九年级数学下册第二十七章相似三角形的判定两角分别相等的两个三角形相似教案新版新人教版
九年级数学《相似三角形的判定(3)》教案
《相似三角形(3)》教学设计教学评价评价量规:随堂提问、动手实践、操作演练、练习反馈;评价策略:坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励式点评有机结合,既有即兴评价,又有概要性评价;既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
教学流程活动流程活动内容及目的活动一创设情境,导入新课(3——5分钟)学生借助已有的知识和经验感知和体会数学的应用价值。
活动二演示操作,形成假设(10——15分钟)探究实践,总结发现自己观察到的结论。
并加以推理证明。
活动三验证假设,获得定论(10——15分钟)将自己发现的结论加以证明。
类比活动2探究结论,运用所学勾股定理加以证明。
活动四运用新知,解决问题(3——5分钟)应用所学知识来解决实际问题活动五回顾总结,推荐作业(3——5分钟)通过归纳、作业,巩固自己所学知识,形成技能技巧。
教学程序问题与情境师生互动媒体使用与设计意图活动1:创设情境导入新课问题:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)观察两副三角尺,同样角度的两个三角尺的三个内角有什么关系?这两个三角形相似吗?如果两个三角形有两组对应角相等,它们相似吗?——引出课题.教师通过提出问题,引导学生复习学过的知识,在此基础上激发学生学习新知的欲望。
学生思考回答,同时教师将学生的回答整理板书到黑板上。
本次活动教师应重点关注:学生能否熟练回答三角形相似的判定定理,相似三角形的判定方法和性质是否熟练。
用已学的知识能否顺利完成练习。
【媒体使用】播放图片,依次出示相关内容。
【设计意图】复习旧知,承前启后;通过本环节的复习和情景创设,让学生达到复习旧知,为新课做好铺垫的目的。
《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品
27.2.1相似三角形的判定(第3课时)一、内容和内容解析1.内容判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.2.内容解析全等是相似中放缩比例为1的特殊情形,这为我们提供了一个思路:类比判定两个三角形全等的“SSS”“SAS”方法,发现并提出判定两个三角形相似的简单方法.在探究“三边成比例的两个三角形相似”的过程中,学生通过度量,发现结论成立,再通过作与△A'B'C'相似的三角形,把证明相似的问题转化为证明所作三角形与△ABC全等的问题.“两边成比例且夹角相等的两个三角形相似”的证法与前一个判定方法的证明方法类似,再次体现了定理“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的基础性作用.基于以上分析,确定本节课的教学重点是:判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.二、目标和目标解析1.目标(1)理解三角形相似的两个判定定理.(2)会运用三角形相似的两个判定定理解决简单的问题.2.目标解析达成目标(1)的标志是:理解两个判定定理的含义,能分清条件和结论,能用文字语言、图形语言和符号语言表示.达成目标(2)的标志是:会用两个判定定理判定两个三角形相似,从而解决简单的问题.三、教学问题诊断分析在两个判定定理的证明过程中,教科书作了一个中介三角形,使之与要证的三角形相似,再利用相似三角形对应边成比例和已知条件证明“中介三角形”与原三角形全等,这种转化的方法学生往往难以想到.其中通过线段的比相等证明线段相等,不同于以往常用的证明线段相等的方法,也会给定理的证明带来一定难度.基于以上分析,确定本节课的教学难点是:判定定理“三边成比例的两个三角形相似”的证明.四、教学过程设计 1.问题引入,类比猜想问题1 (1)两个三角形全等有哪些简便的判定方法?(2)全等是相似比为1的特殊情形.如图1,类比三角形全等的判定,判定△ABC 与△A'B'C'相似,是否有简便的判定方法?你有什么猜想?师生活动:问题(1)由学生口答.问题(2)组织学生分小组讨论,然后全班交流.如果学生对“两角对应相等的两个三角形相似”是否正确存在疑问,可存疑,留在下一节课解决.对学生提出的判断三角形相似的方法进行归纳整理,指出本节课先研究“三边”和“两边及其夹角”的情形.设计意图:通过全等三角形与相似三角形之间特殊与一般的关系,运用类比的思维方式,让学生猜想出两三角形相似的简单判定方法,从而引出下一步要探究的问题.2.画图探究,初步感知问题2 在△ABC 与△A'B'C'中,如果满足B A AB ''=C B BC ''=C A AC''=k ,那么能否判定这两个三角形相似?师生活动:(1)画图探究.教师引导学生任意画△ABC ,取一个便于操作的k 值(如21,2等),得到△A'B'C'的三边长,再作出△A'B'C'.指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似.(2)教师借助《几何画板》对k 取任意值的情况进行演示,让学生归纳发现的结论.并说明k =1时两个三角形全等,即全等是相似的特殊情况.设计意图:在教师的指导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.k 取1时,两个三角形全等,取其他值时,两个三角形相似,进一步感受相似与全等的紧密联系.《几何画板》的动态演示,有利于学生更直观地发现结论.ABCA 'B 'C '图13.构造中介,证明定理问题3 怎样证明“三边成比例的两个三角形相似”呢? 师生活动:(1)学生结合图形写出已知、求证并交流讨论.(2)当学生感到无处入手时,教师用学生剪出的△ABC 与△A'B'C'的纸片为模型,用较小的△ABC 放置于较大△A'B'C'的上(学生取的k 值不同,可能会出现两种图形,但证明的本质是相同的),点A 与点A'重合,点B 在边A'B'上,记为点D ,将点C 在A'C'上的位置记为点E .教师追问1:B'C'与DE 有什么位置关系?为什么? 师生活动:学生直观发现B'C'∥DE .教师追问2:由B'C'与DE 的位置关系可得到△A'DE 与△A'B'C'相似吗?为什么? 师生活动:学生回答由“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,得到△A'DE 与△A'B'C'相似.教师追问3:我们先构造了一个与△ABC 全等的中介△A'DE ,得到△A'DE ∽△A'B'C',然后可得△ABC ∽△A'B'C'.这为我们证明“三边成比例的两个三角形相似”提供了一个思路:能否在△A'B'C'上作一个与△A'B'C'相似的△A'DE ,再证明它与△ABC 全等呢?如何作?师生活动:(1)学生思考交流.教师展示学生的不同作法,并请学生说明△A'DE 与 △ABC 全等的原因.(2)由学生整理出证明思路,教师板书,从而得到三角形相似的判定定理.设计意图:让学生在操作中发现解决问题的方法:作DE ∥B'C',证明△A'DE ∽△A'B'C',从而把证明“△ABC 与△A'B'C'相似”的问题转化为证明△ABC ≌△A'DE 的问题.4.类比实验,自主探究问题4 全等三角形有“SAS ”的判定方法,类似地,△ABC 和△A'B'C'中,如果满足B A AB''=C A AC''=k ,且∠A =∠A',那么能否判定这两个三角形相似? 师生活动:(1)教师借助《几何画板》对k 取任意值的情况进行演示,看△ABC 和△A'B'C'的另一组对应边的比是否为k ,另两组对应角是否相等.问:图中的△ABC 与△A'B'C'相似吗?为什么?学生提出猜想的结论.(2)学生模仿上一个定理的证明,讨论问题4的证明思路,在课后完成证明过程. (3)师生小结判定定理二的内容.并追问:对于△ABC 和△A'B'C',如果B A AB ''=C B BC'',且∠B =∠B',这两个三角形一定相似吗?如果将∠B =∠B'换成∠C =∠C',这两个三角形一定相似吗?为什么?让学生试着画画看,找出反例即可.设计意图:学生有前面探究活动的经验,教师提出问题后,利用《几何画板》辅助,学生容易获取初步结论,而且仿照上一个定理的证明,容易得到这个命题的证明思路.最后,学生通过考虑“两边和其中一边的对角”的情形,加强对三角形相似条件的理解与记忆.5.运用结论,解决问题例 根据下列条件,判断△ABC 和△A'B'C'是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm , A'B'=12 cm ,B'C'=18 cm ,A'C'=24 cm . (2)∠B =120°,AB =7 cm ,AC =14 cm , ∠A'=120°,A'B'=3 cm ,A'C'=6 cm .师生活动:师生共同分析从题干的条件中是否可能得到两个三角形相似的条件,教师提醒学生注意第(2)题中的角是不是已知两边的夹角.设计意图:使学生学会从现有条件中得到判定三角形相似的条件. 6.变式训练,巩固提高判断图中的两个三角形是否相似,并求出x 和y .师生活动:学生自主答题,写出相应的解答过程,然后互评. 设计意图:巩固本节课所学的相似三角形的判定定理. 7.回顾小结回顾本节课的学习,回答下列问题: (1)你学到了哪些判定三角形相似的方法? (2)你认为证明两个三角形相似的思路是什么?设计意图:引导学生归纳本节课的知识点及判定定理的证明思路. 8.布置作业A BDE C y ° x 4530 54 36 46°20 图2152025402745图11.教科书第34页练习第1,3题. 2.教科书第42页习题27.2第2(1),3题.3.证明判定定理“两边成比例且夹角相等的两个三角形相似”(画图,写出已知、求证,并进行证明).六、目标检测设计1.下列条件中可以判定△ABC ∽△C B A '''的是( ). A .AC AB =''''C A B A B .AC AB =''''C A B A ,∠B =∠B' C .B A AB ''=''C A AC =C B BC''D .''B A AB =''C A AC设计意图:考查对三角形相似的两个判定定理的条件特征的理解. 2.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( ).设计意图:考查判定定理“两边成比例且夹角相等的两个三角形相似”的应用. 3.在△ABC 和△A'B'C'中,AB =6,BC =8,AC =5,A'B'=3,B'C'=4,则当A'C'=______时,△ABC ∽△A'B'C'.设计意图:考查用“三边成比例的两个三角形相似”判定两个三角形相似.4.如图,在平面直角坐标系中,A (4,0),B (0,2),如果点C 在x 轴的正半轴上(点C 与点A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.设计意图:结合平面直角坐标系的知识,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.5.如图,在正方形ABCD 中,点P 是BC 上的一点,BP =3PC ,点Q 是CD 中点,求证:△ADQ ∽△QCP .ABCDQP (第5题)A B C 555 555 55 56675° 75°30° 40° A B CD(第4题)设计意图:结合勾股定理,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.。
新人教版九年级数学下册《第二十七章 相似 》全章教案
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
人教版九年级下册 第二十七章 相似 课程教学设计
M EDFABC第二十七章相似的教学设计一、课标要求1.理解并掌握两个图形相似的概念。
了解成比例线段的概念,会确定线段的比。
2.知道相似多边形的主要特征,会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。
3.掌握两个三角形相似的判定方法。
理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方。
4.能用三角形的性质解决简单的问题.2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题。
了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质. 2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.二、近五年的中考情况2015年—2019年学业水平考试中2015年没有考相似的有关知识点。
(2019年)23.(12分)如图,AB 是⊙O 的直径,M 、D 两点AB 的延长线上,E 是⊙C 上的点,且 DE 2=DB •DA ,延长AE 至F ,使得AE =EF ,设BF =10,cos ∠BED =45. (1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.(2018年)5.(3分)如图,已知AB ∥CD ,若=,则= .(2017年)3.如图,在△ABC 中,D 、E 分别为AB ,AC 上的点,若DE ∥BC ,AD 13AB ,则AD+DE+AE=AB+BC+AC______________.(2016年)14. 如图, D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,若果△ABD的面积为15,那么△ACD的面积为A.15 B.10 C.152D. 527.1图形的相似教学设计主备课教师教师复备栏【课题】27.1图形的相似【学习目标】1.从生活中形状相同的图形的实例中认识图形的相似;2.理解成比例线段的概念,会确定线段的比。
《相似三角形的判定(第1课时)》教案
相似三角形的判定第1课时相似三角形的判定〔1〕【知识与技能】会说判定两个三角形相似的方法:两个角分别相等的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力.【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理1以及推导过程,并会用判定定理1来证明和计算.【教学难点】相似三角形的判定定理1的运用.一、情境导入,初步认识1.两个矩形一定会相似吗?为什么?2.如何判断两个三角形是否相似?根据定义:对应角相等,对应边成比例.△ABC与△A′B′C′会相似吗?为什么?是否存在判定两个三角形相似的简便方法?本节就是探索识别两个三角形相似的方法.二、思考探究,获取新知同学们观察你与你的同伴用的三角尺,及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样.这些三角形是相似的,我们就从平常所用的三角尺入手探索.〔1〕45°角的三角尺是等腰直角三角形,它们是相似的.〔2〕30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好似就会“相似〞.是这样吗?请同学们动手试一试:1.画两个三角形,使它们的三个角分别相等.画△ABC与△DEF,使∠A=∠D,∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?实际画图中,只画∠A=∠D,∠B=∠E,那么第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的.2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果.3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似.4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?这是由于三角形具有它特殊的性质.三角形有稳定性,而四边形有不稳定性.于是我们得到判定两个三角形相似的一个较为简便的方法:如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说,两角对应相等,两三角形相似.同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢?例1 如图,在两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似.解:相似,因为∠C=∠C′,∠A=∠A′,根据相似三角形的判定定理1可知△A′B′C′∽△ABC.例2 在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?解:由三角形的内角和定理知∠C′=180°-∠A′-∠B′=180°-50°-60°=70°,∴∠C′=∠B,又∵∠A=∠A′,∴△ABC∽△A′C′B′.【教学说明】教师注意引导学生分析∠B不一定与∠B′对应.例3 如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.证明:∵DE∥BC,∴∠AED=∠∵EF∥AB,∴∠CEF=∠A.∴△ADE∽△EFC三、运用新知,深化理解1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形.2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC 会相似,你怎样画这条直线?说明理由.和你的同伴交流作法是否一样.【答案】1.△ACD∽△CBD∽△ABC①过D点作DE∥BC,DE交AC于点E②以AD为一边在△ABC内部作∠ADE=∠C,另一边DE交AC于点E.【教学说明】第2题注意分类讨论.四、师生互动,课堂小结这节课你学到哪些判定三角形相似的方法?还有什么疑惑?说说看.1.布置作业:从教材相应练习和“习题”中选取.“课时作业〞局部.本课时从学生所熟悉的特殊三角板入手,通过学生动手操作探究相似三角形的判定定理1,从中感受学习几何的乐趣,从而激发学生学习兴趣,培养学生的几何推理能力.。
《两角对应相等两三角形相似》教案
相似三角形的判定(两角对应相等)
一、教学目标
1、知识目标
(1)探索判定两个三角形相似的条件,经历操作、归纳从而获得数学结论的过程。
(2)掌握“如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似”,并应用其解决相关问题。
2、能力目标
(1)通过观察、归纳、测量、推理等手段,让学生充分体验得出结论的过程,感受发现的乐趣。
让学生在观察中学会分析,在操作中学会感知,培养学生的合情推理能力、有条理的表达能力。
3、情感目标
(1)培养学生的合作交流意识,培养学生主动探索,敢于实践,勇于发现的科学精神。
(2)通过同学间的交流与合作,培养大家的合作精神。
二、教学重点、难点:
教学重点:探究并应用两角相等两个三角形相似的判定方法。
教学难点:在图形变化过程中应用相似判定方法。
【教学设计说明】。
27.2.1.3++相似三角形的判定定理3+课件+++2023—-2024学年人教版数学九年级下册
证明:在△ABC 中,∵∠A = 40°,∠B = 80°,
∴∠C = 180°-∠A-∠B = 60°.
B
C
D
在△DEF 中,∵∠E = 80°,∠F = 60°,
∴∠B =∠E,∠C =∠F.
∴△ABC∽△DEF.
E
分层设计 数学 RJ 九年级 上
F
合作探究
探究2 两直角三角形相似的判定
如图,在 Rt△ABC 中,∠C = 90°,AB = 10,AC = 8.
有一个锐角相等,或两组直角边成比例的两个直角三角
形相似.
分层设计 数学 RJ 九年级 上
合作探究
思考 我们知道,两个直角三角形全等
可以用“HL”来判定,那么满足斜边和
一条直角边成比例的两个直角三角形相似吗?
AB
AC
A' B ' A' C '
分层设计 数学 RJ 九年级 上
合作探究
如图,在Rt△ABC和Rt△A'B'C' 中,∠C=90°,
∴ △ABC ∽ △A'B'C'.
B
分层设计 数学 RJ 九年级 上
C
B'
C'
合作探究
如图,在△ABC与△A′B′C′ 中,∠A=∠A′,∠B=∠B′ .
证明:△A′B′C′∽△ABC.
证明:在 △ABC 的边 AB上,截取 AD=A′B′,
过点 D 作 DE // BC,交 AC 于点 E,
则有△ADE ∽△ABC,∠ADE =∠B.
(30°与60°,或45°与45°)的两个三角尺大小可能
不同,但它们看起来是相似的.一般地,如果两个三角
人教版九年级数学下册第二十七章27
五、作业布置
为了巩固学生对相似三角形判定与性质的理解和应用,特布置以下作业:
1.请同学们完成课本第27.2.1节后的习题1、2、3,注意运用相似三角形的判定方法解决问题,并在解题过程中标注关键步骤和所用定理。
2.设计一道实际生活中的问题,要求运用相似三角形的性质进行解答。例如:测量建筑物的高度、求解三角形中未知线段的长度等。请同学们将问题及解答过程记录下来,下节课与同学们分享。
二、学情分析
九年级学生已经具备了一定的几何基础,掌握了三角形的基本概念和性质,能够运用这些知识解决一些简单问题。在此基础上,学生对相似三角形的认识处于初步阶段,对于相似三角形的判定方法和性质需要进一步引导和深化。在教学过程中,教师要关注以下几点:
1.学生对相似三角形概念的理解程度,部分学生可能对其含义理解不透,需要通过具体实例和直观演示来加深理解。
4.通过实际例题的讲解和练习,培养学生将理论知识应用于实际问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于思考的精神,增强学生面对困难时的自信心。
3.培养学生养成良好的学习习惯,如预习、复习、总结等,提高学生的学习效率。
4.培养学生认识到数学在生活中的重要作用,增强学生的应用意识,使学生能够运用所学知识为社会服务。
4.小组合作,拓展延伸:将学生分成小组,讨论以下问题:相似三角形在生活中的应用、相似三角形与其他几何知识的联系等。通过合作交流,培养学生的团队协作能力和拓展思维。
5.课堂小结,总结提升:对本节课所学知识进行总结,让学生明确相似三角形的判定方法和性质,以及如何运用这些知识解决实际问题。
最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿
《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。
一、说教材首先进入我的第一个大板块“说教材”。
我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。
1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。
是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。
本节课是判定三角形相似的起始课,是本章的重点之一。
一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。
因此,这节课在本章中有着举足轻重的地位。
2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。
(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。
(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。
3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。
教学难点:探究两个三角形相似的预备定理的过程。
二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。
老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。
人教版 九年级下册数学第二十七章:相似 27.2 相似三角形教案设计
相似三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解相似三角形的概念,会准确找出两个相似三角形的对应边、对应角。
●探索两个三角形相似的条件,会选择恰当的方法识别两个三角形相似。
●探索相似三角形的性质,能运用性质进行有关计算。
●通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题。
●培养合情推理和数学说理能力。
重点:●掌握相似三角形的判定定理,会运用判定定理判定两个三角形相似;运用三角形相似的知识计算不能直接测量物体的长度和高度;相似三角形和相似多边形的周长、面积的性质的理解与运用。
难点:●相似三角形判定方法的运用;灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题);探索证明相似多边形面积的性质。
学习策略:对于本知识点的学习,应由低到高处理好以下几个方面的问题:●先识记并理解相似三角形的判定方法。
●灵活运用三角形的判定方法,进行证明或计算。
●学会由实际问题构建实际三角形,利用相似三角形解决实际问题。
●结合三角形的判定方法,从本质上去理解相似三角形的性质,在实际应用中加深体会相似三角形的性质。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)相似图形的概念我们把的图形称为相似图形(similar figures).(二)成比例线段对于四条线段a b c d 、、、,如果其中两条线段的比(即它们长度的比)与另两条线段的比 ,如a c b d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段(proportional segments).(三)相似多边形(similar polygons)(1)相似多边形的特征:相似多边形的对应 相等,对应 相等.(2)相似多边形的识别:如果两个多边形的对应 相等,对应 相等,那么这两个多边形相似.(四)判定两个三角形全等的方法有(简写形式)、 、 、 。
相似三角形的判定数学教学教案【优秀10篇】
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
数学《相似三角形的判定》第二课时教案
相似三角形的判定(二)一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似.三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD 与△ABC 相似吗?说说你的理由.(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B, 那么△ACD 与△ABC 相似吗?-—引出课题.四、例题讲解例1已知:如图,矩形ABCD 中,E 为BC 上一点,DF⊥AE 于F,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310). 五、课堂练习1.已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.2.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.1. 已知:如图,△ABC 的高AD 、BE交于点F .求证:FDEF BF AF .2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC•BC=BE•CD;(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.教学反思。
九年级数学 相似三角形的判定(教案、导学案)
27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
人教版九年级数学下27.2相似三角形的判定(两角法)教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示两角法的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的判定方法——两角法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形判定方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在教学过程中,教师应针对以上重点和难点内容,采用讲解、举例、练习、讨论等多种教学方法,帮助学生透彻理解相似三角形的判定及其应用,从而突破学习难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的判定(两角法)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否相似的情况?”比如,在建筑物的设计中,我们可能会遇到这样的问题。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形判定的奥秘。
3.增强数学建模意识,将现实问题转化为数学模型,运用相似三角形知识求解;
4.培养学生的团队合作意识,通过小组讨论、交流与合作,提高学生的表达与沟通能力。
本节课将重点关注学生在几何图形分析、逻辑推理、实际应用等方面的核心素养培养,使学生在掌握知识的同时,提高解决实际问题的综合能力。
《相似三角形的判定(第1课时)》教案 人教数学九年级下册
27.2 相似三角形27.2.1相似三角形的判定(第1课时)一、教学目标【知识与技能】1.理解相似三角形的概念,并会用以证明和计算;2.体会用相似符号“∽”表示的相似三角形之间的边,角对应关系;3.掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算.【过程与方法】经历平行线分线段成比例的基本事实及其推论的发现过程,增强学生发现问题,解决问题的能力.【情感态度与价值观】学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣.二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】平行线分线段成比例基本事实及判定两个三角形相似的定理.【教学难点】判定三角形相似的定理的证明.五、课前准备教师:课件、刻度尺、三角板.学生:刻度尺、三角板.六、教学过程(一)导入新课(出示课件2)教师问:1.相似多边形的特征是什么?2.怎样判定两个多边形相似?3.什么叫相似比?4.相似多边形中,最简单的就是相似三角形.如果∠A =∠A 1,∠B =∠B 1,∠C =∠C 1,,那么△ABC 与△A 1B 1C 1相似吗?我们还有其他方法判定两个三角形相似吗?学生集体口答,教师订正.(二)探索新知知识点1 平行线分线段成比例定理请分别度量l 3,l 4,l 5.在l 1上截得的两条线段AB,BC 和在l 2上截得的两条线段DE,EF 的长度,AB :BC 与DE :EF 相等吗?任意平移l 5,再量度AB,BC,DE,EF 的长度,它们的比值还相等吗?除此之外,还有其他对应线段成比例吗?(出示课件4、5)111111C B BC C A AC B A AB ==学生动手操作后可发现:DFEF AC BC DF DE AC AB DE EF AB BC EF DE BC AB l l l 543====,,,时,∥∥当 教师归纳:(出示课件6)一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a ∥b ∥c ,则12122323A A B B A A B B =,23231212A AB B A A B B =, 12121313A A B B A A B B =,23231313A A B B A A B B =…教师问:1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?(出示课件7) 小组合作交流,再进行全班性的问答.出示课件8,学生独立思考后口答,教师订正.知识点2 平行线分线段成比例定理的推论出示课件9~11:如图,直线l3∥l4∥l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,把直线l1向左或向右任意平移,这些线段依然成比例.如果把图1中l1,l2两条直线相交,交点A刚好落到l3上,如图2(1),所得的对应线段的比会相等吗?依据是什么?如果把图1中l1,l2两条直线相交,交点A刚好落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?学生分组讨论后,选代表口答,教师加以订正后归纳.(出示课件12)平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.出示课件13,学生独立解答,一生板演,教师订正.考点 利用平行线分线段成比例定理及推论求线段长度出示课件14,例 如图,在△ABC 中,DE ∥BC ,AC=4,AB=3,EC=1.求AD 和BD.学生思考后,师生共同解答如下:解:∵AC=4,EC=1,∴AE=3.∵ DE ∥BC , ∴. AD AE AB AC∴AD=2.25,∴BD=0.75.出示课件15,学生独立解答,教师订正.知识点3 相似三角形的判定定理如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(出示课件16~17)教师问:1.△ADE与△ABC的三个角分别相等吗?2.分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?3.你认为△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生分组讨论,动手操作后达成共识:通过度量,我们发现△ADE ∽△ABC,且只要DE∥BC,这个结论恒成立.教师问:1.我们通过度量三角形的边长,知道△ADE∽△ABC,但要用相似的定义去证明它,我们需要证明什么?(出示课件18)2.由前面的结论,我们可以得到什么?还需证明什么?学生讨论后,带着疑问解决证明△ADE∽△ABC问题.(出示课件19)已知:如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D、E.求证:△ADE∽△ABC.师生共同分析:直观告诉我们:△ADE ∽△ABC ,根据三角形相似的概念,要想证明两个三角形相似,必须证明三个角对应相等,三条边对应边对应成比例.由平行线分线段成比例定理,可知:AC AE AB AD =,还需证明ABAD AC AE BC DE ==BC DE 或所以要将DE 平移到BC 上,使得BF=DE(如图),再证明:ACAE BC DE =即可. 证明:在△ADE 与△ABC 中,∠A=∠A.∵DE//BC,∴∠ADE=∠B,∠AED=∠C ,过E 作EF//AB 交BC 于F,则,∵四边形DBFE 是平行四边形,∴DE=BF ,∴,∴, ∴△ADE ∽△ABC.归纳:定理:平行于三角形一边的直线和其他两边相交,所构成 的三角形与原三角形相似.(出示课件20)符号语言:∵DE//BC,∴△ADE ∽△ABC .,AC AE AB AD =BC BF AC AE =BC DE AC AE =BC DE AC AE AB AD ==教师问:过点D作与AC平行的直线与BC相交,可否证明△ADE ∽△ABC?如果在三角形中出现一边的平行线,那么你应该联想到什么?(出示课件21)学生分组讨论后,教师归纳:过点D作与AC平行的直线与BC相交,仍可证明△ADE∽△ABC,这与教材第31页证法雷同.题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式.出示课件22,学生独立思考后口答,教师订正.(三)课堂练习(出示课件23-29)引导学生练习课件23-29题目,巩固本课知识点,约用时20分钟。
【人教版数学九年级下册】《27.2.1 相似三角形的判定(第2课时)》教学设计教案
27.2 相似三角形27.2.1相似三角形的判定(第2课时)一、教学目标【知识与技能】掌握“三边成比例的两个三角形相似”的判定方法;能够运用三角形相似的条件解决简单的问题.【过程与方法】经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.【情感态度与价值观】培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】三边成比例的两个三角形相似.【教学难点】三角形相似的判定方法的证明及运用.五、课前准备教师:课件、刻度尺、量角器、三角板.学生:刻度尺、量角器、三角板.六、教学过程(一)导入新课(出示课件2)教师提出问题:学习三角形全等时,我们知道,除了可以通过证明对应角相等.对应边相等来判定两个三角形全等外,还有判定的简便方法(SSS 、SAS 、ASA 、AAS ).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?类似于判定三角形全等的SSS 方法,我们能不能通过三边来判断两个三角形相似呢?(二)探索新知知识点1 三边对应成比例的两三角形相似教师问:如何判断两个三角形是否相似?(出示课件4)学生答:1.定义法:对应角相等,对应边的比相等的两个三角形相似.2.平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.教师问:还有没有其他简单的判断方法呢?如图,在△ABC 与△,如果满足A'B'B'C'A'C'AB BC AC==,那么能否判定这两个三角形相似?(出示课件5)学生在教师引导下通过测量得到∠A=∠A′,∠B=∠B′,∠C=∠C′,又因为两个三角形的边对应成比例,所以△ABC∽△A′B′C′.教师问:怎样证明这个命题是正确的呢?出示课件7:已知:如图,在△ABC和△A′B′C′中,A′B′:AB=A′C′:AC=B′C′:BC.求证:△ABC∽△A′B′C′.学生独立思考后,师生共同写出证明过程:证明:在△ABC的边AB(或延长线)上截取AD=A′B′,过点D作DE ∥BC交AC于点E.∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC.∵AD=A′B′,∴AD:AB=A′B′:AB.又∵A′B′:AB=B′C′:BC=C′A′:CA,∴DE:BC=B′C′:BC,EA:CA=C′A′:CA.因此DE=B′C′,EA=C′A′.∴△ADE≌△A′B′C′.∴△A ′B ′C ′∽△ABC.师生共同归纳:由此我们得到利用三边判定三角形相似的定理: 三边成比例的两个三角形相似.(出示课件8)符号语言:在△ABC 与△中,∵ ∴△ABC ∽△教师问:在用三边的比判定两个三角形相似时,如何寻找对应边?(出示课件9)学生讨论后教师总结:利用三边的比判定两个三角形相似时,应先将两个三角形的三边按大小顺序排列,然后分别计算它们对应边的比,最后由比值是否相等来确定两个三角形是否相似.考点1 利用三边成比例判断三角形相似例 已知AB=4cm ,BC=6cm ,AC=8 cm ,A ′B ′=12cm ,B ′C ′=18 cm ,A ′C ′=24cm ,试说明△ABC ∽△A ′B ′C ′.(出示课件10)学生独立思考后,一生板演,教师订正并强调解题书写格式. 解:∵41123==''AB ,A B 81243==AC ,A'C'61183==''BC ,B C'''C B A ''''''C A AC C B BC B A AB =='''C B A∴∴△ABC∽△A′B′C′.教师强调:判定三角形相似的方法之一:如果题中给出了两个三角形的三边的长,分别算出三条对应边的比值,看是否相等,计算时最大边与最大边对应,最短边与最短边对应.(出示课件11)出示课件12,学生独立思考后口答,教师订正.考点2 判断三角形相似例如图,在Rt△ABC 与 Rt△A′B′C′中,∠C=∠C′=90°,且12A'B'A'C'.AB AC==求证:△A′B′C′∽△ABC.(出示课件13)师生共同完成证明过程:证明:由已知条件得AB=2A′B′,AC=2A′C′,∴BC2=AB2-AC2=(2A′B′)2-(2A′C′)2=4A′B′2-4A′C′2 =4(A′B′2-A′C′2)=4B′C′2=(2B′C′)2.∴ BC=2B′C′,''1''''.2B C A B A CBC AB AC===∴△A′B′C′∽△ABC.出示课件14,学生独立思考后一生板演,教师订正.考点3 利用三角形相似说明角相等''''''CAACCBBCBAAB==例 如图已知:.AB BC AC AD DE AE==试说明:∠BAD=∠CAE.(出示课件15)学生独立思考后,师生共同解答: 解:∵AB BC AC AD DE AE==, ∴ΔABC ∽ΔADE.∴∠BAC=∠DAE.∴∠BAC -∠DAC=∠DAE -∠DAC ,即∠BAD=∠CAE.出示课件16,学生独立思考后一生板演,教师订正.(三)课堂练习(出示课件17-23)引导学生练习课件17-23相关题目,约用时15分钟(四)课堂小结(出示课件24)本节课你有哪些收获?你还有什么困惑吗?(引导学生思考答复)师生一起提炼本节课的重要知识和必须掌握的技能:1.三两个三角形相似.2.利用三边的比判定两个三角形相似时,应先将两个三角形的三边按大小顺序排列,然后分别计算它们对应边的比,最后由比值是否相等来确定两个三角形是否相似.(五)课前预习预习下节课(27.2.1第3课时)的相关内容.知道利用两边及夹角判定两个三角形相似的方法.七、课后作业教材第34页练习第1⑵,2⑴,3题.八、板书设计27.2.1相似三角形的判定(第2课时)1.三边对应成比例的两个三角形相似2.例题九、教学反思因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.在本节课中要放手给学生动脑、动手的机会,要注意面向全体学生.。
人教版九年级数学下册教案:27.2 相似三角形的判定
27.2 相似三角形的判定教学设计一、教材分析本节内容是相似一章的重点内容,既是全等三角形的继续,也为后面研究三角函数做铺垫,同时也是中考的考点,因此必须熟练掌握三角形相似的判定。
二、学情分析学生已经学过三角形全等的相关知识,学习了相似三角形及三角形相似的第一个判定。
这位探究三角形相似的条件做好了知识上的准备,使学生能主动参与本节课的探究。
三、教学目标1、知识与技能:掌握“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”的判定方法;能够运用三角形相似的条件解决简单的问题.2、过程与方法:经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.3、情感、态度与价值观:培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.四、教学重难点【重点】三角形相似的判定方法:1、三边成比例的两个三角形相似;2、两边成比例且夹角相等的两个三角形相似。
【难点】三角形相似的判定方法的证明及运用。
五、教学过程(一)创设情境,引入新课师:上节课我们是如何判定三角形相似的?根据相似三角形的定义,三角分别相等、三边成比例的两个三角形叫做相似三角形。
那么,两个三角形至少要满足哪些条件就相似呢?能否类比两个三角形全等的条件寻找判定两个三角形相似的条件呢?今天这节课我们就一起来探索三角形相似的条件.设计意图:通过对旧知的复习和回顾,激发学生的学习兴趣,学生通过思考能更好地复习图形相似的有关知识,为学习新知识提供基础.(二)探究新知,自主学习问题1.如图,在△ABC 与△,如果满足,那么能否判定这两个三角形相似? 师生活动:画图探究。
师生引导学生任意画一个三角形ABC ,取一个便于操作的值k ,得到△的三边长,再做出△。
指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似。
(三)问题探究,发现事实1、问题2 怎样证明“三边成比例的两个三角形相似”呢?师生活动:(1)学生结合图形写出已知、求证并交流。
相似三角形的判定数学教学教案(优秀6篇)
相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.1 相似三角形的判定
第4课时 两角分别相等的两个三角形相似
1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)
2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)
一、情境导入
与同伴合作,一人画△ABC ,另一人画△A ′B ′C ′,使得∠A 和∠A ′都等于给定的∠α,∠B 和∠B ′都等于给定的∠β,比较你们画的两个三角形,∠C 与∠C ′相等吗?对应边的比
AB A ′B ′,AC A ′C ′,BC
B ′
C ′
相等吗?这样的两个三角形相似吗?和同学们交流. 二、合作探究
探究点:两角分别相等的两个三角形相似 【类型一】 利用判定定理证明两个三角形相似
如图,在等边△ABC 中,D 为BC 边上一点,E 为AB 边上一点,且∠ADE =60°. (1)求证:△ABD ∽△DCE ;
(2)若BD =3,CE =2,求△ABC 的边长.
解析:(1)由题有∠B =∠C =60°,利用三角形外角的知识得出∠BAD =∠CDE ,即可证明△ABD ∽△DCE ;(2)根据△ABD ∽△DCE ,列出比例式,即可求出△ABC 的边长.
(1)证明:在△ABD 中,∠ADC =∠B +∠BAD ,又∠ADC =∠ADE +∠EDC ,而∠B =∠ADE =60°,∴∠BAD =∠CDE .在△ABD 和△DCE 中,∠BAD =∠CDE ,∠B =∠C =60°,∴△ABD ∽△DCE ;
(2)解:设AB =x ,则DC =x -3,由△ABD ∽△DCE ,∴AB DC =BD
DE ,∴x
x -3=3
2
,∴x =9.即等边△ABC 的边长为9.
方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.
变式训练:见《学练优》本课时练习“课堂达标训练” 第5题
【类型二】 添加条件证明三角形相似
如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ∽△AED 成立,还需要添加一
个条件为____________.
解析:∵∠ABC =∠AED ,∠A =∠A ,∴△ABC ∽△AED ,故添加条件∠ABC =∠AED 即可求得△ABC ∽△AED .同理可得∠ADE =∠C 或∠AED =∠B 或AD AC =AE
AB
可以得出△ABC ∽△AED .故答案为∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB
.
方法总结:熟练掌握相似三角形的各种判定方法是解题关键. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题 【类型三】 相似三角形与圆的综合应用
如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D ,交AE 于点G ,弦CE 交
AB 于点F ,求证:AC 2=AG ·AE .
解析:延长CG ,交⊙O 于点M ,连接AM ,根据圆周角定理,可证明∠ACG =∠E ,根据相似三角形的判定定理,可证明△CAG ∽△EAC ,根据相似三角形对应边成比例,可得出结论.
证明:延长CG ,交⊙O 于点M ,连接AM ,∵AB ⊥CM ,∴AC ︵=AM ︵
,∴∠ACG =∠E ,又∵∠CAG =∠EAC ,∴△CAG ∽△EAC ,∴AC AE =
AG AC
,∴AC 2
=AG ·AE .
方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻找角的等量关系证明三角形相似.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题 【类型四】 相似三角形与四边形知识的综合
如图,在▱ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE 上一点,且∠BFE
=∠C .若AB =8,BE =6,AD =7,求BF 的长.
解析:可通过证明∠BAF =∠AED ,∠AFB =∠D ,证得△ABF ∽△EAD ,可得出关于AB ,
AE ,AD ,BF 的比例关系.已知AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE
中用勾股定理求出AE 的长,进而求出BF 的长.
解:在平行四边形ABCD 中,∵AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .∵BE ⊥CD ,AB ∥CD ,∴BE ⊥
AB ,∴∠ABE =90°,∴AE =AB 2+BE 2=82+62=10.∵△ABF ∽△EAD ,∴BF AD =AB AE ,∴BF
7
=
8
10
,∴BF =5.6. 方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题 【类型五】 相似三角形与二次函数的综合
如图,在△ABC 中,∠C =90°,BC =5m ,AB =10m.M 点在线段CA 上,从C 向A 运
动,速度为1m/s ;同时N 点在线段AB 上,从A 向B 运动,速度为2m/s.运动时间为t s.
(1)当t 为何值时,△AMN 的面积为6m 2?
(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.
解析:(1)作NH ⊥AC 于H ,证得△ANH ∽△ABC ,从而得到比例式,然后用t 表示出NH ,根据△AMN 的面积为6m 2
,得到关于t 的方程求得t 值即可;(2)根据三角形的面积计算得到有关t 的二次函数求最值即可.
解:(1)在Rt △ABC 中,∵AB 2
=BC 2
+AC 2
,∴AC =53m.如图,作NH ⊥AC 于H ,∴∠NHA =∠C =90°,∵∠A 是公共角,∴△NHA ∽△BCA ,∴
AN AB =NH BC ,即2t 10=NH
5
,∴NH =t ,∴S △AMN = 12
t (53-t )=6,解得t 1=3,t 2=43(舍去),故当t 为3秒时,△AMN 的面积为6m 2
.
(2)S △AMN =12t (53-t )=-12(t 2-53t +754)+752=-12(t -532)2+752,∴当t =
53
2时,S 最大值=752
m 2
.
方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题. 三、板书设计
1.三角形相似的判定定理: 两角分别相等的两个三角形相似; 2.应用判定定理解决简单的问题.
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.。