人教版初中数学反比例函数的应用(含答案)
2020人教版中考数学《反比例函数》专题及答案详解
![2020人教版中考数学《反比例函数》专题及答案详解](https://img.taocdn.com/s3/m/1b85589869eae009591bec6c.png)
k
y=
8. 如图,已知 A 为反比例函数
x ( x <0)的图像上一点,过点 A 作 AB ⊥ y 轴,垂足为 B.
若△ OAB 的面积为 2,则 k 的值为(
)
A.2
B. -2
C. 4
D.-4
y
A
B
O
x
【答案】 Dy
-6
O
x
【解析】如图,∵ AB ⊥ y 轴, S△ OAB = 2,而 S△OAB 4.故选 D.
是( )
A .9
B. 12
C. 15
D . 18
y
B
C'
D
A'
C
AO
x
【答案】 C 【解析】取 AB 的中点(- 1, 3),旋转后 D( 3, 5)∴ k= 3×5=15,故选 C.
9. 如图 ,在平面直角坐标系中等腰直角三角形 ABC 的顶点 A,B 分别在 x 轴 ,y 轴的正半轴上 ,∠ k
【答案】 B
第9题
k
k
【解析】由题意知 S1= 2 ,S△ BOE=S△ COF= 2 ,因为 S2=S△ BOE-S△ OME,S3=S △ COF-S△
OME ,所以 S2=S3,所以选 B。 1 4.将 y 的图象向右平移 1 个单位长度,再向上平移 1 个单位长度所得图象如图( 3).则所 x 得图象的解析式为( )
).
A. x <- 1 x>2
B. - 1<x< 0
C. x <- 1 或 0<x <2
D.-1< x< 0 或
y
A
2
2
x
-1 O -1 B
【答案】 C. m
【解析】由图象得,不等式 kx+ b> x 的解集是 x<- 1 或 0< x< 2,故选 C.
2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)
![2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)](https://img.taocdn.com/s3/m/b1fbef73f011f18583d049649b6648d7c1c708d6.png)
2024年中考数学高频考点专题复习——反比例函数的实际应用1.如图,利用已有的一面长为的墙,用篱笆围一个面积为的矩形花圃.设的长为,的长为.(1)求y 关于x 的函数表达式和自变量x 的取值范围.(2)边和的长都是整数,若围成的矩形花圃的三边篱笆的总长不超过,试求出满足条件且用料最省的方案.2.通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散,学生注意力指标数y 随时间x (分)变化的函数图象如图所示,当和时,图象是线段;当时,图象是双曲线的一部分,根据函数图象回答下列问题:(1)点A 的注意力指标数是 ;(2)当时,求注意力指标数y 随时间x (分)的函数解析式;(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36?请说明理由.5m 220m ABCD AB ()m x BC ()m y AB BC ABCD 20m 010x ≤<1020x ≤<2040x ≤≤010x ≤<3.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线y =上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A( , )、B( , )和C( , );(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.4.某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时),时间x (小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;(2)求出当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系?(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?4x5.为了做好新冠疫情防控工作,某学校要求全校各班级每天对各班教室进行消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量y (单位:mg )随时间x (单位:h )的变化情况如图所示,根据图中提供的信息,解决下面的问题.(1)如图反映的是那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)什么时刻每立方米空气中药含量最多?此时药含量是多少?(3)在什么时间范围内,每立方米空气中药含量在增加?在什么时间范围内,每立方米空气中药含量在减少?(4)据测定,当空气中每立方米的药物含量降低到mg 以下时,才能保证对人身无害,若该校课间操时间为40分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?1167.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作.已知该品牌运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示: 第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?写出用x表示y的函数表达式;(2)若商场计划每天的销售利润为3000元,则每双运动鞋的售价应定为多少元?8.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 ,表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求 与 ( )的函数表达式;(2)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?10.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y (克)与漂洗次数x (次)满足y=(k 为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k 的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x 次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?()C y ︒()h x AB BC CD y x 1024x ≤≤10C ︒ 2.5kv x+11.汛期到来,山洪暴发,下表记录了某水库 内水位的变化情况,其中 表示时间(单位:), 表示水位高度(单位: ),当 ( )时,达到警戒水位,开始开闸放水. 02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据画出水位变化图象,并写出水位高出16米的时间 的取值范围 ▲ .(精确到0.1)(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .12.如图,直线与双曲线交于A ,两点,点A 的坐标为,点是双曲线第一象限分支上的一点,连结并延长交轴于点,且.(1)求的值,并直接写出点的坐标;(2)点是轴上的动点,连结,,求的最小值和点坐标;(3)是坐标轴上的点,是平面内一点,是否存在点,,使得四边形是矩形?若存20h x h y m 8x =h /h x /my x 6m 32y x =(0)ky k x=≠B (3)m -,C BC xD 2BC CD =k B G y GB GC GB GC +G P Q P Q ABPQ在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13.泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?14.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?P答案解析部分1.【答案】(1)解:由题意得:,,已有的一面墙长为,,,y 关于x 的函数表达式为(2)解:边和的长都是整数,且, 的值可以为4、5、10、20,围成的矩形花圃的三边篱笆的总长不超过,,的值可以为4、5,当时,,则,当时,,则,满足条件且用料最省的方案为,.2.【答案】(1)24(2)解:设线段(0≤x <10)∵,,∴{b =2410k +b =48 解之:{k =125b =24∴当0≤x <10时的函数解析式为(3)解:当时,代入和得 和∵,20xy =20y x∴=5m 205x∴≤4x ∴≥∴()204y x x=≥ AB BC ()204y x x=≥x ∴ ABCD 20m 220x y ∴+≤x ∴4x =5y =224513x y +=⨯+=5x =4y =225414x y +=⨯+=∴4m AB =5m BC =AB y kx b =+:(024)A ,(1048)B ,12245y x =+36y =12245y x =+960y x=15x =2803x =806552133-=>∴他能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36.3.【答案】(1)2;2;-2;-2;22 ;(2)解:作AD ⊥x 轴于D,连AC 、BC 和OC,∵A (2,2),∴∠AOD=45°,AO=2,∵C 在O 的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO ,∴AC=BC ,又∵∠BAC=60°,∴△ABC 为正三角形,∴AC=BC=AB=2AO=4,∴ ,由条件设教练船的速度为3m ,A、B 两船的速度都为4m ,则教练船所用时间为,A 、B 两船所用时间均为 = ,= , =,> ;∴教练船没有最先赶到.4.【答案】(1)解:0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,OC ==10~20时,风速不变,最高风速维持时间为20﹣10=10小时;答:这场沙尘暴的最高风速是32千米/时,最高风速维持了10小时(2)解:设y =, 将(20,32)代入,得32= ,解得k =640.所以当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系为y =(3)解:∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米, ∴4.5时风速为10千米/时,将y =10代入y = ,得10=,解得x =64,64﹣4.5=59.5(小时).故沙尘暴的风速从开始形成过程中的10千米/小时到最后减弱过程中的10千米/小时,共经过59.5小时.答:这次风暴的整个过程中,“危险时刻”一共经过59.5小时.5.【答案】(1)解:图象反应的是时间x 和每立方米空气中的药含量y 之间的关系;自变量为时间x ;因变量为每立方米空气中的药含量y ;(2)解:从函数图象可得:当x=h 时,空气中药含量最多,最多为1mg ;(3)解:从图象可得:当0<x<h 时,每立方米空气中药含量在增加;当x≥h 时,每立方米空气中药含量在减少(4)解:不能选用这种药物消毒,理由如下:由图象可得,当x=1时,y=,∴,∴学校不能选用这种药物用于教室消毒.6.【答案】(1)解:设 , ∵当x=400时y=30,∴k=400×30=12000,kxk 20640x640x640x151515116116048405⎛⎫-⨯=> ⎪⎝⎭ky x=∴函数解析式为 .(2)解:2104-(30+40+48+50+60+80+96+100)=1600.即8天试销后,余下的海产品还有1 600千克.当x=150时, =80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)解:1600-80×15=400(千克),设新确定的价格为每千克x 元. ,解得:x≤60,答:新确定的价格最高不超过60元/千克才能完成销售任务.7.【答案】(1)解:由表中数据得: ∴∴y 是x 的反比例函数,故所求函数关系式为 (2)解:由题意得: 把 代入得: 解得: 经检验, 是原方程的根;∴单价应定为240元8.【答案】(1)解:设DA 的函数关系式为y=kx+b (x≠0),∵y=kx+b 过(0,20),(10,40),∴{b =2010k +b =40,∴{b =20k =2,∴y=2x+20(0≤x≤10);当y=30时,30=2x+20,∴x=5;答:他应该复习5分钟;12000y x=12000150y =120002400x⨯≥6000xy =6000y x=6000y x =()1203000x y -=6000y x =()60001203000x x-=240x =240x =(2)解:设BC 的函数关系式(k 1≠0)(21≤x≤45),∵过B (21,40),∴,∴K 1=840,∴(21≤x≤45),当x=30时,,28﹣5=23,∵23>22,∴这位老师能在学生听课效果最好时讲完新课内容.9.【答案】(1)解:当 时,设 把 代入 得: 所以: (2)解:当 时,经检验: 是原方程的解,且符合题意,所以恒温系统最多可以关闭 小时,才能使蔬菜避免受到伤害.10.【答案】(1)解:∵使用5升水,漂洗1次后,衣服中残留洗衣粉2克,∴v=5,x=1,y=2,∴2=,∴k=-0.1.(2)解:∵v=5,∴y=, ∵反比例函数y=,在x>0的范围内y 随x 的增大而减少,∴当y<0.8时,漂洗的次数x>2.5,∴至少漂洗3次,衣服中残留的洗衣粉量小于0.8克.(3)解:由(1)得y=, 1k y x =14021k =840y x=8402830y ==1024x ≤≤k y x=()1020,k y x =,1020200k =⨯=,200.y x=10y =20010x =,20x ∴=,20x =201010∴-=,105 2.51k +0.15 2.52x x-⨯+=2x 0.1 2.5v x-+∴xy=-0.1v+2.5,即x 2y=-0.1vx+2.5x ,∵将20升水等分成x 次,∴vx=20,∴x 2y=-2+2.5x ,∵y=0.5,∴0.5x 2=-2+2.5x ,即x 2-5x+4=0,∴x 1=4,x 2=1(舍去,x >1),∴当x=4时,每次漂洗用水v=20÷4=5升.答:每次漂洗用水5升.11.【答案】(1)解:在平面直角坐标系中,根据表格中的数据水位变化图象如图所示,;4≤x <8.8(2)解:观察图象当0<x <8时,y 与x 可能是一次函数关系:设y=kx+b ,把(0,14),(8,18)代入得 {b =148k +b =18 解得: {k =12b =14 , y 与x 的关系式为: ,经验证(2,15),(4,16),(6,17)都满足 因此放水前y 与x 的关系式为: (0<x <8).观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.1142y x =+1142y x =+1142y x =+因此放水后y 与x 的关系最符合反比例函数,关系式为:设 ,则 ,y 与x 的关系式为: .( )所以开闸放水前和放水后最符合表中数据的函数解析式为: (0<x <8)和 .( )(3)解:当y=6时, ,解得: , 因此预计24h 水位达到6m.12.【答案】(1)解:将点A 的坐标为代入直线中,得,解得:,,,B 的坐标为(2)解:如图,作轴于点E ,轴于点F ,则,,,,, ,,,,k y x =144k =144=y x8x ≥1142y x =+144=y x 8x ≥1446=x24x =()-3A m ,32y x =332m =﹣-2m =()2-3A ∴-,=-2(3)=6k ∴⨯-()23,BE x ⊥CF x ⊥BE CF BE CF DCF DBE ∴ ∽DC CF DB BE∴=2BC CD = 13DC CF DB BE ∴==()23B ,3BE ∴=1CF ∴=,作点B 关于y 轴的对称点,连接交y 轴于点G ,则即为的最小值,,设的解析式为,,,解得: ,解析式为,当时,,;(3)解:存在.理由如下:当点P 在x 轴上时,如图,设点 的坐标为 ,过点B 作轴于点M ,四边形是矩形,,()61C ∴,B 'B C 'B C 'BG GC +()()2361B C -' ,,,B C ∴=='=BG GC B C '∴+B C 'y kx b =+()()2361B C -' ,,,3216k b k b =-+⎧⎨=+⎩1452k b ⎧=-⎪⎪⎨⎪=⎪⎩∴B C '1542y x =-+0x =52y =502G ⎛⎫∴ ⎪⎝⎭,1P ()0a ,BM x ⊥ 11ABPQ 190OBP ∴∠=︒,,,,,,,,,经检验符合题意,∴点 的坐标为;当点P 在y 轴上时,过点B 作轴于点N ,如图2,设点 的坐标为,四边形是矩形,,,,,,,经检验符合题意,∴点的坐标为,1==90OMB OBP ∴∠∠︒1=BOM POB ∠∠1OBM OPB ∴ ∽1OB OM OP OB ∴=()23B ,OB ∴==2OM ==132a ∴=1P 1302⎛⎫ ⎪⎝⎭,BN y ⊥2P ()0b , 22ABP Q 290OBP ∴∠=︒2==90ONB P BO ∠∠︒ 2BON P OB ∠=∠2BON P OB ∴ ∽2OB ON OP OB∴==133b ∴=2P 1303⎛⎫⎪⎝⎭,综上所述,点P 的坐标为或.13.【答案】(1)解:停止加热 分钟后,设 , 由题意得: , 解得: ,, 当 时,解得: ,当 时, ,点坐标为 , 点坐标为 , 当加热烧水时,设 ,由题意将 点坐标 代入上式得 , 解得: ,当加热烧水时,函数关系式为 ;当停止加热时 与 的函数关系式为 ; ;(2)解:把 代入 ,得 , 因此从水壶中的水烧开 降到 可以泡茶需要等待 分钟.14.【答案】(1)解:根据题意可知:当时,设y 与x 的函数解析式为,∴,解得:,∴;当时,设y 与x 的函数解析式为,∴,解得:1302⎛⎫ ⎪⎝⎭,1303⎛⎫ ⎪⎝⎭,1k y x =5018k =900k =900y x∴=100y =9x =20y =45x =C ∴()9100,B ∴()8100,20y ax =+B ()8100,100820a =+10a =∴()102008y x x =+≤≤y x 100(89)y x =<≤900(945)y x x =<≤90y =900y x=10x =()100℃90℃1082-=030x ≤≤1y k x =112030k =14k =()4030y x x =≤≤30x ≥2k y x =212030k =23600k =∴综上所述,该商品上市以后销售量y (万件)与时间x (天数)之间的表达式为:;.(2)解:当时,令,解得:,∴,∴销量不到36万件的天数为8天;当时,令,解得: (不符合题意),∴上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数为8天;(3)解:当时,令,解得:∴,∴销量超过100万件的天数为6天,当时,令,解得:∴,销量超过100万件的天数为6天,综上所述,销售量不低于100万件,并且持续天数为12天,广告设计师可以拿到“特殊贡献奖”.()360030y x x=≥()4030y x x =≤≤()360030y x x=≥030x ≤≤436x <9x <09x ≤<30x ≥360036x<100x >030x ≤≤4100x ≥25x ≥2530x ≤≤30x ≥3600100x≥36x ≤3036x ≤≤。
人教版初中数学反比例函数(含答案)
![人教版初中数学反比例函数(含答案)](https://img.taocdn.com/s3/m/3520f67277232f60ddcca169.png)
1.1反比例函数第1课时【知识要点】1.形如(0)k y k x=≠的函数叫做反比例函数. 2.两个变量成反比例,则它们的积是一个不为零的常数.课内同步精练●A 组 基础练习1.下列函数中是反比例函数的是( ) A.y=-x B.(0)x y kk =≠ C.y = D.24y x = 2.下列说法正确的是( )A .圆面积公式S=πr 2中,S 与r 成正比例关系B .三角形面积公式S =12ah 中,当S 是常量时,a 与h 成反比例关系 C .11y x=+中,y 与x 成反比例关系 D .12x y -=中,y 与x 成正比例关系 3.矩形面积是40m 2,设它的一边长为x(m),则矩形的另一边长y(m)与x 的函数关系是( ) A.1202y x =- B.y=40x C.40y x = D.40x y = 4.s 、v 、t 分别表示路程、速度与时间,当v 为常数时, s 与t 的函数关系为 ,属于 函数;s 为常数时v 与t 的函数关系式是 .5.九年级的全体师生500人准备用10000只纸鹤来表达对2008年北京奥运会的美好祝愿,如果每人每天折x 只,y 天能够完成,求y 关于x 的函数关系式.●B 组 提高训练6.圆柱的侧面积是10π,则圆柱的高线长h 与圆柱的底面半径r 之间的函数关系是 .7.一个无盖的长方体木箱的体积是400O0cm 2, (1)如果它的底面积为acm ,高为hcm ,求h 关于a 的函数关系式.(2)如果这个长方体的底是边长为xcm 的正方形,求它的表面积S (cm 2)关于x 的函数关系式.课外拓展练习●A 组 基础练习1.当路程一定时,速度v 与时间t 之间的函数关系是( )A .正比例函数B .反比例函数C .一次函数D .不能确定2.下列函数式中,属于反比例函数的是( ) A.y=x+2 B.2x y = C.12y x =+ D.1y x=- 3.当三角形面积是8c m 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .4.把23y x =-化为k y x=的形式为 ;比例系数为 . 5.两个整数x 与y 的积为10 , (1)求y 关于x 的函数关系式; (2)写出比例系数;(3)写出自变量x 的取值范围.6.试写出一个实际生活中的反比例函数.●B组提高训练7.一定质量的二氧化碳气体,当它的体积V=5m2时,它的密度ρkg/m3. (1)求ρ与V的函数关系式;(2)当V=9m3时二氧化碳的密度ρ8.某工厂生产化肥的总任务一定时,每天生产化肥y吨和生产天数x之间成反比例关系,如果每天生产化肥125吨,那么完成总任务需要7天.(l)求y关于x的函数关系式,并指出比例系数.(2)若要5天完成总任务,那么每天需要生产化肥多少吨?答案:1.1反比例函数第2课时【知识要点】能用待定系数法求出反比例函数式,并能利用函数式求对应变童的值.课内同步精练●A 组 基础练习1.下列属于反比例函数的是( ) A.3x y = B.3x y =- C.34y x =- D.2y x =- 2.已知反比例函数k y x =,当x=2时,y=-4,则k= ;该函数关系式是 . 3.已知反比例函数k y x=当x=2时,y=2,则当x=4时,y= . 4.已知y 是x 的反比例函数,且当x=-2时,y=12,(1)求这个反比例函数关系式和自变量x 的取值范围;(2)分别求当x=3,x=13-时函数y 的值.●B 组 提高训练5.已知y-l 与x 成反比例,且当x=2时,y=-2, 求y 关于x 的函数关系式.6.已知电压一定时,电阻R与电流强度I成反比例,如果电阻=12.5Ω时,电流强度I-0.2A 求:(1)I与R的反比例函数关系式; (2)当R=5Ω时的电流强度I.课外拓展练习●A组基础练习1.反比例函数kyx=中,k与x的取值情况是()A.k≠0,r取全体实数B.x≠0, k取全体实数C.k≠0,x≠0D.k、r都可取全体实数2.下列问题中两个变量间的函数关系式是反比例函数的是()A.小红1分钟可以制作2朵花.x分钟可以制y朵花B.体积10cm3的长方体,高为hcm时,底面积为Scm2C.用一根长 50cm 的铁丝弯成一个矩形一边长为xcm时,面积为ycm2D.小李接到一次检修管道的任务,已知管道长100m,设每天能完成10m,x天后剩下的未检修的管道长为ym3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,求眼镜度数y与镜片焦距x之间的函数关系式.4.已知a与b2成反比例,b=4时,a =5,求45b=时a的值.●B组提高训练5.z与y成正比例,y与x成反比例,试判断z与x是什么函数关系?6.函数y=y1+y2与x成正比例,y2与x2成反比例,且x=2与x= 3 时y的值都等于19,求y关于x的函数关系式.答案:。
数学人教版九年级下册《反比例函数的实际应用》
![数学人教版九年级下册《反比例函数的实际应用》](https://img.taocdn.com/s3/m/e0214553a417866fb84a8e37.png)
第17章 反比例函数一、课前热身: 1、已知反比例函数ky x=的图象经过点(36)A --,,则这个反比例函数的解析式是 . 2、近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 . 3、在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( ) A .k >3 B .k >0 C .k <3 D . k <04、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图1所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A .不小于54m3B .小于54m 3C .不小于45m 3D .小于45m 35、如图2,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3, 则k = . 二、知识要点:1、反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.2、反比例函数的图象和性质3、k 的几何含义:反比例函数y =k x (k ≠0)中比例系数k 的几何意义,即过双曲线y =k x(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .三、例题精讲:例1、红星粮库需要把晾晒场上的1200吨玉米入库封存。
(1)入库所需时间t(单位:天)与入库速度v(单位:吨/天)有怎么样的函数关系?(2)粮库有职工60名,每天最多可入库300吨玉米,预计玉米入库最快可在几天内完成?(3)粮库的职工连续工作两天后,天气预报说在未来的几天很可能会下雨,粮库决定次日把剩下的玉米全部入库,需要增加多少人帮忙才能完成任务?例2、某汽车油箱容积为70升,小王把邮箱注满后准备驾驶汽车从县城到300千米外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满后,汽车能够行驶的总路程a(单位:千米)与平均耗油量b(单位:升/千米)之间有怎样的函数关系?(2)小王以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1千米的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?例3、某汽车的功率P为一定值,汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3)如果限定汽车的速度不超过30米/秒,则F在什么范围内?四、随堂练习:1、若为圆柱底面的半径,为圆柱的高.当圆柱的侧面积一定时,则与之间函数关系的图象大致是( )2、如图,正比例函数y kx =与反比例函数1k y x-=的图象不可能是( )A B C D3、已知点A 是一次函数y =x 的图象与反比例函数2y x=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为( ) A .2 B.2C .D .4、直线y ax b =+过一、三、四象限,则函数by kx=-的图象在_____________象限,并且在每一个象限内y 随x 的增大而_____________.5、如图,一次函数y ax b =+的图象与反比例函数ky x=的图象交于第一象限C ,D 两点,与坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.四、课后作业:1、长方形的面积为60cm 2,如果它的长是ycm ,宽是xcm ,那么y 是x 的 函数关系,y 写成x 的关系式是 。
5.3 反比例函数的应用(含答案)
![5.3 反比例函数的应用(含答案)](https://img.taocdn.com/s3/m/b42d79ee08a1284ac9504321.png)
5.3 反比例函数的应用◆基础训练一、选择题1.一次函数y=kx+b (k ≠0)与反比例函数y=k x(k ≠0)的图象如图5-7所示,则下列结论中正确的是( ).A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<02.已知P 是反比例函数y=8x图象上任意一点,过点P 作PA ⊥x 轴于A ,PB ⊥y 轴于B ,• 则△PAB 的面积S 为( ).A .8B .4C .S 随x 的增大而增大D .S 随x 的增大而减小3.在匀速运动中,路程s (千米)一定时,速度v (千米/时)关于时间t (小时)的函数图象大致是下图中的( ).A B C D二、填空题 4.某住宅小区要种植面积为500m 2的矩形草坪,草坪长y (m )与宽x (m )•之间的函数关系为_________.5.双曲线y=8x与直线y=2x 的交点坐标为________.三、解答题6.自来水厂的一静水池中有水100吨,有三根同样大小的水管,•现同时开放向外输水,经过t 小时把水放完,已知每根水管每小时排水x 吨.(1)写出t 与x 之间的函数关系式;(2)画出函数图象;(3)当t=10时,求x 的值.7.据某气象台预报,近来突袭某城市的台风将在午后2点到达风力最大的32千米/时,随后立即开始减弱,并且风速v (千米/时)与时间t (小时)大致成反比例关系变化,求当t ≥2时,v (千米/时)与时间t (时)之间的函数关系式.能力提高一、填空题8.已知点P 是线段AB 的黄金分割点,且PA>PB ,若PA=2,AB=x ,PB=y ,则y 与x•之间的函数关系式为________.9.如图,直线y=kx (k>0)与双曲线y=4x交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1的值等于_______.- 3 -二、解答题10.如图是汽车在某高速公路上行驶时,速度v (千米/时)与行驶时间t (小时)的函数图象,请根据图象提供的信息回答下列问题:(1)这条高速公路的全长是多少千米?(2)汽车的最高时速是多少千米?(3)汽车最慢用几小时可以到达?如果要在3小时内到达,汽车的速度应不低于多少千米/时?11.如图,在直角坐标系中,一次函数y=-34x+3的图象与y 轴交于点A ,与反比例函数y=k x的图象交于点B (-2,m )和点C . (1)求反比例函数的解析式;(2)求△AOC 的面积.◆拓展训练12.小王驾驶的汽车的油箱的容积为70升,小王把油箱加满油后准备驾驶汽车从县城到300千米外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)用完一油箱油,汽车行驶的总里程s(千米)与每千米平均耗油量a(升)之间有怎样的函数关系?(2)小王在经济速度驾驶汽车到达省钱,已知汽车以经济速度行驶时每千米耗油0.1升.在返程时由于下雨,小王降低车速,此时每行驶1千米的油耗增加一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够,至少需要加多少升油?答案:1.D 2.B 3.A 4.y=500x5.(2,4),(-2,-4)6.(1)t=1003x(2)略(3)1037.v=64t8.y=4x9.2010.(1)300千米(2)250千米(3)6小时 100千米/时11.(1)∵y=-34x+3与y=kx交于点B(-2,m)与点C,∴点B在直线上,∴m=34-×(-2)+3=92,•∴点B(-2,92).又点B在y=kx上,∴92=2k-,∴y=-9,∴反比例函数的解析式是y=-9x.(2)由33,49.y xyx⎧=-+⎪⎪⎨⎪=-⎪⎩解得x=-2,x=6.∴点C的横坐标为6,∴S△AOC=12×3×6=9.12.(1)s=70a,(2)不够用,至少需加油20升.- 5 -。
初二数学人教版(下册)反比例函数典型例题汇总(附答案)
![初二数学人教版(下册)反比例函数典型例题汇总(附答案)](https://img.taocdn.com/s3/m/301a9dea2cc58bd63186bda6.png)
例 下面函数中,哪些是反比例函数? (1)3x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,xky =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式.反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 已知反比例函数62)2(--=a xa y ,y 随x 增大而减小,求a 的值及解析式.分析 根据反比例函数的定义及性质来解此题. 解 因为62)2(--=ax a y 是反比例函数,且y 随x 的增大而减小,所以⎩⎨⎧>--=-.02,162a a 解得⎩⎨⎧>±=.2,5a a所以5=a ,解析式为xy 25-=.反比例函数的典型例题四例 (1)若函数22)1(--=mx m y 是反比例函数,则m 的值等于( )A .±1B .1C .3D .-1(2)如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则:A .1=SB .2=SC .3=SD .S 的值不确定解:(1)依题意,得⎩⎨⎧-=-≠-,12,012m m 解得1-=m .故应选D . (2)由双曲线x y 1=关于O 点的中心对称性,可知:O BC O BA S S ∆∆=. ∴12122=⋅=⨯⨯==∆AB OB AB OB S S OBA .故应选A .例 已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,当1=x 时,4=y ;当3=x 时,5=y ,求1-=x 时,y 的值.分析 先求出y 与x 之间的关系式,再求1-=x 时,y 的值.解 因为1y 与x 成正比例,2y 与x 成反比例,所以)0(,212211≠==k k xk y x k y . 所以xkx k y y y 2121+=+=.将1=x ,4=y ;3=x ,5=y 代入,得⎪⎩⎪⎨⎧=+=+.5313,42121k k k k 解得 ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以xx y 821811+=. 所以当1-=x 时,4821811-=--=y . 说明 不可草率地将21k k 、都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.反比例函数的典型例题六例 根据下列表格x 与y x …… 1 2 3 456 …y…6 3 2 1.5 1.2 1 …(1x 的取值范围. 解:(1)图像如右图所示. (2)根据图像,设)0(≠=k xky ,取6,1==y x 代入,得16k=. ∴6=k .∴函数解析式为)0(6>=x xy . 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )解:1+-=x y 的图像经过第一、二、四象限,故排除B 、C ;又xy 3=的图像两支在第一、三象限,故排除D .∴答案应选A .(2)若0>k ,则直线)1(2+-=k kx y 经过第一、三、四象限,双曲线xky =的图像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若0<k ,则直线)1(2+-=k kx y 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正确.应选C .例 已知函数24231-⎪⎭⎫ ⎝⎛+=mx m y 是反比例函数,且其函数图像在每一个象限内,y 随x 的增大而减小,求反比例函数的解析式.解:因为y 是x 的反比例函数,所以1242-=-m ,所以21=m 或.21-=m 因为此函数图像在每一象限内,y 随x 的增大而减小,所以031>+m ,所以31->m ,所以21=m ,所以反比例函数的解析式为.65xy = 说明:此题根据反比例函数的定义与性质来解反比例函数xky = )0(≠k ,当0>k 时,y 随x 增大而减小,当0<k 时,y 随x 增大而增大.例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当3=x 厘米时,求y 的值; (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式. 解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米, 所以1005=xy ,所以xy 20=. (2)因为x 是长方体的高.所以0>x .即自变量x 的取值范围是0>x . (3)当3=x 时,326320==y (厘米) (4x … 0.525 1015…y … 40 10 4 2 311 …描点画图如图所示.例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据S F W ⋅=,得15=S F ⋅,即SF 15=,所以F 与S 之间是反比例函数关系,故选(B ).例 一个圆台形物体的上底面积是下底面积的.32如果如下图所示放在桌上,对桌面的压强是Pa 200,翻过来放,对桌面的压强是多少?解:由物理知识可知,压力F ,压强p 与受力面积S 之间的关系是.SFp =因为是同一物体,F 的数值不变,所以p 与S 成反比例. 设下底面是0S ,则由上底面积是032S , 由SFp =,且0S S =时,200=p , 有.20020000S S pS F =⨯==因为是同一物体,所以0200S F =是定值.所以当032S S =时,).Pa (3003220000===S S SF p因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.例 如图,P 是反比例函数xky =上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为),(y x .因为P 点在第二象限,所以0,0><y x . 所以图中阴影部分矩形的长、宽分别为y x ,-.又2=-xy ,所以2-=xy .因为xy k =,所以2-=k . 所以这个反比例函数的解析式为xy 2-=. 说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于xk y =中的k .例 当n 取什么值时,122)2(-++=n n x n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y随x 增大而增大还是减小?分析 根据反比例函数的定义)0(≠=k x k y 可知,122)2(-++=n n x n n y 是反比例函数,必须且只需022≠+n n 且112-=-+n n .解 122)2(-++=n n xn n y 是反比例函数,则⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 1-=n .故当1-=n 时,122)2(-++=n nx n n y 表示反比例函数:xy 1-=. 01<-=k ,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.11。
2024年人教版九年级数学中考专题训练:反比例函数(含解析)
![2024年人教版九年级数学中考专题训练:反比例函数(含解析)](https://img.taocdn.com/s3/m/f0765d556ad97f192279168884868762caaebb9c.png)
2024年人教版九年级数学中考专题训练:反比例函数1.如图,在平面直角坐标系中,一次函数y =﹣x+m 的图象与反比例函数y=(x >0)的图象交于A 、B 两点,已知A (1,2)(1)求一次函数和反比例函数的解析式;(2)连接AO 、BO ,求△AOB 的面积.2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数.已知当时,.(1)求出这个函数的表达式;(2)当气球内的气压大于时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?3.如图,反比例函数与一次函数的图像在第一象限交于、两点.(1)则 , , (2)观察图像,请直接写出满足的取值范围.(3)若Q 为y 轴上的一点,使最小,求点Q 的坐标.4.如图,在平面直角坐标系中,一次函数的图象分别交x 轴,y 轴正半轴于点A ,B ,内切于,反比例函数的图象经过点P ,交直线于点C ,D (C 在点D 的左侧).kx()P kPa ()3mV 30.8m V =120kPa P =128kPa ()10ky k x=≠2y x b =-+()13A ,()3B n ,k =b =n =12y y ≥QA QB +364y x =-+P ABO ()0ky x x=>AB(1)求反比例函数的解析式;(2)过点C ,D 分别作x 轴,y 轴的平行线交于点E ,求的面积.5.如图1,点A (1,0),B (0,m )都在直线y =﹣2x+b 上,四边形ABCD 为平行四边形,点D 在x轴上,AD=3,反比例函数(x>0)的图象经过点C .(1)求k 的值;(2)将图1的线段CD 向右平移n 个单位长度(n≥0),得到对应线段EF ,线段EF 和反比例函数(x>0)的图象交于点M .①在平移过程中,如图2,若点M 为EF 的中点,求△ACM 的面积;②在平移过程中,如图3,若AM ⊥EF ,求n 的值.6.如图,点A 是反比例函数图象上的点,AB 平行于y 轴,且交x 轴于点,点C 的坐标为,AC 交y 轴于点D ,连接BD ,(1)求反比例函数的表达式;(2)设点P 是反比例函数图象上一点,点Q 是直线AC 上一点,若以点O ,P ,D ,Q CDE ky x=ky x=()0ky k x=>()10B ,()10-,AD =()0ky x x=>为顶点的四边形是平行四边形,求点Q 的坐标; (3)若点是该反比例函数图象上的点,且满足∠MDB>∠BDC ,请直接写a 的取值范围.7.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?8.在学习反比例函数后,小华在同一个平面直角坐标系中画出了(x>0)和的图象,两个函数图象交于A (x 1,y 2),B (x 2,y 2)两点,在线段AB 上选取一点P ,过点P 作y 轴的平行线交反比例函数图象于点 O (如图1).在点P 移动的过程中,发现PO 的长度随着点P 的运动而变化.为了进一步研究 PO 的长度与点P 的横坐标之间的关系,小华提出了下列问题∶(1)设点P 的横坐标为x ,PQ 的长度为y ,则y 与x 之间的函数关系式为 (x 1<x<x 2);(2)为了进一步的研究(1)中的函数关系,决定运用列表,描点,连线的方法绘制函数的图象;①列表∶()M a b ,ky x=1y x=5y x =-+x 1234ym3n表中 m = ,n =;②描点∶根据上表中的数据,在图2中描出各点;③连线∶请在图2中画出该函数的图象.观察函数图象,当x =时,y 的最大值为;(3)应用∶已知某矩形的一组邻边长分别为m ,n ,且该矩形的周长 W 与n 存在函数关系,求 m 取最大值时矩形的对角线长.9.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M 的坐标.10.若关于x 的函数y ,当时,函数y 的最大值为M ,最小值为N ,令函数,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数,当时,求函数y 的“共同体函数”h 的值;②若函数(,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数,求函数y 的“共同体函数”h 的最大值;(3)若函数,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.11.已知一块矩形草坪的两边长分别是2米与3米,现在要把这个矩形按照如图1的方式扩大到面积为1x 13122x 535234220W n=-+1y x =+()0my x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=1122t x t -≤≤+2M Nh -=4044y x =1t =y kx b =+0k ≠21y x x=≥()24y x x k =-++原来的2倍,设原矩形的一边加长a 米,另一边长加长b 米,可得a 与b 之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y =﹣2,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y =﹣2的自变量x 的取值范围是 ,这个函数值y 的取值范围是 .(2)“数学兴趣小组”进一步思考函数y =|﹣2|的图象和性质,请根据函数y =﹣2的图象,画出函数y =|﹣2|的图象;(3)结合函数y =|﹣2|的图象解答下列问题:①求出方程|﹣2|=0的根;②如果方程|﹣2|=a 有2个实数根,请直接写出a 的取值范围.12.如图,抛物线与x 轴交于两点(在的左边),与y 轴交于C ,;双曲线经过抛物线的顶点,点的横坐标为1.123a +123x +123x +123x +123x +123x +123x +123x +123x +23y ax bx =++A B 、A B 3tan CAB ∠=(0)ky k x=≠23y ax bx =++D D(1)求抛物线和双曲线的解析式.(2)点P 为抛物线上一动点,且在第一象限,连接,求当四边形取得最大值时,点P 的坐标,并求出这个最大值.(3)若在此抛物线和双曲线上存在点Q ,使得,请求出点Q 的坐标.13.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)分别求一次函数及反比例函数的表达式;(2)在第三象限内的B 点右侧的反比例函数图象上取一点P ,连接且满足.i )求点P 的坐标;ii )过点A 作直线,在直线l 上取一点Q ,且点Q 位于点A 的左侧,连接,试问:能否与相似?若能,求出此时点Q 的坐标;若不能,请说明理由.14.定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数图像的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数图像的“n 阶方点”一定存在,请直接写出n 的取值范围.15.如图1,已知反比例函数的图象与一次函数的图象相交于A (2,a ),B 两点.BP CP 、ABPC QB QC =xOy y kx b =+my x=(14)A ,(4)B n -,PA PB ,15PAB S = l PB BQ QAB ABP (0)n n ≥1133⎛⎫⎪⎝⎭,y x =12(21),2y x =122⎛⎫-- ⎪⎝⎭,(11)--,(11),1y x=31y ax a =-+2()21y x n n =---+(0)ky k x=≠1y x =-(1)求反比例函数的表达式及A ,B 两点的坐标;(2)M 是x 轴上一点,N 是y 轴上一点,若以A ,B ,M ,N 为顶点的四边形是以为边的平行四边形,求点M 的坐标;(3)如图2,反比例函数的图象上有P ,Q 两点,点P 的横坐标为,点Q 的横坐标与点P 的横坐标互为相反数,连接,,,.若的面积是的面积的3倍,求m 的值.16.如图,直线AC 与双曲线交于A (m ,6),B (3,n )两点,与x 轴交于点C ,直线AD 与x 轴交于点D (-11,0),(1)请直接写出m ,n 的值;(2)若点E 在x 轴上,若点F 在y 轴上,求的最小值;(3)P 是直线AD 上一点,Q 是双曲线上一点,是否存在点P ,Q ,使得四边形ACQP 是正方形?若存在,求出点P ,Q 的坐标;若不存在,请说明理由.17.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)横坐标与纵坐标互换后得到的点叫这一点的“H 点”,如(2,-3)与(-3,2)是一对“H 点”.(1)点 和它的“H 点”均在直线 上,求k 的值;AB ky x=(2)m m >AP AQ BP BQ ABQ ABP ()60y k x=≠AF EF BE ++()m n ,y kx a =+(2)若直线 经过的A ,B 两点恰好是一对“H 点”,其中点A 还在反比例函数 的图象上,一条抛物线 也经过A ,B 两点,求该抛物线的解析式;(3)已知 ,B 为抛物线 上的一对“H 点”,且满足:, ,点P 为抛物线上一动点,若该抛物线上有且仅存在3个点P 满足△PAB 的面积为16,求 的值.18.已知:如图,一次函数y =-2x+10的图象与反比例函数y=的图象相交于A 、B 两点(A 在B 的右侧),点A 横坐标为4.(1)求反比例函数解析式及点B 的坐标;(2)观察图象,直接写出关于x 的不等式-2x+10->0的解集;(3)反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.19.如图,反比例函数与一次函数相交于点A (1,4)和点B (4,1),直线 的图象与y 轴和x 轴分别相交于点C 和点D ;(1)请直接写出当时自变量x 的取值范围;(2)将一次函数向下平移8个单位长度得到直线EF ,直线EF 与x 和y 轴分别交于点E 和点F ,抛物线过点A 、D 、E 三点,求该抛物线的函数解析式(也称函数表达式);3y kx =+2y x=2y x bx c =++()()A m n m n <,()20y ax bx c a =++≠2m n +=3mn =-a b c ++kxkx()110k y x x=>22y k x n =+2y 12y y ≥22y k x n =+2y ax bx c =++(3)在(2)抛物线的对称轴上是否存在一点P ,使得△PBF 是以BF 为斜边的直角三角形,若存在,请用尺规作图(圆规和无刻度直尺)画出点P 所在位置,保留作图痕迹,并直接写出点P 的坐标;若不存在,请说明理由.20.如图1,平面直角坐标系中,,反比例函数的图象分别交矩形的两边、于E 、F (E 、F 不与A 重合),沿着将矩形折叠使A 、D 重合.(1)当点E 为中点时,求点F 的坐标,并直接写出与对角线的关系;(2)如图2,连接.①的周长是否有最小值,若有,请求出最小值;若没有,请说明理由;②当平分时,直接写出k 的值.21.如图1,四边形为正方形,点A 在y 轴上,点B 在x 轴上,且,,反比例函数在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的关系式;(2)如图,将正方形沿x 轴向右平移m 个单位长度得到正方形A ′B ′C ′D ′,点A ′恰好落在反比例函数的图象上,求n 值.(3)在(2)的条件下,坐标系内是否存在点P ,使以点O ,A ′,B ′,P 为顶点的四边形为平行四边形,若存在,请直接写出点P的坐标,若不存在,请说明理由.xOy (43)A -,(0)ky k x=<ABOC AC AB EF ABOC AC EF BC CD CDE CD ACO ∠ABCD 4OA =2OB =()0ky k x=≠2ABCD22.如图,在平面直角坐标系中,A (8,0)、B (0,6)是矩形OACB 的两个顶点,双曲线y=(k≠0,x >0)经过AC 的中点D ,点E 是矩形OACB 与双曲线y =的另一个交点.(1)点D 的坐标为 ,点E 的坐标为 ;(2)动点P 在第一象限内,且满足S △PBO =S △ODE .①若点P 在这个反比例函数的图象上,求点P 的坐标;②若点Q 是平面内一点,使得以A 、C 、P 、Q 为顶点的四边形是菱形,请你直接写出满足条件的所有点Q 的坐标.23.如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)(1)求一次函数和反比例函数的解析式;(2)将一次函数向下平移个单位后与反比例函数的图像有且只有一个公共点,求的值;(3)为轴上一点,若的面积为,求点的坐标.24.如图,一次函数的图象与反比例函数(k 为常数且)的图象交于A ,B 两点,其中,直线与y 轴、x 轴分别交于C ,D 两点.kxkx561y k x b =+2k y x=()41A -,()4B m ,1k 2k b 1y k x b =+m 2k y x=m P y PAB 3P 4y x =+ky x=0k ≠()13A -,4y x =+(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使的值最小,并求满足条件的点P 的坐标;(3)在坐标平面中是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与相似?如果存在,请直接写出所有满足条件的点Q的坐标.PA PB COD答案解析部分1.【答案】(1)解:把点A (1,2)代入y =-x+m ,得-1+m =2,∴m =3,∴一次函数解析式为y =﹣x+3;把点A (1,2)代入y =,∴k =1×2=2,∴反比例函数解析式为y =;(2)解:联立方程组{y =−x +3y =2x , 解得或,∴B (2,1),设直线y =﹣x+3与y 轴的交点为C ,∴C (0,3),∴S △AOB =S △COB -S △COA =×3×2-×3×1=1.5.【解析】【分析】(1)利用待定系数法求出一次函数的解析式和反比例函数的解析式即可;(2)先求出点B 的坐标,再求出直线与y 轴的交点C 的坐标,再利用S △AOB =S △COB -S △COA ,根据三角形的面积公式进行计算即可.2.【答案】(1)解:设P 与V 之间的函数表达式为,当时,,所以,∴,∴P 与V 之间的函数表达式为;(2)解:当时,,∴,∴为确保气球不爆炸,气球的体积应不小于.【解析】【分析】(1)由题意可设,把V=0.8,P=120代入解析式计算可求得F 的值,则解析式可k x 2x12x y =⎧⎨=⎩21x y =⎧⎨=⎩1212F P V=0.8V =120P =1200.8F =96F =96P V =128P ≤96128V ≤0.75V ≥30.75m F P V=求解;(2)由题意可得关于V 的不等式,解这个不等式可求解.3.【答案】(1)3;4;1(2)解:0<x≤1或x≥3(3)解:作A 关于y 轴的对称点,连接,如图,∵,∴A 关于y 轴的对称点A ′(−1,3).设直线的解析式为,将A ′(−1,3),代入可得:∴,解得:.∴直线的解析式为,令,则,∴.【解析】【解答】(1)解:∵反比例函数与一次函数的图像在第一象限交于、两点,∴,,∴,,∴反比例函数和一次函数的表达式分别为:,;将点代入得;故答案为:3,4,1(2)解:由图像可得:满足的取值范围是或;A 'A B '()13A ,A B 'y ax c =+()31B ,331a c a c -+=⎧⎨+=⎩1252a c ⎧=-⎪⎪⎨⎪=⎪⎩A B '1522y x =-+0x =52y =502Q ⎛⎫ ⎪⎝⎭,()10k y k x=≠2y x b =-+()13A ,()3B n ,3k =31b =-+3k =4b =13y x =24y x =-+()3B n ,13y x=1n =12y y ≥01x <≤3x ≥【分析】(1)将点A 、B 的坐标代入求出k 、n 的值,再将点A 的坐标代入求出b 的值即可; (2)结合函数图象,利用函数值大的图象在上方的原则求解即可;(3)作A 关于y 轴的对称点,连接,利用待定系数法求出直线的解析式,再将代入解析式求出y 的值,可得点Q 的坐标。
人教版初中数学反比例函数解析含答案
![人教版初中数学反比例函数解析含答案](https://img.taocdn.com/s3/m/5ac6fccebe23482fb4da4cb7.png)
人教版初中数学反比例函数解析含答案一、选择题1.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32 【答案】B【解析】【分析】 首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1y x=得:y=1, ∴A(1,1),把x=2代入1y x =得:y=12, ∴B(2, 12), ∵AC//BD// y 轴, ∴C(1,K),D(2,k 2) ∴AC=k-1,BD=k 2-12, ∴S △OAC =12(k-1)×1,S △ABD =12 (k 2-12)×1, 又∵△OAC 与△ABD 的面积之和为32, ∴12(k-1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B.【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.2.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.3.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.4.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.5.如图,点A 、B 在函数k y x=(0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ∆和ABC ∆的面积分别为1和4,则k 的值为( )A .4B .2C 522D .6【答案】D【解析】 【分析】 设点M (a ,0),N (0,b ),然后可表示出点A 、B 、C 的坐标,根据CMN ∆的面积为1可求出ab =2,根据ABC ∆的面积为4列方程整理,可求出k .【详解】解:设点M (a ,0),N (0,b ),∵AM ⊥x 轴,且点A 在反比例函数k y x =的图象上, ∴点A 的坐标为(a ,k a ), ∵BN ⊥y 轴,同理可得:B (k b ,b ),则点C (a ,b ), ∵S △CMN =12NC•MC =12ab =1, ∴ab =2,∵AC =k a −b ,BC =k b−a , ∴S △ABC =12AC•BC =12(k a −b)•(k b −a)=4,即8k ab k ab a b--⋅=, ∴()2216k -=,解得:k =6或k =−2(舍去),故选:D .【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.6.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.7.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣2【答案】C【解析】 分析:根据题意可以求得点B 的坐标,从而可以求得k 的值.详解:∵四边形ABCD 是菱形,∴BA=BC ,AC ⊥BD ,∵∠ABC=60°,∴△ABC 是等边三角形,∵点A (1,1),∴OA=, ∴BO=,∵直线AC 的解析式为y=x ,∴直线BD 的解析式为y=-x ,∵OB=,∴点B 的坐标为(−,), ∵点B 在反比例函数y=的图象上, ∴,解得,k=-3,故选C .点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.8.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号. 【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C本题考查了反比例函数系数k的几何意义.9.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵10.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫-⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.11.函数y =1-k x 与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0B .k<1C .k>0D .k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围.【详解】 令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k <0,即k >1. 故选D .【点睛】 函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A【解析】 【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.13.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】反比例函数2y x=-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可.【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.14.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.15.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A.6 B.5 C.4 D.3【答案】A【解析】【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66 ABCOS bb=⨯= Y故选:A.【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.16.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C .D .【答案】D【解析】【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb >0,∴k ,b 同号,选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.17.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ), 在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.18.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD为平行四边形∴//AB x轴,CD=AB∴点A和点B的纵坐标相同由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a)∴BH=a,CD=AB=2a-(3a-)=5a∴ABCDSY=BH·CD=5故选D.【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.19.如图,Rt ABO∆中,90AOB∠=︒,3AO BO=,点B在反比例函数2yx=的图象上,OA交反比例函数()0ky kx=≠的图象于点C,且2OC CA=,则k的值为()A.2-B.4-C.6-D.8-【答案】D【解析】【分析】过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得21()9BOFOADS OBS OA==VV,24()9COEAODS OCS OA==VV,根据反比例函数比例系数的几何意义求得212BOFS==V,从而求得4COES=V,从而求得k的值.【详解】解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴∴CE∥AD,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA =∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.20.如图,Rt △AOB 中,∠AOB=90°,AO=3BO ,OB 在x 轴上,将Rt △AOB 绕点O 顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=k x 的图象于点C ,且OC=2CA',则k 的值为( )A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.。
人教版九年级数学下册反比例函数知识点归纳及练习(含答案)
![人教版九年级数学下册反比例函数知识点归纳及练习(含答案)](https://img.taocdn.com/s3/m/2e8f0346482fb4daa48d4b3e.png)
人教版九年级数学下册反比例函数知识点归纳及练习(含答案)-CAL-FENGHAI.-(YICAI)-Company One1反比例函数26.1知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①x ky =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.2知识点2用待定系数法求反比例函数的解析式 由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
微专题4 反比例函数的综合应用++课件+2025年九年级中考数学总复习人教版(山东)
![微专题4 反比例函数的综合应用++课件+2025年九年级中考数学总复习人教版(山东)](https://img.taocdn.com/s3/m/5b07114c905f804d2b160b4e767f5acfa0c7837b.png)
①当AC,BO为对角线时,AC,BO的中点重合,∴
,
+4=0+0
=
解得
,
= −
经检验,t=4,k=-16符合题意,
此时点C的坐标为(4,-4);
25
②当CB,AO为对角线时,CB,AO的中点重合,
+=+
∴
,
+0=4+0
= −
解得
,
= −
经检验,t=-4,k=-16符合题意,
所以S△AOB=S△AOM+S△BOM= ×2×3+ ×2×1=4.
因为正比例函数图象与反比例函数图象都是中心对称图形,且坐标原点是对称中
心,
所以点B和点C关于点O成中心对称,所以BO=CO,所以S△ABC=2S△AOB=8.
17
类型2
求特殊三角形或特殊四边形
【思维切入】
1.动点三角形的形状问题:
∵点A(m,4)在y=2x+2上,
∴2m+2=4,∴m=1,
∴点A的坐标为(1,4),
∵点A(1,4)在y= 上,∴4= ,∴k2=4,∴y= .
8
(2)如图,连接DE,过点B作BF垂直于y轴,垂足为F,
联立
= +
=
= 1 = −2
,解得
,
,
= 4 = −2
3.动点四边形的问题转化为动点三角形问题:
动点菱形问题转化为动点等腰三角形问题;
动点矩形问题转化为动点直角三角形问题.
人教版九年级数学下册反比例函数知识点归纳及练习含答案
![人教版九年级数学下册反比例函数知识点归纳及练习含答案](https://img.taocdn.com/s3/m/675a26fc4128915f804d2b160b4e767f5acf80ce.png)
人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。
它是函数的一种特殊形式,具有一些独特的性质和应用。
下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。
一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。
二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。
2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。
当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。
3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。
b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。
c) 当x等于1时,y等于k,这是反比例函数的特殊点。
d) 反比例函数可以通过求导得到,导数的值为-ky^2。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。
2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。
3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。
四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。
答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。
2024年中考数学《反比例函数及其应用》真题含解析
![2024年中考数学《反比例函数及其应用》真题含解析](https://img.taocdn.com/s3/m/c1c096b7541810a6f524ccbff121dd36a22dc47d.png)
专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。
新人教版初中数学——反比例函数-知识点归纳及典型题解析
![新人教版初中数学——反比例函数-知识点归纳及典型题解析](https://img.taocdn.com/s3/m/42d8a9777f21af45b307e87101f69e314332faee.png)
新人教版初中数学——反比例函数知识点归纳及典型题解析一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式.2.反比例函数的一般形式的结构特征:①k≠0;②以分式形式呈现;③在分母中x的指数为1.典例1 下列函数中,y与x之间是反比例函数关系的是A.xy2B.3x+2y=0C.y=kxD.y=21x【答案】A【解析】A、xy=2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),不属于反比例函数,故此选项错误;D 、y =21x +,是y 与x +1成反比例,故此选项错误. 故选A .1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一平面直角坐标系中,函数y =﹣x +k 与y =kx(k 为常数,且k ≠0)的图象大致是 A . B .C .D .【答案】C【解析】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项D 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =3x D .y =–1x4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x = B .6y x =-C .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A.y=2xB.y=-2xC.y=12xD.y=-12x【答案】B【解析】设反比例函数表达式为y=kx,把M(2-,1)代入y=kx得,k=(-2)×1=-2,∴2yx=-,故选B.典例7 如图,C1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为__________(x>0).【答案】y=–2 x【解析】∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,–1),∴C2对应的函数的表达式为y=–2x,故答案为y=–2x.5.已知反比例函数y=-6x,下列各点中,在其图象上的有A.(-2,-3)B.(2,3)C.(2,-3)D.(1,6)6.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为A.y=12xB.y=-12xC.y=112xD.y=-112x7.在平面直角坐标系中,点P(2,a)在反比例函数y=2x的图象上,把点P向上平移2个单位,再向右平移3个单位得到点Q,则经过点Q的反比例函数的表达式为__________.考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=kx(k≠0)的图象经过A、D两点,则k值为__________.163【解析】如图,过点D作DE⊥x轴于点E,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k , 由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°, ∴DE =12OD =﹣14k ,OE =OD ·cos30°=32×(﹣2k )=﹣34k , 即D (﹣34k ,﹣14k ),∵反比例函数y =kx(k ≠0)的图象经过D 点, ∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣1633,故答案为:﹣1633. 典例9 如图,已知双曲线ky x经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若 △OBC 的面积为9,则k =__________.【答案】6【解析】如图,过点D 作x 轴的垂线交x 轴于点E ,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设点D的横坐标为x,纵坐标就为kx,∵D为OB的中点.∴EA=x,AB=2kx,∴四边形DEAB的面积可表示为:12(kx+2kx)x=9;k=6.故答案为:6.【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k|,结合函数图象所在的象限可以确定k的值,反过来,根据k的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k的几何意义,以简化运算.8.如图,A、B两点在双曲线4yx=的图象上,分别经过A、B两点向轴作垂线段,已知1S=阴影,则12S S+=A.8 B.6 C.5 D.49.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y=x的图象是过原点经过一、三象限,1yx=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A.典例11 已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是A.x<-1或0<x<3 B.-1<x<0或x>3 C.-1<x<0 D.x>3【答案】B【解析】根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(-1,3),(3,-1),∴当y1<y2时,-1<x<0或x>3,故选B.【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用.典例12 如图,已知直线y=–13x+10与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为A.910B.2710C 910D2710【答案】B【解析】如图,过A 作AE ⊥OD 于E ,∵直线解析式为y =–13x +10,∴C (0,10),D (310,0), ∴OC =10,OD =310,∴Rt △COD 中,CD =22 O C OD +=10, ∵OA ⊥AB ,∴12CO ×DO =12CD ×AO , ∴AO =3,∴AD =22OD OA -=9, ∵12OD ×AE =12AO ×AD ,∴AE =91010, ∴Rt △AOE 中,OE =22AO AE -=229103()10-=31010,∴A (31010,91010), ∴代入双曲线y =k x ,可得k =31010×91010=2710,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是__________;(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解析】(1)当0≤x ≤40时,设y 与x 之间的函数关系式为y =ax +b , (10,35)和(30,65)在y =ax +b 的图象上, 把(10,35)和(30,65)代入y =ax +b ,得10353065a b a b +=+=⎧⎨⎩,得 1.520a b ==⎧⎨⎩, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20, 故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y =kx的图象上, ∴80=40k,得k =3200, 即反比例函数y =3200x ,当y =20时,20=3200x,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2的值为A .2B .3C .4D .-44.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系是 A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1D .y 1<y 2<y 35.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <26.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是 A . B .C.D.7.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B 是MD的中点.其中正确结论的个数是A.0个B.1个C.2个D.3个8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6x的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是A.-25B.-121C.-15D.-1249.已知(),3A m、()2,B n-在同一个反比例函数图像上,则mn=__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是__________.13.如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.14.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-<的解集(请直接写出答案).15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)分别求出线段AB 和双曲线CD 的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.已知点A (1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 32.若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1 C.y1>y3>y2D.y2>y3>y13.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是A.B.C.D.4.如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q5.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .66.在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 7.如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =k x(x >0)的图象恰好经过点C ,则k 的值为__________.8.如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.9.已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C . 2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意;变式拓展D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.4.【答案】B【解析】由图知,y y y k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1,故选B.5.【答案】C【解析】∵反比例函数y=-6x中,k=-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C选项符合,故选C.6.【答案】B【解析】设A点坐标为(x,y).∵A点到x轴的距离为3,∴|y|=3,y=±3.∵A点到原点的距离为5,∴x2+y2=52,解得x=±4,∵点A在第二象限,∴x=-4,y=3,∴点A的坐标为(-4,3),设反比例函数的解析式为y=kx,∴k=-4×3=-12,∴反比例函数的解析式为y=12x,故选B.7.【答案】y=15 x【解析】∵点P(2,a)在反比例函数y=2x的图象上,∴代入得:a=22=1,即P点的坐标为(2,1),∵把点P向上平移2个单位,再向右平移3个单位得到点Q,∴Q的坐标是(5,3),设经过点Q的反比例函数的解析式是y=cx,把Q点的坐标代入得:c=15,即y=15x,故答案为:y=15x.8.【答案】B【解析】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6,故选B.9.【答案】D【解析】在Rt △BCD 中, ∵12×CD ×BD =3,∴12×CD ×3=3,∴CD =2, ∵C (2,0),∴OC =2,∴OD =4,∴B (4,3), ∵点B 是反比例函数y =kx(x >0)图象上的点,∴k =12, ∵AC ⊥x 轴,∴S △AOC =2k=6,故选D . 10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =2k,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×2k =k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数ky x=(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =mx图象上, ∴m =–8.∴反比例函数的解析式为y =–8x. ∵点A (–4,n )在y =–8x图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴4224k b k b -+=+=-⎧⎨⎩,解得12k b =-=-⎧⎨⎩.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,当x=0时,y=–2,∴点C(0,–2).∴OC=2,∴S△AOB=S△ACO+S△BCO=12×2×4+12×2×2=6.13.【解析】(1)当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以15560bk b=+=⎧⎨⎩,解得:159bk==⎧⎨⎩,所以y=9x+15,当x≥15时,为反比例函数,设函数关系式为:y=mx,由于图象过点(5,60),所以m=300.则y=300x;(2)当0≤x<5时,y=9x+15=30,得x=53,因为y随x的增大而增大,所以x>53,当x≥5时,y=300x=30,得x=10,因为y随x的增大而减小,所以x<10,10–53=253.答:可加工253min.1.【答案】C考点冲关【解析】由反比例函数的定义知,13y x=是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =8k x-的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2,∴k 1–k 2=4,故选C . 4.【答案】B【解析】∵点(–5,y 1)、(–3,y 2)、(2,y 3)都在反比例函数y =3x上, ∴y 1=–35,y 2=–1,y 3=32. ∵–35<–1<32,∴y 2<y 1<y 3,故选B .5.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点, ∴不等式y 1>y 2的解集是-3<x <0或x >2, 故选C . 6.【答案】C【解析】A .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项不正确; B .由一次函数图象过二、四象限,得a <0,交y 轴正半轴,则b >0,满足ab <0, ∴a −b <0,∴反比例函数y =a bx-的图象过二、四象限,所以此选项不正确; C .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项正确; D .由一次函数图象过二、四象限,得a <0,交y 轴负半轴,则b <0,满足ab >0,与已知相矛盾,所以此选项不正确,故选C . 7.【答案】D【解析】根据反比例函数的图象与系数k 的意义,设A (x 1,y 1),B (x 2,y 2),则有x 1y 1=x 2y 2=2可知S △ODB =S △OCA =1,故①正确;同样可知四边形OCMD 的面积为a ,因此四边形OAMB 的面积为a –2,故不会发生变化,故②正确;当点A 是MC 的中点时,y 2=2y 1,代入x 1y 2=a 中,得2x 1y 1=a ,a =4,由题得1242x x =,整理得x 1=2x 2,因此B 为MD 的中点,故③正确,故选D . 8.【答案】B【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =6x 的图象上,∴D (6,1),E (32,4),∴BE =6-32=92,BD =4-1=3,∴ED =22BE BD +=3213,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即3213BF =3×92,∴BF =913,∴BB ′=1813,设EG =x ,则BG =92-x ,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴(1813)2-(92-x )2=(92)2-x 2,∴x =4526,∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,-213),∴k =-121,故选B .9.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠,将(),3A m 、()2,B n -分别代入,得 3k m =,2k n =-,∴2332k m k n ==--, 故答案为:23-. 10.【答案】5【解析】如图,过点A 作AF y ⊥轴,垂足于点F ;过点B 作BE y ⊥轴,垂足为点E .∵点P 是AB 中点,∴PA PB =.易得△APF ≌△BPE , ∴APFBPESS=,∴ABCDACOFEODBSSS=+23=-+5=,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (2k ,2),∵E 是CD 边中点,∴E (2k-2,1),∴2k-2=k ,解得k =-4,故答案为:-4. 12.【答案】372【解析】如图,过点B 作直线AC 的垂线交直线AC 于点F ,∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC =2BD ,∴OD =2O C . ∵CD =k , ∴点A 的坐标为(3k ,3),点B 的坐标为(–23k ,–32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92, ∴CD =k2==13.【解析】(1)∵已知反比例函数ky x=经过点A (1,-k +4), ∴41kk -+=,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2), ∴2=1+b ,∴b =1,∴反比例函数的表达式为2y x=, 一次函数的表达式为y =x +1.(2)由12y x y x ⎧=+⎪⎨=⎪⎩,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0, ∴x =-2或x =1. ∴y =-1或y =2. ∴21x y ⎧=-⎨=-⎩或12x y ⎧=⎨=⎩.∵点B 在第三象限, ∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)∵B (2,-4)在y =mx上, ∴m =-8.∴反比例函数的解析式为y =-8x. ∵点A (-4,n )在y =-8x上, ∴n =2. ∴A (-4,2).∵y =kx +b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y =-x -2. (2)∵C 是直线AB 与x 轴的交点, ∴当y =0时,x =-2. ∴点C (-2,0).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6. (3)不等式0mkx b x+-<的解集为:-4<x <0或x >2. 15.【解析】(1)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2, ∴AB 解析式为:y 1=2x +30(0≤x ≤10). 设C 、D 所在双曲线的解析式为22k y x=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x ≥44); (2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y=40代入y2=2200x得:x=55.55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.1.【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.2.【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.3.【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.4.【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点,故选A.5.【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),直通中考。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
![人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)](https://img.taocdn.com/s3/m/6eebb8a19a89680203d8ce2f0066f5335a8167e8.png)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 反比例函数的应用
第5课时
【知识要点】
1.求两函数图象的交点,只要将两函数联立为方程组就可以得到交点坐标.
2.要从图象上获取信息,体会数形结合
课内同步精练
●A 组 基础练习
1.在同一坐标系中,函数,k y y kx x
==的大致图象是( )
2.面积为2的△ABC ,一边长为x ,这边上的高为y , 则y 关于x 的变化规律用图象表示
大致是( )
3.反比例函数1y x
=-
,当x>0时,y 0,且y 随x 的增大而 . 4.若点A ( 7 , y l ),B (5, y 2)在函数y=2x
的图象上,则y 1与y 2的大小关系是 . 5.反比例函数k y x =在第二象限内的图象如图,P 为该图象上任意点,PB 垂直x 轴于点B,PA 垂直y 轴于点A ,若矩形AOPB 的面积为4,求反比例函数的解析式.
●B 组 提高训练
6. 有200个零件需要一天内加工完毕,设当工作效率为每人每天加工p 个时,需工人q 个,
( l )求,q 关于p 的函数解析式.
(2)若每人每天的工作效率提高20%,则工人人数可以减少几分之儿?
课外拓展练习
●A 组 基础练习
1.已知反比例函数k y x
=的图象经过点(2, 3), 则当y 的值是( )
A.3
B.-3
C.-2.下列函数中,y 随x 增大而增大的是( ) A.4(0)y x x =
< B.y=-x+3 C.1(0)y x x =-> D.1(0)y x x
=> 3.一次函数,y=2x-1与反比例函数y=4x 的图象交点个数为 个. 4.写出一个y 关于x 的反比例函数,使y 随x 的增大而减小: .
5.如图,A 是反比例函数14y x
=图象上的一点,过A 作x 轴的垂线,垂足为点B ,当点A 在其图象上移动时,△ABO 的面积将会发生怎样的变化?对于其他反比例函数,是否也具有相同的现象?
●B 组 提高训练
6.两个反比例函数 y=3
x ,y=6x
在第一象限内的图象如图所示,点P 1, P 2, P 3, …, P 2005在反比例函数y=6x
图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2005, 纵坐标分别是1, 3,
5,…,共2005个连续奇数,过点P l ,P 2,P 3, …, P 2005分别
作y 轴的平行线,与y=3x
的图象交点依次是Q l (x 1, y 1) , Q 2(x 2, y 2) , Q 3 (x 3, y 3)…Q 2005(x 2005, y 2005), 则y 2005= .
7.如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(0,0)k y k x x =>>的图象上,点P(m,n) 是函数(0,0)k y k x x
=>>的图象上任意一点,过点 P 分别作x 轴,y 轴的垂线,垂足分别为E, F ,若设矩形OEPF 和正方形OABC 不重合部分的面积为S.
(1)求B 点坐标和k 的值;
(2)求92
S =时点P 的坐标; (3)写出S 关于m 的函数关系式.
答案:。