数项级数和函数项级数及其收敛性的判定

合集下载

数学分析2课件:13-1函数项级数及其一致收敛性

数学分析2课件:13-1函数项级数及其一致收敛性

x(1,1) 1 x n 1
n1
而右端极限为,
故原级数在(-1,1)不一致收敛。
但限制x [a,a],a 1,则
sup
x(a,a )
|
sn( x)
s( x) |
sup
x(a,a )
| 1 xn 1 x
1 1
x
|
sup | xn | an , x(a,a) 1 x 1 a
[( xn ) 0,单调增] 1 x
故 un( x)在数集D上一致收敛。
n1
证毕。
注1 在这个定理的条件下,可得| un( x) | 也一致收敛。
n1
注2 不是每个收敛级数都有优级数。
例8
sin n
nx
p
,
cos n
nx
p
,(
p
1)在(,)一致收
敛。
优级数均为
1 np
.
(1)n sin nx的优级数为 np
1, np
一致收敛。
xn在[a,a](a 1)的优级数为 an,一致收敛。
an为绝对收敛级数,则 an sin nx, an cos nx
n1
n1
n1
在(,)一致收敛,且| an | 就是其优级数。
n1
全体收敛点的集合称为收敛域。
un( x) s( x)
n1
——和函数。
例5
xn 1 x x2 x3
n0
lim
n
sn( x)
lim
n
1 xn 1 x
1 , 1 x 发散,
| x | 1 | x | 1
xn在( 1,1)内收敛于s( x)
1
.
n0

高数二 8.2数项级数的审敛性

高数二 8.2数项级数的审敛性


级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
b.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
vn ,
级数 un
n1
2 (1)n
n1
2n
收敛,

un1 un
2 (1)n1 2(2 (1)n )
an ,
lim
n
a2n
1, 6
lim
n
a2n1
3, 2
lim un1 u n
n1
n1
莱布尼茨定理 如果交错级数满足条件:
(ⅰ)un
un1
(n
1,2,3,)
;(ⅱ)lim n
un
0,
则级数收敛,且其和s u1,其余项rn 的绝对值
rn un1.
证明 un1 un 0, s2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
数列 s2n是单调增加的 , 又 s2n u1 (u2 u3 ) (u2n2 u2n1 ) u2n
审敛法
2、正项级数及其审敛法
(1).定义如: 果级数 un中各项均有un 0,
n1
这种级数称为正项级数.
(2).正项级数收敛的充要条件s:1 s2 sn
部分和数列{sn }为单调增加数列.
定理
正项级数收敛 部分和所成的数列sn有界.
(3).比较审敛法 设 un和vn均为正项级数,
n1
是正项级数,如果lim un1 n un
(数或
)
则 1时级数收敛; 1 时级数发散; 1时失效.
证明 当为有限数时, 对 0,

函数项级数一致收敛判别(Word)

函数项级数一致收敛判别(Word)

1.函数项级数定义定义 设(){}nu x 是定义在数集E 上的一个函数列表达式:()()()12......n u x u x u x ++++ x E ∈ (1)称为定义在E 上的函数项级数,简称为函数级数.记作为1()nn ux ∞=∑或()n u x ∑.1()()nn k k S x u x ==∑称为函数项级数(1)的部分和函数列.若0x E ∈函数项级数: ()()()10200......n u x u x u x ++++ (2) 收敛,即部分和001()()nn k k S x u x ==∑,当n →∞时,极限存在,则称级数(1)在点0x 收敛,0x 称为收敛点.级数(1)在D 上的每一点x 与其所对应的数项级数(2)的和()S x 构成一个定义在D 上的函数称为级数(1)的和函数,即lim ()()n n S x S x →∞=.2.函数项级数一致收敛的几种判别法判别法1 (函数项级数一致收敛的定义)设函数级数()1n n u x ∞=∑在区间D 收敛于和函数()S x ,若0,,,N N n N x D ε+∀>∃∈∀>∀∈有:()()()n n S x S x R x ε-=< 则称函数级数()1n n u x ∞=∑在区间D 上一致收敛或一致收于和函数()Sx .例1 证明函数项级数nn x∞=∑在区间 []1,1δδ-+-(其中01δ<<)一致收敛.证明 ∀()0,1x ∈有01()1knnn k x S x x x =-==-∑.1()lim ()1n n S x S x x→∞==-. 11()()()1111nn nn n x x x S x S x R x x x x x-∴-==-==----. 对∀[]1,1x δδ∈-+-,对∀ε>要使不等式(1)()()()1nnn n xS x S x R x xδεδ--==≤<-成立.从而要不等式(1)nδεδ-<解得ln ln(1)n εδδ>-.取ln ln(1)N εδδ⎡⎤=⎢⎥-⎣⎦.于是∀0ε>,存在ln ln(1)N N εδδ+⎡⎤=∈⎢⎥-⎣⎦,∀n N >∀[]1,1x δδ∈-+-有:()()()n n S x S x R x ε-=<成立.所以函数项级数nn x∞=∑在区间[]1,1δδ-+-(其中01δ<<)一致收敛.非一致收敛的定义设函数项级数()1n n u x ∞=∑在区间I 非一致收敛于和函数()S x ,若∀0oε>,∀N N +∈,0,o n N x I ∃>∃∈有:000()()n S x S x ε-≥成立.则称函数项级数()1n n u x ∞=∑在区间I 上非一致收敛或非一致收敛于()S x .例2 证明函数项级数nn x∞=∑在区间 ()1,1-非一致收敛.证明 01ε∃=,∀N N +∈,()00111,1x n ∃=-∈-有: 000000001(1)1()()()(1)11n n n n n S x S x R x n n n --===-≥ 00000111lim(1)(1)1n n n n N n n e n +→∞⎛⎫-=∃∈-≥ ⎪⎝⎭所以,使.即函数项级数0nn x∞=∑在()1,1-非一致收敛.函数项级数一致收敛的几何意义函数项级数()1n n u x ∞=∑在区间I 一致收敛于()S x 的几何意义是,不论给定的以曲线()()S x S x εε+-与为边界的带形区域怎样窄,总存在正整数N (通用的N ),n N ∀>,任意一个部分和()n S x 的图像都位于这个带形区间内(如图1).若函数项级数在某个区间不存在通用的N ,就是非一致收敛.判别法2 (确界判别法)函数项级数()1n n u x ∞=∑在数集D 上一致收敛于()S x 的充要条件:limsup ()limsup ()()0n n n n x Dx DR x S x S x →∞→∞∈∈=-=.证明 (⇒) 已知函数项级数()1n n u x ∞=∑在区间D 一致收敛于()S x .即0,,,N N n N x D ε+∀>∃∈∀>∀∈有: ()()n S x S x ε-<.从而()()sup n x DS x S x ε∈-≤,即limsup ()()0n n x DS x S x →∞∈-=. (⇐)已知limsup ()()0n n x DS x S x →∞∈-=,即0,,,N N n N x Dε+∀>∃∈∀>∀∈有()()sup n x DS x S x ε∈-<.从而x D ∀∈有()()n S x S x ε-<.即函数项级数()1n n u x ∞=∑在区间D 上一致收敛于()S x .例3 证明 函数项级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛.证明 ()()()111nn k S x x k x k ==+++∑1111n k x kx k =⎛⎫=- ⎪+++⎝⎭∑11111111...122311x x x x x n x n x n x n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪+++++-++++⎝⎭⎝⎭⎝⎭⎝⎭1111x x n =-+++; ()0,x ∈+∞. ()()111lim lim111n n n S x S x x x n x →∞→∞==-=++++. 1lim sup ()()lim sup01n n n x Dx DS x S x x n →∞→∞∈∈∴-==++.所以函数级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛. 判别法3 (柯西一致收敛准则)函数级数()1n n u x ∞=∑在区间I 一致收敛0,,,,N N n N p N x I ε++⇔∀>∃∈∀>∀∈∀∈有:()()()12...n n n p u x u x u x ε++++++<.证明 必要性()⇒已知函数级数()1n n u x ∞=∑在区间I 一致收敛.设其和函数是()S x ,即0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈有()()n S x S x ε-<也有()()n p S x S x ε+-<.于是()()()()12()n n n p n p n u x u x u x S x S x +++++++=-()()()()n p n S x S x S x S x +=-+-()()()()2n p n S x S x S x S x εεε+≤-+-<+=.充分性()⇐:已知0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈,有:()()()()12()n n n p n p n u x u x u x S x S x ε+++++++=-<所以当P →+∞时上述不等式有:()()()n n S x S x R x ε-=≤即函数项级数()1n n u x ∞=∑在区间I 一致收敛.例4 讨论函数项级数111n n n x x n n +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-的一致收敛性. 解 应用柯西一致收敛准则[]1,1x ∀∈-即1,0x ε≤∀>,要使不等式()()12231223n n n n n p n x x x x S x S x n n n n +++++⎛⎫⎛⎫-=-+- ⎪ ⎪++++⎝⎭⎝⎭11n p n p x x n p n p ++-⎛⎫++- ⎪++-⎝⎭11111212n n p n n p x x x x n n n n ++++++=-≤+++++ 112111n n p n ε≤+<<++++ 成立,从不等式21n ε<+解得21n ε>-取21N ε⎡⎤=-⎢⎥⎣⎦于是0,ε∀>21,N ε⎡⎤∃=-⎢⎥⎣⎦[],,1,1n N p N x +∀>∀∈∀∈-,有()()n p n S x S x ε+-<,即函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛.在这个例子中我们用确界判别法来也可以判断它的收敛性方法2 122311()()()()...()12231k k n n nn k x x x x x x x S x x kk n n ++=⎛⎫=-=-+-++- ⎪++⎝⎭∑ 11n x x n +=-+.lim ()()n n S x S x x →∞==故[][]11,11,11lim sup ()()lim suplim 011n n n n n x x x S x S x n n +→∞→∞→∞∈-∈--===++. 所以函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛. 判别法4 (M 判别法)有函数项级数()1n n u x ∞=∑,I 是区间,若存在收敛的正项级数1,,nn an N ∞+=∀∈∑x I ∀∈,有()n n u x a ≤,则函数级数()1n n u x ∞=∑在区间I 一致收敛.证明 正项级数1nn a∞=∑收敛根据柯西一致收敛准则,即0,,,N N n N ε+∀>∃∈∀>p N +∀∈,有 12n n n p a a a ε+++++<由已知条件,x I ∀∈,有()()()12n n n p u x u x u x ++++++ ()()()12n n n p u x u x u x +++≤+++12n n n p a a a ε+++≤+++<即函数级数()1n n u x ∞=∑在区间I 一致收敛.例5 判断函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上是否一致收敛.解∀[],x r r ∈-,有(1)!(1)!n nx r n n ≤--. 令(1)!n n r a n =-,则11(1)!lim lim lim 0!n n n n n n na r n ra n r n ++→∞→∞→∞-===. 所以(1)!n r n -∑是收敛.由M 判别法函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上一致收敛.例6 证明4211n xn x ∞++∑在R 一致收敛. 证:x R ∀∈,有()224221210n x n x n x-+=-≥所以24221n x n x ≤+,即242211n x n x ≤+.故242422212111122n x n x n x n n =⋅≤++已知优级级数2112n n ∞=⎛⎫⎪⎝⎭∑收敛,根据M 判别法.函数级数4211n xn x ∞++∑在R 中一致收敛. 注 M 判别法是判别函数项级数一致收敛的很简使得判别法.但是这个方法有很大的局限性,凡能用M 判别法函数项级数必是一致收敛,此函数项级数必然是绝对收敛;如果函数项级数是一致收敛,而非绝对收敛,即条件收敛,那么就不能使用M 判别法.判别法5 (狄利克雷判别法)若级数()()1nnn a x b x ∞=∑满足如下条件:(1)函数列(){}n a x 对每个x I ∈是单调的且在区间I 一致收敛于0. (2)函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界,则函数级数()()1nnn a x b x ∞=∑在I 一致收敛.证明 已知函数列(){}n a x 一致收敛于0即0,N N ε+∀>∃∈,n N ∀>,x I ∀∈有1n a ε+<.又已知函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界。

数项级数收敛性判别资料

数项级数收敛性判别资料

n 1 n 1
(1) 如果级数 vn 收敛,则级数 un 也收敛;
n 1
n 1
(2) 如果级数 un 发散,则级数 vn 也发散.
n 1
n 1
推论 设 un 和 vn 都是正项级数,且存在自然
n 1
n 1
数 N ,使当 n N 时有 un kvn (k 0) ,
(1)如果 vn 收敛,则 un 也收敛;

从而
un1 un un1 uN
因此
lim
n
un
uN
0,
所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
n un
例如, p – 级数
1
lim un1 n un
lim
n
(n1)
1 np
p
1
p 1, 级数收敛 ;

p 1, 级数发散 .
2020年10月6日星期二
2020年10月6日星期二
4
目录
上页
下页
返回
例2
讨论
p
级数 1
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
n1
1 n
发散
,
由比较审敛法可知
p
级数
发散 .
2020年10月6日星期二
5
目录
上页
下页
返回
2) 若
因为当
时,

n1 n1 x p
d
x
提示:解法与例 6 完全类似!

函数项级数一致收敛性判别法归纳

函数项级数一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳一定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n→→()∞→n ,Dx ∈设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n Ex ∈)1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1,E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当Nn >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明显然∑∞=1n n x 在)1,1(-内收敛于xx-1.对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+成立,只要当N n >时,恒有()rr n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二函数项级数一致收敛性的判定方法定理1Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或()()()ε<++++++x u x u x u p n n n 21或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D上一致收敛于0.定理2]2[函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S .定理4确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n 证明充分性设(){}x S n 是函数项级数()∑x u n 的部分和函数列,)(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题.定理5若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明充分性假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时,()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3(则函数项级数()x u n ∑在D 上一致收敛.证明由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的.推论2设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()n n a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有推论2'设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得,∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明已知()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数).又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c ∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc 从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知,函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知,()x u n n∑∞=1在D 上也一致收敛于)(x S .定理10由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u n n 在D 上也一致收敛证明由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21()()ε<++++++x v x v x v p n n n 21)(所以()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++ ()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u n n 在D 上也一致收敛定理11Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12Abel 判别法[]1证明推论6设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u p n nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k p n nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调;(ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明充分性由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n ,时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++ 于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数,()x u n∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛.证明由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得,()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知,()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时,对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u ()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u ()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u ()ε12+≤M 因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.定理17设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微,()x u nn∑/在上一致收敛,记()=x S ()x u nn∑.定理18设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n∑∞=1在点0x处收敛;()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛,()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛.证明∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知,∑n nx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n n x n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知,∑∞=1sin n n nx在()π2,0不一致收敛.推论7若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,,()x u n∑皆收敛.证明与定理19类似,略.定理20[]7设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明必要性用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明与定理20的类似,略.推论12[]4设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε)1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性.证明因为11)(1≤=xx u ,且11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛.定理23[]8(根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8(根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51'设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()x nx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n Dx n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛.推论16[]8有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8(对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln ,即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛.②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛.③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14试证()∑+--211x n n 在区间[]b a ,一致收敛.证明⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k nk k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15证明()∑-x nn11在[)+∞,δ上一致收敛.证明因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k 211,由Cauchy 准则证毕.定理27[]9利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1Cauchy 准则与M 判别法比较实用一般优先考虑;2Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三非一致收敛性的判别1利用非一致收敛的定义定义3,略.例16讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2利用确界原理的逆否命题定理28若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明它是确界原理的逆否命题,故成立.例17函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3利用定理5的逆否命题定理29设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明略.注:此定理比较实用.4利用Cauchy 准则逆否命题定理30函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明它是Cauchy 准则的逆否命题,故成立.例18讨论∑nnxsin 在[]π2,0=D 上的一致收敛性.解取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin 121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>oε=故∑nnxsin 在[]π2,0=D 上非一致收敛.注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明它是推论1的逆否命题,故成立.例19设()()()()12sin 1212cos+⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛.5利用求极值的方法定理31()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛.注:极限函数知道时,可考虑用.6利用一致收敛函数列的一个性质判别[]10引理2若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim 证明由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}Dx n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22讨论∑+221x n x在()+∞∞-,上一致收敛性.解显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim ()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx =4π=()00=≠s 故知∑+221xn x在()+∞∞-,上非一致收敛.推论20设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。

数项级数

数项级数
则(1) 当0 l 时,二级数有相同的敛散性; (2) 当l 0 时,若
v
n 1

n 收敛,则
u
n 1

n
收敛;
(3) 当l 时, 若
v n 发散,则 un 发散; n 1 n 1


(3) 比值审敛法(达朗贝尔 D’Alembert 判别法)
un 1 (数或 ) 设 un 是正项级数,如果 lim n u n 1 n
( 2) 讨论 lim Rn 0 或 f ( n ) ( x ) M ,
n
则级数在收敛区间内收 敛于 f ( x ).
注:常用函数的麦克劳林级数
x (1) e n 0 n!
x

n
x ( , )
2n1 x ( 2) sin x ( 1)n ( 2n 1)! n 0
n 2 n a x a a x a x a x n 0 1 2 n n0
(2)
收敛半径: 对于幂级数(2), 若
lim
n
n
an 或 lim un1 n u n
(i) 0 时, 幂级数(2)的收敛半径 R
1

;
(ii) 0 时, 幂级数(2)的收敛半径 R ;
n 1

[ a , b ] 上都连续 , 且 un ( x ) 在区间 [ a , b ] 上一
n 1
致收敛于 s( x ) ,则 s( x ) 在[ a , b ]上可以逐项积分, 即

x
x0
s( x )dx
x x
x
u1 ( x )dx u2 ( x )dx un ( x )dx

函数项级数

函数项级数

函数项级数举例
求 1 x x 2 x 3 x n x ) 前n项部分和 sn ( x ) 1 x
n
1 x 1 s( x ) lim sn ( x ) lim 1 x n n 1 x
故级数的收敛域为
{ x | x 1,2,, x }
n
(2)函数项级数的部分和 sn ( x ), lim sn ( x ) s( x )
(3)余项
n
rn ( x ) s( x ) sn ( x )
(x在收敛域上)
lim rn ( x ) 0
注:函数项级数在某点 x 的收敛问题,实质上是 常数项级数的收敛问题.

例1 的和函数. 解
(2)函数项级数 un ( x ) 的所有收敛点的全体称
n 1
为收敛域,所发散点的全体称为发散域.
3.和函数(Sum function)
(1)在收敛域上,函数项级数的和是 x 的函数s( x ), 称 s( x )为函数项级数的和函数.
s( x ) u1 ( x ) u2 ( x ) un ( x )
n
x ( 1,1)
1 1 ) 收敛域. 例2 求 ( x n1 n1 x n


1 1 un ( x ) ( n 1,2,) x n x n1
的定义域为 x 1,2,,
n
因为
1 1 1 1 Sn ( x ) ( ) x k 1 x 1 x n1 k 1 x k 1 1 1 lim sn ( x ) lim n n x 1 x n1 x 1
第四节 函数项级数
一 函数项级数的概念 二 函数项级数举例

函数项级数收敛的条件

函数项级数收敛的条件

函数项级数收敛的条件
函数项级数的收敛性可以根据不同的判定条件来判断。

以下是几个常见的判定条件:
1. 比较判别法:如果存在一个收敛的正项级数和该级数的各项之积为函数项级数的绝对值项,那么函数项级数收敛。

2. 比值判别法:如果存在一个正数r,当项数足够大时,函数项级数中绝对值项的相邻项之比都小于r,那么函数项级数收敛。

3. 根值判别法:如果存在一个正数r,当项数足够大时,函数项级数中绝对值项的r次方都小于r,那么函数项级数收敛。

4. 积分判别法:将函数项级数中的每一项进行积分,如果积分的结果收敛,那么函数项级数收敛。

需要注意的是,这些判定条件适用于特定类型的函数项级数,不能一概而论,需要根据具体的函数项级数进行判断。

同时,有些函数项级数可能没有明确的判定条件,只能通过数值计算或其他方法来判断其收敛性。

函数项级数的收敛性判断

函数项级数的收敛性判断

设函数都在集合上有定义,。

若数值级数收敛,则称为函数项级数的收敛点,否则称为该函数项级数的发散点。

所有收敛的集合,称为该函数项级数的收敛域。

发散点的集合称为该函数项级数的发散域。

若上每一点均是函数项级数的收敛点,则称该函数项级数在上处处收敛。

设是函数项级数的收敛域。

,设对应的级数和为,这样,便在中定义了一个函数,称为该函数项级数的和函数。

例如,几何级数它的收敛域为,发散域为;在收敛域内,和函数是,即有设是函数项级数的前项和,则当时,有称为该函数项级数的余项和。

显然,,有[例4.1] 设,讨论函数项级数的收敛性,并求其和函数。

[解] 由于故当时,;当时,;当时,,当时,它的极限不存在;当时,,故知该级数的收敛域为,在收敛域上,它的和函数为注:1)即使每个都连续,和也仍然可以是不连续的函数。

2)函数的可微性和可积性可能不再成立。

即函数项级数(4.1)(4.2)都不成立。

若如果式(4.1)成立,则说级数可以逐项微分;如果式(4.2)成立,则说可以逐项计分。

7.4.2 函数项级数的一致收敛性处处收敛的“” 语言,应该是这样的:,使得当时,有表明,不但依赖于,还依赖于。

即对给定的、中不同的,可以有不同的,对所有的不一定有通用的自然数。

若存在着通用的自然数使级数收敛,则称级数一致收敛。

[定义4.1] 设函数项级数在上收敛于和函数。

若当时,对所有的都成立,则称该级数在上一致收敛或一致收敛于。

类似地,可以给出函数列在上一致收敛于函数的定义。

一致收敛性的几何形象,(以序列为例)。

设函数序列在区间上一致收敛于函数。

如果以曲线为“中心”,作一“宽度”为的带形区域,则不论正数如何小,总有一个正整数,使当时,曲线都完全在上述带形区域之内(图4.1)。

再分析例4.1中的级数。

当时故,若要,必须,即当时,由于,所以当在内找不到通用的。

从而所讨论级数在区间内部不一致收敛,在上更不可能一致收敛(图4.2)。

但是,对于任何小于的正数,所讨论级数在上是一致收敛的,因为这时可以取。

函数项级数收敛性

函数项级数收敛性

函数项级数收敛性函数项级数是指由函数项按照一定规则排列组成的级数。

在研究级数的收敛性时,我们通常关注的是序列的部分和序列,即部分和序列的极限是否存在。

在本文中,我们将介绍函数项级数的收敛性及其相关概念。

1. 函数项级数的定义考虑一个函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$,其中$\displaystyle a_{n} ( x)$为关于变量$\displaystyle x$的函数。

对于任意固定的$\displaystyle x$,元素$\displaystyle a_{n} ( x)$称为级数的通项。

部分和序列$\displaystyle S_{n} ( x)$定义为$\displaystyle S_{n} ( x) =\sum _{k=1}^{n} a_{k} ( x)$。

2. 函数项级数的收敛性函数项级数的收敛性与序列的收敛性密切相关。

函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystylex$收敛,即当$\displaystyle n$趋于无穷时,部分和序列$\displaystyleS_{n} ( x)$的极限存在,记为$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x) =S( x)$。

如果对于所有$\displaystyle x$都有$\displaystyle S( x) \neq\infty ,S( x) \neq -\infty$,则称级数在$\displaystyle x$上绝对收敛。

3. 收敛性判定准则对于函数项级数的收敛性判定,有以下几个准则:3.1 Cauchy准则函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystyle x$处收敛的充分必要条件是,对于任意正数$\displaystyle \varepsilon$,存在一个正整数$\displaystyle N$,使得当$\displaystyle m,n>N$时,$\displaystyle \left| \sum _{k=n}^{n+m} a_{k} ( x)\right|<\varepsilon$。

证明数项级数发散以及函数项级数非一致收敛的方法 终

证明数项级数发散以及函数项级数非一致收敛的方法 终
1 1 1 1 5 I=1+ 例 级数 32 - + 2 -……是否收敛?为什么? 2 4 5
1 1 1 1 = 原级数 I= , 前者是收敛的, 后者是发散的, 2 2 2n n 1 (2n 1) n 1 2n n 1 ( 2n 1)
n n n 1 2n 1

(2) (n 2 2) ln(
n 1

n2 1 ) n2
第一个级数的通项 an =
1 n n .由极限的知识,我们很容易知道 lim an = 0. n 2 2n 1
故(1)中的级数是发散的.而(2)中的通项可先进行化简,使之成为我们熟知

1 n n
n
在(1)中我们注意通项中有 n 次幂的存在,首先就会想到用根值判别法,而通 项的分母又有阶乘,我们又会联想到用比值判别法.其实,这个题目用这两种方 法 都 可以 求解 . 在这 里, 我用比 值判 别法来 解一下 :记 通项 an =
nn ,则 有 n!
an 1 (n 1) n 1 (n 1) n 1 n! = lim =e>1.由柯西判别法可知,该级 an 1 = ,故 lim n n n an (n 1)! n (n 1)!
0 就行.
三、对正项级数,利用判别法. 这里的判别法主要指的是根值判别法(柯西判别法) 、比值判别法(达朗贝尔判 别法)以及比较判别法.其中都有对级数发散情况的讨论.因此,在解决正项级数 的敛散性方面,这种方法也比较常见. 例3 判断下列级数的敛散性.
nn n 1 n!

(1)
(2)
n 1
n2 2 1 2 的可求极限的形式. bn = 2 ln(1 2 ) n 1(n ).故此级数是发散的. n n

10.3数项级数的收敛性判别法(1)

10.3数项级数的收敛性判别法(1)
∞ 1 1 由于级数∑ 和∑ 具有相同的敛散性, n =1 n + 1 n =1 n ∞ ∞ 1 1 调和级数∑ 发散,从而∑ 也发散. n =1 n n =1 n + 1 ∞
1+ n 由比较判别法知,级数∑ un = ∑ 发散. 2 n =1 n =1 1 + n
12


n! 例5 判断级数 ∑ n 的敛散性. n =1 n

p ≤ 1, 级数发散 .
21

例12 讨论级数
∑n x
n =1
n −1
( x > 0 ) 的敛散性 .
u n +1 (n + 1) x n = lim =x 解: ∵ lim n − 1 n →∞ u n n →∞ n x
根据定理4可知:
当0 < x < 1 时, 级数收 敛 ; 当 x > 1时, 级数发散 ;
n− N
u N +1
k ( ρ + ε ) 收敛 , 由比较判别法可知 ∑
∑ un 收敛 .
20
(2) 当ρ > 1 或 ρ = ∞ 时,必存在 N ∈ Z + , u N ≠ 0, 当n ≥ N
u n +1 > 1, 从而 时 un u n +1 > u n > u n −1 > ⋯ > u N
(1) 当0 < l <∞时, 取 ε < l , 由定理 2 可知
∑ u n 与 ∑ vn
n =1 n =1


(2) 当l = 0时, 利用 u n < ( l + ε ) vn (n > N ), 由定理2 知 若 ∑ vn 收敛 , 则 ∑ u n 也收敛 ;

高等数学(第三版)12.2数项级数的收敛性判别法-PPT文档资料

高等数学(第三版)12.2数项级数的收敛性判别法-PPT文档资料
河北工业职业技术学院
高等数学
主讲人 宋从芝
12.2 数项级ห้องสมุดไป่ตู้的收敛性判别法
本讲概要
正项级数的收敛性判别法
交错级数的收敛性判别法 绝对收敛与条件收敛
一.正项级数的收敛性判别法
, 即 u ≥ 0 定义1 若级数 u n 中各项均为非负 n
n 1


( n 1 , 2 ,3 , ) ,则称该级数为正项级数 .
如 果 仔细分析例 3 与例 4,我们就会发现,
而其分子分母都是 正项级数的通项 u n 是分式, n 的多项式 ( 常数是零次多项式 ) 或无理式时, 只要分母的最高次数高出分子最高次数一次以上
否则发散. (不包括一次), 该正项级数收敛,
1 例 5 判定 收敛性 . n 1 n !

练习 试判定以下正项级数的收敛性 :

2
3 3 n 1 n 1
,
3 其中分母 n 的最高次数为 次,分子是零次,分 2 3 3 母比分子高 次, 1,故级数收敛 . 2 2
定理 3 (达朗贝尔比值判别法)
un1 设有正项级数 u n , 如果极限 lim n u n1 n 存在, 那么
(1) 当 < 1 时级数收敛;
O
1
2
3

n
n+1
x
根据定积分的几何意义 ,显然
1 1 1 S n 1 d x 1 (p 1 ) p 1 2 ( p 1 x 1 ) n p 1 1 p p . 1 p 1 p 1n p 1
n 1
所以部分和数列有界. 于是由定理 1 可知,这时 p 级数收敛 . 综上所述可知: p 级数当 p ≤ 1 时发散; p > 1 时 收敛 .

11-2 数项级数收敛性的判定

11-2 数项级数收敛性的判定
n =1
∑v
n=1

n
也发散 .
推论 设两正项级数
∞ ∞ un 1 ( 若 lim ) = 0 , 则由 vn 收敛可推知 un 收敛. ∑ ∑ n→∞ v n=1 n=1 n
∞ ∞ un 2 若 () lim = ∞ , 则由 vn 发散可推知 un 发散. ∑ ∑ n→∞ v n=1 n=1 n
∞ n
正 项 级 数 及 其 审 敛 法
1 1 1 1 (3) 调和级数 ∑ = 1 + + + L + + L 发散 2 3 n n =1 n
©

1 1 1 1 例1. 证明 p-级数 ∑ p = 1 + p + p +L+ p +L 2 3 n n=1 n

0 时发散, 当 < p ≤ 1时发散, p > 1 时收敛. 当
un+1 知存在N ∈Z ,当n ≥ N 时 < r < 1, 即un+1 < run , un
∞ ∞
+
将 ∑ uN + n 与收敛的等比级数
n =1
r n uN 比较, ∑ 比较,
n =1
可知原级数收敛。 可知原级数收敛。
(2) 当 ρ > 1或 ρ = ∞时必存在N ∈ Z+ , uN ≠ 0, 当n ≥ N , 时 从而
§11.2 数项级数的概念和性质
一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛和条件收敛
一、正项级数及其审敛法 若 un ≥ 0, 则称 ∑un 为正项级数 .
n=1 ∞
定理 1. 正项级数 有上界 . 证: “ “ ”若 ”

数项级数和函数项级数及其收敛性的判定

数项级数和函数项级数及其收敛性的判定

学号数项级数和函数项级数及其收敛性的判定学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别:姓名:指导教师:2012年5月数项级数和函数项级数及其收敛性的判定摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。

关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法.Several series and Function of series and the judgment of theirconvergenceAbstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method.Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method前 言在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。

数项级数及其收敛性

数项级数及其收敛性
n
因为 lim un ≠ 0 , 所以该级数发散 .
n→∞
例6
nπ 的收敛性 . 试讨论级数 ∑ sin 2 n =1

解 注意到级数
nπ ∑ sin 2 = 1 + 0 − 1 + 0 + 1 + 0 − 1 + 0 + L n =1

nπ , 当 n → ∞ 时, 极限不存在 , 的通项 un = sin 2
3 4 n+1 ) = ln( n + 1) = ln( 2 ⋅ ⋅ ⋅ L ⋅ 2 3 n
当 n → ∞ 时, ln(1 + n) → ∞ , 所以 S n → ∞ ,

1 故级数 ∑ 发散. n=1 n
1 的和. 例 4 求级数 ∑ 的和 n = 1 ( n + 2)( n + 3)


注意到
1 1 1 = , − ( n + 2)( n + 3) n + 2 n + 3
因此, 因此,
Sn
1 = ∑ k =1 ( k + 2)( k + 3)
n
1 1 1 1 )= − = ∑( − . k +3 3 n+3 k =1 k + 2
n
所以该级数的和为
1 1 1 S = lim S n = lim ( − )= . n→∞ n→∞ 3 n+3 3
数,试证明其发散 试证明其发散. 证 先证一个不等式 x

令 f ( x ) = x − ln(1 + x ) ,
1 f ′( x ) = 1 − 1+ x

则 f ( 0) = 0 ,

高数第9章函数项级数、幂级数

高数第9章函数项级数、幂级数

中央财经大学
数学分析
说明: 虽然函数序列 s n ( x ) x 在( 0, 1 )内处处
n
收敛于 s( x ) 0 , 但 sn ( x )在( 0, 1 )内各点处收 敛于零的“快慢”程度是不一致的.
从左图可以看出:
y
y sn ( x ) x n
n1
(1,1)
注意:对于任意正数r 1, 这级数在[0, r ] 上一致收敛. o
数学分析
第九章 函数项级数
中央财经大学
数学分析
I 函数项级数的一致收敛
一、函数项级数的概念
设 u1 ( x ), u2 ( x ),, un ( x ),是定义在 I R 上的函数, 则 un ( x ) u1 ( x ) u2 ( x ) un ( x )
( x )在[ a , b ]上一致收敛, u ( x ),并且级数 u n n
n 1

则级数 un ( x )在[ a , b ]上也一致收敛,且可逐
n 1

项求导,即
( x ) u s( x ) u1 ( x ) u ( x) 2 n
(5)
中央财经大学
所以原级数不可以逐项求导.
中央财经大学
数学分析
四、一致收敛性简便的判别法:
定理 (魏尔斯特拉斯(Weierstrass)判别法)
n 1
如果函数项级数 un ( x ) 在区间 I 上满足条件:
(1) (2)
当 x x 0 时,有 s( x ) s( x0 ) .
(3)
s( x ) 在点 x0 处连续, x0 在 [ a , b ] 上是任意 所以 而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号数项级数和函数项级数及其收敛性的判定学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别:姓名:指导教师:2012年5月数项级数和函数项级数及其收敛性的判定摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。

关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法.Several series and Function of series and the judgment of theirconvergenceAbstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method.Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method前 言在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。

判别正项级数和函数级数的敛散性是研究级数的主要问题,并且在实际中的应用也比较广泛,如正项级数的求和问题等。

所以探讨正项级数和函数级数敛散性的判别法对于研究级数以及对于整个数学分析的学习与理解都有重要的作用。

1 正项级数及其收敛性一系列无穷多个数123,,,,,n u u u u 写成和式123n u u u u ++++就称为无穷级数,记为1n n u ∞=∑。

如果()0,1,2,3,n u n ≥=,那么无穷级数1n n u ∞=∑,就称为正项级数。

若级数1n n u ∞=∑的部分和数列{}n S 收敛于有限值S ,即1lim lim ,nn k n n k S u S →∞→∞===∑则称级数1n n u ∞=∑收敛,记为1,nn uS ∞==∑并称此值S 为级数的和数。

若部分和数列n S 发散,则称级数1n n u ∞=∑发散。

当级数收敛时,又称1231n n kn n n k n r S S uu u u ∞+++=+=-==+++∑为级数的余和。

1.1 几种不同的判别法1.11 正项级数收敛的充要条件 部分和数列{}n S 有界,即存在某正数M ,有<M 。

例1 =112(1+)(1+)(1+)nn n a a a a ∞∑…分析:本题无法使用根式判别法、比式判别法,或比较判别法以及其他的判别法进行判断,因此选用充要条件进行判断。

所以级数收敛.定理1.12 柯西收敛原理[1]级数1n n u ∞=∑收敛的充要条件是:对任意给定的正数ε,总存在N ,使得当n N >时,对于任意的正整数1,2,3,p =,都成立的12.n n n p u u u ε++++++<对于正项级数1n n u ∞=∑,由于0n u >,因此,只要12n n n p u u u ε++++++<即定理1.13 比较判别法设1n n u ∞=∑和1n n v ∞=∑是两个正项级数,如果存在某正数N ,对一切n>N 都有n n u v ≤,那么(1)若级数1n n v ∞=∑收敛,则级数1n n u ∞=∑也收敛;(2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散;即1n n u ∞=∑和1n n v ∞=∑同时收敛或同时发散;。

比较判别法的极限形式 :设1n n u ∞=∑和1n n v ∞=∑是两个正项级数。

若limnn nu v →∞=l ,则 (1)当0<l <1时,n 与n 同时收敛或同时发散;(2)当l =0且级数n 收敛时,n也收敛;(3)当且n发散时,n 也发散。

例2 1!2!+n (2)!n u n ++=…!分析:本题无法使用根式判别法和比式判别法,因此选择比较判别法进行判断所以级数收敛定理1.14 比式判别法n+10i=1(1)n>N ,,n n n u q u u ≤∑若对一切成立不等式则级数收敛n +10i=1(2)n>N ,1,n n n u u u ≥∑若对一切成立不等式则级数发散比式判别法的极限形式: 若1n n u ∞=∑为正项级数,则例3[3](1)12(1)1n 211limlim 22lim lim 20n n n nn n n n nuu ---→∞→∞-+-+→∞→∞===∑级数收敛不可使用比式判别法无法判断敛散性因此,当我们观察级数的一般项的极限趋近于时,我们可以选用比式判别法或根式判别法。

定理1.14 根式判别法根式判别法的极限形式: 设是正项级数,且n l ,则(1)当l <1时,级数1n n u ∞=∑收敛;(2)当l >1时,级数1n n u ∞=∑发散。

定理1.15 积分判别法设()f x 为[1,)∞上非负递减函数,那么正项级数()f n ∑与反常积分1()f x dx +∞⎰同时收敛或同时发散。

定理1.16 拉贝判别法设1n n u ∞=∑是正项级数,且存在自然数0N 及常数r ,拉贝判别法的极限形式:(1)当r 时,级数1n n u ∞=∑收敛;(2)当时,级数1n n u ∞=∑发散。

(3)当时,拉贝判别法无法判断定理1.17 阿贝尔判别法若数列0n a >,0n b >,且{}n a 为单调有界数列,级数1n n b ∞=∑收敛,则级数1n n n a b ∞=∑收敛。

例4]4]113135224246ppp⋅⋅⋅⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭分析:本题中的通项(21)!!(2)!!n n u n -=含有阶层,但不能使用根式判别法和比式判别法进行判定,因此选用拉贝尔判别法。

12221pn n u n u n ++⎛⎫= ⎪+⎝⎭12,.2p p ∴>>当,即级数收敛1221111()12121lim 1lim lim11pp n n n n n n u n n n n u n n ο→∞→∞→∞++⎛⎫-++- ⎪⎛⎫+⎝⎭+-== ⎪⎝⎭=2p定理1.18 狄利克雷判别法若数列0n a >,0n b >,且数列{}n a 单调递减,lim 0n n a →∞=,又级数1n n b ∞=∑的部分和数列有界,则级数1n n n a b ∞=∑收敛。

例5sin(∑[5].分析:本题型如sin()n u ∑,n u 为任意函数,则可以选用狄利克雷判别法。

因此,级数收敛定理1.19 伯尔特昂(Bertrand )判别法 设1n n u ∞=∑是正项级数,且,若lim n n B B →∞=,则(1)当B>1时,级数1n n u ∞=∑收敛;(2)当B<1时,级数1n n u ∞=∑发散。

定理2.20 对数判别法1.2级数收敛的新方法——导数判定法 我们知道,若任意项无穷级数12n a a a ++++(1)的每一项的绝对值所成的正项级数12||||||n a a a ++++(2)的收敛的,则称原级数(1)绝对收敛。

对于任意项级数(1)是否绝对收敛,可以利用正项级数的诸种判别法来对(2)进行考察.例如可以应用比较法及其极限形式,比值判别法以及根值判别法等等.本人试图提供一种新的任意项级数绝对收敛的判别法即导数判别法,它给出了任意项级数绝对收敛的一个充分必要条件,这个判别法对于判别某些任意级数是否绝对收敛非常方便。

1.21 导数判别法定理及推论定理(导数判别法)设1n n u ∞=∑为实数项的任意项级.令f(x)是一个是函数,对所有的正整数n使得()n b f a a n +=,22(,b 0d ya b dx ≠为常数且)且在n 1n x a a ∞==∑出存在,那么级数绝对收敛的充分必要条件是'()()0f a f a ==.证明:此判别法的证明依赖于罗必塔法则和比较判别法原则因为由定理 的假设条件知在x a =处22d ydx存在,所以在x a =的某个领域内是可导的(显然'()f x 在x=a 处也连续)。

又由假设条件知对所有的正整数n ,f(x)必须满足11().n n n ba f a n ∞∞===+∑∑ 先证必要性:设任意级数1n n a ∞=∑是绝对收敛的,则由()f x 在x=a 处连续知,lim lim ()lim ()()n n n x n ba f a f n f a n →∞→∞→=+==,从而()0f a =。

再假设'()0f a k =≠,由洛比达法则得,从而就证明了'()()f a f a ==0是任意项级数1n n a ∞=∑绝对收敛,则必有'()f a 0≠.从而就证明了'0()limlim ()(0)x ax f x f a k x a →→==≠- 既有:||lim||(0)||n n a k bn→∞=≠因为调和级数1||n b n ∞=∑(0)b ≠也是发散的,因此油比较判别法的极限形式知级数1n n a ∞=∑绝对收敛,则必有'()0f a =,从而就证明了'()()0f a f a ==是任意级数1n n a ∞=∑绝对收敛的必要条件。

再证充分性:假设'()()0,01f a f a p ==<<令并讨论下列极限:''11()1()()lim lim ()()1pp x a x a f x f x f a x a x a p x a ++-+→→-=∙--+-=''11()()lim lim()01pn a x a f x f a x a p x a ++-→→-∙∙-=+-从而1||lim0||()n n pa b n→∞+=.证明完毕,特殊的,在定理中a=0,b=1时有:推 论 设1n n a ∞=∑为是实数项的任意项级数,令()f x 为一实函数,对所有的正整数n 使得1()n f a n =,且22d ydx 在x=0处存在,那么任意项级数1n n a ∞=∑绝对收敛的充分必要条件是'()()0f a f a == 1.22特殊例子例6判断下列级数是否绝对收敛[6].213ln(2)n nn ∞=+∑解:(1)令223ln(2)13(=2)ln ,(2)9n n f x x x f a n n +-+==)(从而,因为 2'(2)ln 29f =,(2)'(2)0f f ==.由导数判别法知级数213ln(2)n n n ∞=+∑是绝对收敛的。

相关文档
最新文档