只不过很短,τ=10--910~10S,即一般认为是瞬时的。

(2)高分子物的松弛时间高分子物具有松弛时间,τ比较大,且是多分散性的。

1(1)定性分析温度升高,则分子热运动能增大并且聚合物内的空隙(自由体积)增大,松弛过程加快,故松弛时间缩短。

也就是说,松弛时间τ与温度T是有一定关系的。

(2)定量分析根据Arrehnius公式,可得:τ=τexp(ΔE/RT) 0式中,ΔE为运动单元的活化能,可通过?τ-1/T直线的斜率求出。

华东理工大学高分子科学课后答案高分子物理部分第二章

华东理工大学高分子科学课后答案高分子物理部分第二章

第二章(P255)1.简述聚合物的分子运动特点。

答:聚合物的分子运动的特点是:运动单元的多重性:聚合物的运动单元可以是侧基、支链、链节、链段和整个分子等。

高分子热运动是一个松弛过程:在一定的外界条件下,聚合物从一种平衡状态通过热运动达到与外界条件相适应的新的平衡态,这个过程不是瞬间完成的,需要一定的时间。

高分子热运动与温度有关:随着温度的升高,高分子热运动的松弛时间缩短。

2.试用自由体积理论解释聚合物的玻璃化转变。

答:根据自由体积理论,液体或固体物质的体积是由两部分组成的:一部分是被分子占据的体积,称为已占体积,另一部分是未被占据的以“孔穴”形式分散于整个物质之中的自由体积。

正是由于自由体积的存在,分子链才可能通过转动和位移而调整构象。

自由体积理论认为,当高聚物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积将达到最低值,这时高聚物进入玻璃态。

在玻璃态下,由于链段运动被冻结,自由体积也被冻结,并保持一恒定值。

因此,对任何高聚物,玻璃化温度就是自由体积达到某一临界值时的温度,高聚物的玻璃态可视为等自由体积状态。

3.何谓玻璃化转变温度?简述一种测量聚合物玻璃化温度的方法。

答:聚合物玻璃态与高弹态之间的转变称为玻璃化转变,对应的转变温度为玻璃化转变温度。

玻璃化转变温度可以用膨胀计法测定,即直接测量高聚物的体积或比容随温度的变化。

从体积或比容对温度曲线两端的直线部分外推,其交点对应的温度作为T;g T也可以用差热分析测量,其基本原理是在等速升温的条件下,连续测定被测试g样与惰性基准物之间的温度差△T,并以△T对试样T作图,即得差热曲线,曲线上出现一台阶,台阶处所对应的温度即为T。

g4.试从分子运动的观点说明非晶聚合物的三种力学状态和两种转变。

答:在玻璃态下(T<Tg ),由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基、支链和小链节能运动。

高分子物理-第1讲-聚合物分子运动

高分子物理-第1讲-聚合物分子运动

“三态两区”的特点
粘流转变: 分子链重心开始出现相对位移. 模 量再次急速下降. 聚合物既呈现橡胶弹性, 又 呈现流动性. 对应的转温度Tf称为粘流温度
粘流态:大分子链受外力作用时发生位移, 且 无法回复。行为与小分子液体类似
Applications of the three states
5.3非晶态聚合物的玻璃化转变
目前对非晶态高聚物结构的争论交点,主要 集中在完全无序还是局部有序。
高分子物理学研究的核心内容
高分子的结构
决定了
高分子的运动方式
宏观表现为
高聚物的性能
聚合物物理性质与温度的关系
Rubber 在低温下变硬 PMMA, T>100C, 变软
尽管结构无变化,但对于不同温度或外力, 分子运动是不同的,物理性质也不同
光学性质:折光率等
5.3.1 高聚物分子运动的研究方法
热分析法
热膨胀法;差热分析法DTA和示差扫描量热法DSC
动态力学方法
扭摆法和扭辫法;振簧法;粘弹谱仪
NMR核磁共振松弛法 介电松弛法
(1) 膨胀计法 Dilatometer measurement
V 在Tg以下,链段运动被 冻结,热膨胀系数小;
在粒间区中,主要 由无规线团,低分子物, 分子链末端以及连接链组 成,大小为10~50Ao。
而在有序区和粒间 区之间有一个粒界区,这 一部分主要因折叠链的弯 曲部分,链端,缠结点以 及连接链组成,大小为 10~20Ao。
这个模型有以下一些实验事实支持: (1)模型包含了一个无序的粒间区,从 而为橡胶弹性变形的回缩力提供必要的构 象熵,可以解释橡胶弹性的回缩力;
E
同样可以分为“三态”“两
区”

高分子物理知识重点(第五章)

高分子物理知识重点(第五章)

第五章 聚合物的分子运动和转变1.聚合物分子运动的特点: ①.运动单元的多重性 ②.分子运动的时间依赖性 ③.分子运动的温度依赖性2.运动单元的多重性: A.具有多种运动模式 B.具有多种运动单元A.具有多种运动模式:由于高分子的长链结构,分子量不仅高,还具有多分散性,此外,它还可以带有不同的侧基,加上支化,交联,结晶,取向,共聚等,使得高分子的运动单元具有多重性,或者说高聚物的分子运动有多重模式B.具有多种运动单元:如侧基、支链、链节、链段、整个分子链等* 各种运动单元的运动方式①.链段的运动: 主链中碳-碳单键的内旋转, 使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下, 一部分链段相对于另一部分链段而运动②.链节的运动: 比链段还小的运动单元③.侧基的运动: 侧基运动是多种多样的, 如转动, 内旋转, 端基的运动等④.高分子的整体运动: 高分子作为整体呈现质量中心的移动⑤.晶区内的运动: 晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等3.分子运动的时间依赖性: 在一定的温度和外力作用下, 高聚物分子从一种平衡态过渡到另一种平衡态需要一定时间的,这种现象即为分子运动的时间依赖性; 因为各种运动单元的运动都需克服内摩擦阻力, 不可能瞬时完成4.松弛现象:除去外力,橡皮开始回缩,其中的高分子链也由伸直状态逐渐过渡到卷曲状态,即松弛状态。

故该过程简称松弛过程。

5.松弛时间τ : 形变量恢复到原长度的1/e 时所需的时间 6.分子运动的温度依赖性:①.温度升高,使分子的内能增加:运动单元做某一模式的运动需要一定的能量, 当温度升高到运动单元的能量足以克服的能垒时,这一模式的运动被激发。

②.温度升高使聚合物的体积增加:分子运动需要一定的空间, 当温度升高到使自由空间达到某种运动模式所需要的尺寸后, 这一运动就可方便地进行。

7.黏弹行为的五个区域: ①.玻璃态 ②.玻璃化转变区 ③.高弹态(橡胶-弹性平台区) ④.粘弹转变区 ⑤.粘流态8.图- -:模量-温度曲线----各区的运动单元、特点、名字、描述玻璃化转变为高弹态,转变温度称为玻璃化温度Tg高弹态转变为粘流态,转变温度称为粘流温度Tf* 非晶聚合物:()()t -τΔx t =Δx 0e①.从相态角度来看,玻璃态,高弹态,粘流态均属液相,即分子间的相互排列均是无序的。

高分子物理知识点

高分子物理知识点

分子运动是联系结构与性能的桥梁:聚合物物分子运动的规律,研究聚合物在不同条件下的力学状态和相应的热转变。

高分子的结构层次微观结构特征要在材料的宏观性质上表现出来,则必须通过材料内部分子的运动。

为了研究高聚物的宏观性质(力学、电子、光子等方面性能),只了解高聚物的结构还不行,还必须弄清高聚物分子运动的规律,才能将微观结构与宏观结构性能相结合,才能了解高聚物结构与性能的内在联系。

不同物质,结构不同,在相同外界条件下,分子运动不同,从而表现出的性能不同。

相同物质,在不同外界条件下,分子运动不同,从而表现出的性能也不同。

(1)分子运动的多样性分子运动单元的多重性①链段的运动——主链中碳-碳单键的内旋转,使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下,一部分链段相对于另一部分链段而运动。

由于分子内旋转是导致分子链柔顺性的根本原因,而高分子链的内旋转又受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。

高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。

高分子链能形成的构象数越多,柔顺性越大。

②链节的运动——比链段还小的运动单元③侧基的运动——侧基运动是多种多样的,如转动,内旋转,端基的运动等④高分子的整体运动——高分子作为整体呈现质量中心的移动⑤晶区内的运动——晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等多种运动方式小尺寸运动单元(链段尺寸以下)大尺寸运动单元(链段尺寸以上)分子运动的时间依赖性——聚合物从一种平衡态通过分子运动到另一种新的平衡态总是需要时间的。

松弛过程:τ/0t ex x -∆=∆△x0——橡皮在外力作用下的长度增量 △x ——除去外力后t 时间橡皮长度的增量 t ——观察时间 τ——松弛时间,形变量恢复到原长度的1/e 时所需的时间.取决于材料固有性质和温度、外力大小,不是单一值。

低分子10-8~10-10s, 可以看着是无松弛的瞬时过程。

高分子, 10-1~10+4 s 或更大, 可明显观察到松弛过程。

高分子物理---第五章 聚合物分子运动

高分子物理---第五章 聚合物分子运动
第5章 聚合物的转变与松弛
Transition and Relaxation of Polymers
高分子物理学研究的核心内容
高分子的结构
决定了
高分子的运动方式
宏观表现为
高聚物的性能
聚合物物理性质与温度的关系
Rubber 在低温下变硬 PMMA, T>100C, 变软
尽管结构无变化,但对于不同温度或外力, 分子运动是不同的,物理性质也不同
(3)粘流态(viscous flow state):具有粘性这一性 质的力学状态称为粘流态。 粘流转变区:当温度进一步升高,整个分子链质 心转移的松弛时间缩短到与实验观察时间处于同 一数量级时,高聚物在外力作用下发生粘性流动, 相应的温度称为粘流温度,此时过渡区称为粘流 转变区。 运动单元:分子链、链段、侧基等。 力学性能:形变量非常大,且不可逆,称为粘性 ——粘流态,高分子成型加工都在此状态,常温 下处于粘流态的高聚物有:粘合剂局部松弛模式等
(2)分子运动的时间依赖性
在一定的温度和外力作用下, 高聚物分子从
一种平衡态过渡到另一种平衡态需要一定的
时间; 因为各种运动单元的运动都需克服内
摩擦阻力, 不可能瞬时完成
Δx t
=
Δx
0e-
t τ
Dx
松弛时间
Relaxation time :形变量恢复到
原长度的1/e时所需的时间
注意
从相态角度而言,玻璃态、高弹态、粘流态均属 于液相,因为分子间相互排列均是无序的,它们 之间的差别主要是形变能力不同——这是力学状 态的差别。
因此上述三态的转变均不是热力学相变。Tg、Tf是 力学状态转变温度,而非相变温度。
分子量对温度-形变曲线的影响

高分子物理总结

高分子物理总结

第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。

除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。

高分子热运动是一个松驰过程。

在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。

因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。

②温度升高使高聚物发生体积膨胀。

升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。

2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t 称为玻璃态转变温度(T g ).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f ).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。

高分子物理 结构与性能 第五章 聚合物分子运动和玻璃化转变

高分子物理 结构与性能 第五章 聚合物分子运动和玻璃化转变
膨胀系数等发生不连续变化),所以玻璃化转 变应该被看作是热力学二级相转变,玻璃化转 变温度是一个热力学二级相转变温度。
对玻璃化转变热力学理论的争议
如果玻璃化转变是热力学二级相转变,其转 变温度Tg应该仅取决于热力学平衡条件,与加热 (冷却)速率和测量方法无关。但目前所观察到 的玻璃化转变不符合这种情况:当聚合物从橡胶 态向玻璃态冷却时,冷却速率快,比容—温度曲 线的转折出现的早,Tg就高;冷却速率慢,转折 出现的晚,得到的Tg就低。由于Tg强烈地取决于 加热(冷却)速率和测量条件。所以玻璃化转变 不符合热力学二级相转变。
常数的取值和WLF方程适用温度范围
WLF方程中常数C1、C2的数值取决于参比温度
当参比温度为玻璃化温度Tg时:
C1=17.44
C1= 8.86 WLF方程的适用温度范围:
C2=51.6
C2=101.6
当参比温度为玻璃化温度Tg+50℃时:
Tg T Tg 100C
玻璃化温度下的自由体积分数
聚合物的分子运动
与玻璃化转变
本章内容
聚合物分子运动的特点
链段运动与WLF方程
玻璃化转变理论 影响玻璃化转变的因素
聚合物分子运动的研究方法
§4-1 聚合物分子运动的特点

运动单元的多重性 ——整链、链段、链节、侧基、支链……

对时间有依赖性,是一个松弛过程
——小分子运动松驰时间:10-9—10-10 s
τo——某一参考温度(T o )下的松弛时间;
C1、C2 —— 经验常数;
该式可用来描述与链段运动有关的各种 物理量与温度的关系。
WLF方程的由来

从时温等效叠合曲线的拟合得到 从链段运动对自由体积的依赖性性推导

高分子物理讲义-第二章 聚合物的凝聚态结构 分子运动和热转变-1

高分子物理讲义-第二章 聚合物的凝聚态结构 分子运动和热转变-1
40
高分子合金的相容性
热力学相容性——分子水平的单相体系
△G= △H-T △S
△G<0,相容。一般以△H <0确定。 PVC/NBR
大多数△H >0,不互容。
已实现工业化的均相高分子合金:
PVC/NBR(nitrile butadiene rubber )、PS/PPO(Modified Polyphenylene Oxide, MPPO)


18
2.3 液晶态结构
液晶(Liquid crystal,LC)一些物质的结晶结构受热熔融 或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动 性,结构上仍保持有序结构,表现各向异性,成为固体-液 体过渡状态。 一、液晶的化学结构 R-ph-X-ph-R X = -CH=N-,-N=N-,-N=(O)-,-COOR = -COOR,-CN,-NO2,-NH2,-NHCONH2 液晶 条件 棒状分子——分子的长径比(长宽比,轴比)>4 盘状分子——分子的轴比<1/4
制备方法
PC/PET
36
互穿聚合物网络
由两种或多种互相贯穿的交联聚合物组成的共混物, 至少 一种组分是在另一种组分存在下聚合或交联的。
(1)完全互穿聚合物网络(interpenetrating polymer network,IPN),两种聚合物均为交联网络;
(2)半互穿聚合物网络(semi-IPN),一种聚合物 是交联网络,另一种聚合物是线型的; (3)乳液IPN,由两种线型弹性乳胶混合凝聚交联制 成;
例如聚乳酸 (PLA):
单轴取向
双轴取向
PLA 2002D
PLA 4032D
30
取向度
取向函数:
f=1/2(3cos2θ-1)(θ:取向角)

高分子物理----高分子的热学性能

高分子物理----高分子的热学性能

四、影响玻璃化转变温度的因素
Cl
[ CH2
T / oC:
CH ] Cl 87
n
[ CH2
C Cl -17
]n
F
[ CH2
T / oC:
CH ] F 40
n
[ CH2
C F度的因素
(3)分子间作用力(极性、氢键 、离子键)
a.极性
侧基的极性越强,分子间作用力越大,柔性越 差,Tg越高。
[ CH2
CH ] R CH3 R: H CH3 -20 CH2CHCH3 29 100 138
n
T / oC: -68
[ CH2
CH ]
n CH3 CH3 C CH3 CH3 43
COOR R: T / oC: CH2CH2CH3 -56 CH2CHCH3 -22
四、影响玻璃化转变温度的因素
b.侧基柔性
难易程度。
二、聚合物的力学状态与热转变
c. 脆化温度 (Tb) 在玻璃态,高聚物虽然很硬,但并不脆,因而可以
作为塑料被广泛使用,但当温度进一步降低,达到一定
的温度时,在外力作用下,高聚物大分子发生断裂,这
个温度称为脆化温度,是高分子所有性能的终止点。
二、聚合物的力学状态与热转变
d. 分解温度 (Td) 分解温度是高聚物开始发生交联、降解等化学变 化的温度。在加工时不能超越这一温度。
玻璃化温度是指聚合物从玻璃态向高弹态转变的 温度,也是链段开始运动或被冻结的温度。
关于玻璃化温度的测试方法比较多,但大致可分
成下面四类方法。
三、聚合物的玻璃化转变
1. 利用体积的变化的方法 常采用膨胀计来测试。 2. 利用热力学性质变化的方法 ① 差热分析(DTA) ② 差示扫描量热仪(DSC)

高分子物理总结

高分子物理总结

第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。

除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。

高分子热运动是一个松驰过程。

在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。

因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。

②温度升高使高聚物发生体积膨胀。

升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。

2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。

聚合物分子运动和转变—结晶行为和结晶动力学(高分子物理课件)

聚合物分子运动和转变—结晶行为和结晶动力学(高分子物理课件)

h0 ht ~ t
h
温度恒 定
测定方法:将高聚物和跟踪液(水银)装入一膨胀计中,
加热到高聚物熔点以上使高聚物全部熔融。记录膨胀计
内毛细管液面柱的高度,如以 h0、h、h t 分别表示起
始、最终和
t
时间的读数,以
ht h0
h h
(未收缩体积分
数)对 t 作图,可得 S 曲线。
h0 ht ~ t
hh
(3) 杂质
促进结晶,起晶核作用 ,称为成核剂 三种情况 可溶性添加剂,延缓结 晶 — 稀释剂
对结晶无影响
(4)溶剂
一些结晶速度很慢的结晶聚合物(PET)浸入适当的有机 溶剂中,促进聚合物的结晶:小分子容积渗入到松散堆砌的 聚合物内部,使聚合物溶胀,相当于在高分子链间加入了一 些润滑剂,从使得高分子链获得了在结晶过程中必须具备的 分子运动能力,促使聚合物发生结晶。这一过程被称为溶剂 诱发结晶。
t 1
1/ 2
,单位为
s-1,min-1,h-1。
测量方法特点:简单,重复性好。
体系充装水银,热容量大,达热平衡所需要时间长对结晶速
度较快的高聚物不适用(可使用 DSC 方法)。
(2) PLM
Diameter (μm)
55 50 45 40 35 30 25 20 15 10
5 0
0
121℃ 123℃ 124℃ 125℃
t1/2

温结晶过程,可以得到一组结晶

速度值,然后以其对温度作图, 即可得结晶速度-温度曲线。
玻 璃
流 体







流 体 晶粒生长
速率
结晶过程分为晶核生成和晶粒生长 两个阶段。由于两过程对温度的依 赖性不同,高聚物结晶速率与温度 的关系呈单峰形

高分子物理考研习题整理05聚合物的分子运动汇总

高分子物理考研习题整理05聚合物的分子运动汇总

⾼分⼦物理考研习题整理05聚合物的分⼦运动汇总1 形变-温度曲线(1)聚合物的分⼦运动有什么特点?①运动单元的多重性。

除整个分⼦的运动(布朗运动)外,还有链段、链节、侧基、⽀链等的运动(称为微布朗运动)。

②运动的时间依赖性。

从⼀种状态到另⼀种状态的运动需要克服分⼦间很强的次价键作⽤⼒(内摩擦),因⽽需要时间,称为松弛时间,记作τ。

τ/0t e x x -?=?。

当t=τ时,e x x /0t ?=?,因⽽松弛时间定义为:t x ?变为0x ?的1/e 时所需要的时间。

它反映某运动单元松弛过程的快慢。

由于⾼分⼦的运动单元有⼤有⼩,τ不是单⼀值⽽是⼀个分布,称为松弛时间谱。

③运动的温度依赖性。

升⾼温度加快分⼦运动,缩短了松弛时间。

RT E e /0?=ττ,式中ΔE 为活化能,τ0为常数。

在⼀定的⼒学负荷下,⾼分⼦材料的形变量与温度的关系称为聚合物的形变-温度曲线(旧称热-机械曲线)。

(2)试述线型⾮晶态聚合物的形变-温度曲线和模量-温度曲线上的各区域和转折点的物理意义。

形变-温度曲线与相应的模量-温度曲线形状正好相反,都⽤于反映分⼦运动。

【图12-2】两条曲线上都有三个不同的⼒学状态和两个转变(简称三态两转变)。

玻璃态:链段运动被冻结,此时只有较⼩的运动单元(如链节、侧基等)能运动,以及键长、键⾓的变化,因⽽此时的⼒学性质与⼩分⼦玻璃差不多,受⼒后形变很⼩(0.01%~0.1%),且遵循Hooke 定律,外⼒除去⽴即恢复。

这种形变称为普弹形变。

玻璃态转变:在3~5℃⼏乎所有物理性质都发⽣突变,链段此时开始能运动,这个转变温度称为玻璃化(转变)温度,记作Tg 。

⾼弹态:链段运动但整个分⼦链不产⽣移动。

此时受较⼩的⼒就可发⽣很⼤的形变(100%~1000%),外⼒除去后形变可完全恢复,称为⾼弹形变。

⾼弹态是⾼分⼦特有的⼒学状态。

黏流温度:链段沿作⽤⼒⽅向的协同运动导致⼤分⼦的重⼼发⽣相对位移,聚合物呈现流动性,此时转变温度称为流动温度,记作Tf 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


了解高聚物的结构还不行,还必须弄清高聚物分子运动的规律,才
能将微观结构与宏观结构性能相结合,才能了解高聚物结构与性能 的内在联系。

所以本章是联系结构与性能的桥梁:高聚物分子运动的规律
3.1 高聚物的分子运动特点
3.2 非晶态高聚物的力学状态
3.3 晶态高聚物的力学状态
3.4 高聚物的粘性流动
3.1 高聚物的分子运动特点
(A) 极性取代基:
极性越大,分子间相互作用力及内旋转受阻程度越 大,Tg也随之升高。
PAN Tg=104oC
PVC Tg= Tg 87oC
-CN
-Cl -CH3 -H 取 代 基 极 性
PP Tg= -10oC
PE Tg= -68oC
(B) 非极性取代基团
随着取代基的体积增大,分子链内旋转位阻增加, Tg将升高。
学上的相变,它处于非平衡状态。

玻璃化温度也不象低分子物质的熔点那样是一个固定值,而是随外 力作用的大小,加热的速度和测量的方法而改变的,因此它只能是
一个范围。

Tg的实用意义:是高聚物特征温度之一,作为表征高聚物的指标,
可用来确定热塑性塑料的最高使用温度和橡胶的最低使用温度。
部分高聚物的玻璃化转变温度

五种类型的运动单元:
(1)整个分子链的平移运动 即大分子与大分子之间产生相对滑移,即
分子链质量中心的相对位移。如熔体流动,溶液中分子从聚集到分散。
聚合物成型加工中的流动
聚合物使用中的尺寸不稳 定性(塑性形变、永久形变)
整链运动 的结果
(2)链段运动 这是高分子区别于小分子的特殊运动形式。在整个大分
成的。凡是具有时间依赖性的性质均称为松弛特性。 外场作用下 与外界条件相适 物质从一种平衡状态 应的另一种平衡状态 通过分子运动 低分子是瞬变过程 此过程只需 10-9 ~ 10-10 秒。 高分子是速度过程
需要时间慢慢完成
松弛过程(Relaxation)
由于高分子相对分子质量很大,具有明显的不对称性,分子间作用力 很强,本体粘度也大,使得高分子运动不能瞬间完成,需要克服一切阻力, 才能从一种平衡过渡到另一种平衡。因此需要时间,即“松弛时间”。
种类
聚乙烯* 聚丙烯* 聚氯乙烯 塑 料 有机玻璃 聚碳酸酯* 纤 维 尼龙—66* 涤纶* 聚异戊二烯 105 150 50 69 -73 -108
高聚物
结构单元
Tg (℃)
-68 -10 78**
聚苯乙烯
100
橡 胶
顺—1,4—聚丁二烯
影响玻璃化转变的因素
不同的聚合物所以有不同的玻璃化转变温度,原因是很多的。可 以从它们的组成和结构来找原因。一般来说,分子链越是柔顺,Tg就
子中,部分链段由于单键内旋转而相对于另一部分链段做独立运动,使 大分子卷曲或扩张(伸展),但可以保持分子质量中心不变(宏观上不
发生塑性形变)。
如橡皮的拉伸、回缩过程(高弹性:链段运动的结果)。 (3)支链、链节、侧基等尺寸小的单元的运动 这里包括链节的曲柄运 动和侧基的转动和振动。 (4)原子在平衡位置附近的振动
耐高温达 400℃以上 ,长期使用温度范围-200~300℃
●主链上有孤立双键时:
CH2 CH CH CH2 n
Tg=-105℃(顺式),BR Tg=-83℃(反式)
CH2
C
CH
CH2 n
CH3
Tg=-73℃(顺式),NR Tg=-60℃(反式)
●构型对Tg的影响
O C O CH3
n
全同Tg < 间同Tg
(5)晶区的运动
晶型的转变—不稳定的晶型向 稳定的晶型转变
晶区缺陷的运动
晶区的完善
五种运动单元可以同时运动,也可能是大的运动单元冻结,小
的运动单元运动。温度越低,体系的能量越低,运动单元越小。
3.1.2 分子运动的时间依赖性
聚合物分子运动依赖于时间的原因在于整个分子链、链段、链节等
运动单元的运动均需要克服内摩擦阻力,也就是说,是不可能瞬时完
●饱和主链
CH3 Si CH3 O n
CH2
O n
CH2
CH2 n
硅橡胶 Tg = -123℃
聚甲醛 Tg = -83℃
PE
Tg=-68 ℃
●主链上有芳环、芳杂环:
CH3 O CH3 n
O
CH3 C CH3
聚碳酸酯(PC) Tg=150℃
O O C n
聚苯醚(PPO) Tg=220℃
聚酰亚胺(PI-polyimide)
CH2
CH H
CH2
CH CH3
CH2
CH n
PE Tg=-68℃
PP Tg=-10℃
PS Tg=100℃
必须注意,并不是侧基的体积增大,Tg就一定要提高。
(C)侧基的体积
注意 :并不是侧基的体积增大,Tg就一定要提高。例如聚甲基丙烯酸酯 类的侧基增大,Tg反而下降,这是因为它的侧基是柔性的。侧基越大 则柔性也越大,柔性侧基使分子间距离增大,相互作用减弱,起了增 塑剂(内增塑)的作用,所以使Tg下降。
Tg
玻璃态 以下
Tg T f ~ Tf
链段仍处于冻结状态,侧基、 受力变形很小(0.1~1%), 支链、链节等能够做局部运 去力后立即恢复(可逆), 动及键长、键角发生变化, 弹性(普弹性)模量: 而不能实现构象的。 109~1010Pa。
高弹态
Tg ~ T f
链段运动,不断改变构象, 但是整个分子链还仍处于被 “冻结”的状态。


3.1.1 运动单元的多重性
从分子运动角度看,小分子有三种基本形式,振动、转动、 移动,而且都是基于分子内部各部分位置处于相对固定的基础上 进行的。而高分子情况就大不相同了,由于分子的长链结构,又 有相对分子质量的多分散性,大小不一,又可带有不同的侧基, 加上支化、交联、结晶、取向、共聚等等复杂的结构,因而也就 构成了高分子运动单元的多重性。 运动单元可以是侧基、支链、链节、链段、分子 运动形式可以是振动、转动、平动(平移) 高聚物运动单元的多重性 (1)取决于结构 (2)也与外界条件(温度)有关
CH2 O C C H OH
n
聚丙烯酸锌 Tg>300C
●分子量对Tg的影响
分子量对Tg的影响可用下式表示: Tg
Tg = Tg -
Tg : 分子量为无穷大时的玻璃化温度 K : 每一种聚合物的特征常数
Mc M
K Mn
当分子量较低时,Tg随分子量增加而增加;当分子量达到某 一临界
越低;分子间的相互作用越强,Tg就越高。
橡胶分子的分子链长,链的柔顺性好;橡胶分子大多是由非极性 的分子组成,分子间的相互作用小,因此它的玻璃化转变温度就低。 下面主要从内在、外在两方面因素来分析。
(1) 内在因素
主链结构的影响:主链结构决定其柔性,主链柔性是一个综合 的影响因素,凡是柔性大的高分子其玻璃化温度较低,反过来,链越 表现刚性,玻璃化温度越高。
模量-温度曲线
两种转变和三种力学状态
玻璃态转变为高弹态的转变称为玻璃化转变,转变温度,即链
段开始运动或冻结的温度称为玻璃化温度Tg。
高聚物由高弹态向粘流态的转变称为粘流转变,这个转变温度称 为粘流温度,用Tf表示。


为什么非晶态高聚物随温度变化出现三种力学状态和二个转变?
我们来看表,了解一下内部分子处于不同运动状态时的宏观表现 温度 运动单元 力学性质
CH2 H C Cl
聚偏二氯乙烯PVDC Tg= -19oC
Cl CH2 C Cl
n
n
PP Tg= -10oC
CH3 CH2 CH
n
聚异丁烯 PIB Tg= -70oC
CH3 CH2 C CH3
n
对称基团:
CH3 CH2 C n CH3
F CH2 C CH2
Cl C
Tg=-70 ℃ 聚异丁烯 非对称侧基:
聚甲基丙烯酸甲酯中正酯基碳原子数n对Tg的影响
n Tg(℃) 1 105 PP -10 2 65 聚1-丁烯 -25 3 35 4 21 6 -5 8 -20 12 -35 18 -100
Tg℃
聚1-戊烯 -40
聚1-辛烯 -65
(D)对称性取代基
由于对称取代使极性部分相互抵消,分子间距离增大,分子间作 用力减弱,柔性增加, Tg 下降。 PVC Tg=87oC
以上二点原因使松弛过程加快进行,也就是说:升高温度可使松
弛时间变短,我们可以在较短的时间就能观察到松弛现象;如果不升 温,则只有延长观察时间才能观察到这一松弛现象。 升温与延长观察时间是等效的(时温等效)
3.2 非晶态高聚物的力学状态
聚合物的物理状态从热力学和动力学不同角度可分为相态和聚 集态。相态是热力学概念,由自由焓、温度、压力和体积等热力学 参数决定。相态转变伴随着热力学参数的突变。相态的转变仅与热 力学参数有关,而与过程无关,也称热力学状态。 聚集态是动力学概念,是根据物体对外场(外部作用)特别
离(r)增大而迅速减小。因此,取代基的空
间位阻,实际上与分子间作用力并不能截 然分开。侧基的极性增大、分子间氢键均 可使Tg升高。 氢键:分子间氢键可使Tg显著提高。 聚己二酸己二酯 PA66(分子间氢键)
金属离子:聚合物合成中加入金属离子形成含离子聚合物可使其Tg大幅度上升。 聚丙烯酸 Tg 106℃
全同, Tg=45oC
CH2
C CH3
间同, Tg=115oC
无规, Tg=105oC
PMMA
顺式Tg < 反式Tg
Poly(1,4-butadiene)
●取代基 当侧基-X为极性基团时,由于使分子间作用力及内旋 转活化能增加,因此Tg升高。 若-X是非极性侧基,其影响主要是空间阻碍效应。侧 基体积愈大,对单键内旋转阻碍愈大,链的柔性下降 ,所以Tg升高。
相关文档
最新文档