大学物理教程第二版-第1章答案

合集下载

大学物理(第二版)第一章习题答案

大学物理(第二版)第一章习题答案

第一章习题1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北走了18m 。

求:⑴ 位移和平均速度 ⑵ 路程和平均速率 解:由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。

⑴ 位移:OC30OA m = ,10AB m =,18BC m =由于是正西北方向,所以45ABD ADB ∠=∠=︒BD =(()(()222222cos 4518301021830102OC CD OD OD CD =+-︒=-+--⨯-⨯-⨯1324305.92=-≈ 17.5OC m ≈平均速度的大小为:()17.50.35m 50r v t ∆===∆ ⑵ 路程应为:58m s OA AB BC =++=平均速率为1.16m s 1.2有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。

解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m =所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3质点作直线运动,其运动方程为2126x t t =-,采用国际单位制,求:⑴ 4t s =时,质点的位置,速度和加速度⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置⑷ 作位移,速度以及加速度随着时间变化的曲线图。

解:⑴ 由运动方程2126x t t =-,可得速度,加速度的表达式分别为1212dx v t dt ==- 12dv a dt==- 所以当4t s =时,质点的位置,速度和加速度分别为48m x =-;36m s v =-;212m a =-⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v =⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4质点沿直线运动,速度()3222m v t t =++,如果当2s t =时,4m x =,求3st =时质点的位置,速度和加速度。

大学物理二习题答案与详解第01章 质点运动学习题详解.

大学物理二习题答案与详解第01章 质点运动学习题详解.

习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C[ ]错误!(A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。

2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。

则前三秒内它的 [ ] (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。

答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。

即2t =时x 取极值而返回。

所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+,R 、ω为正常数。

从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ; (B )2R i; (C ) -2j ; (D )0。

(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。

答案:B ;B 。

解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=; (2)∆t 内质点沿圆周运动了半周,故所走路程为πR 。

或者:,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ====⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ ](A )大小为/2v ,方向与B 端运动方向相同;(B)大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。

大学物理学第二版上册课后答案

大学物理学第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理教程第二版-第1章答案

大学物理教程第二版-第1章答案

大学物理教程第二版-第1章答案1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ?+?=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=?-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和txd d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知,应有=tt a 0d d 0vv v得 03314v v +-=t t (1)由=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分.解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有=-t t B A 0d d d 0v vvvv得石子速度 )e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00??--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr=v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t和a n ,前者只反映质点在切线方向速度大小的变化率,即tt te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ12-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-?-=+=tyt x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=?=+==v v v n n t n a a e e a 222s m 79.1-?=-=(4) t =1.0s质点的速度大小为122s m 47.4-?=+=y x v v v则m 17.112==na ρv1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tω==.在t =2 s时,法向加速度和切向加速度的数值分别为22s2s m 30.2-=?==ωr a t n2s2s m 80.4d d -=?==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位置为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s。

大学物理实验教程中科大出版第2版第一章课后习题

大学物理实验教程中科大出版第2版第一章课后习题

大学物理实验教程中科大出版第2版第一章课后习题1、继共享单车之后,共享汽车已经悄然走进我们的生活。

下列关于汽车的一些设计,目的是为了减小摩擦的是()[单选题]A.车轮轴承处加润滑油(正确答案)B.汽车轮胎上制有花纹C.驾驶位置前面设有安全气囊D.方向盘上覆有防滑材料2、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开3、图62所示的电路中,电阻阻值R1>R2。

开关S闭合后,电阻R1、R2两端的电压分别为U1、U2,通过两个电阻的电流分别为I1、I2。

下列判断正确的是()A.U1B.U1>U2(正确答案)C.I1 < I2D.I1 > I24、35.已知甲液体的密度ρ甲=5g/cm3,乙液体的密度ρ乙=2g/cm3,现在取一定量的甲乙液体混合,混合液体的密度为3g/cm3,液体混合前后总体积保持不变,则所取甲乙体积比V甲:V乙=()[单选题] *A.5:2B.2:5C.1:2(正确答案)D.2:15、85.在“用托盘天平称物体的质量”的实验中,下列哪项操作是错误的()[单选题] * A.使用天平时,应将天平放在水平工作台面上B.天平调平后在称量过程发现横梁不平衡,此时可以通过调节平衡螺母使横梁平衡(正确答案)C.称量时左盘应放置待称量的物体,右盘放置砝码D.观察到指针指在分度盘的中线处,确定天平已平衡6、17.影视剧中,为了防止演员受伤,砸向演员的道具石头一般是用泡沫塑料制成的。

将小石块和道具石头分别放在调节好的天平左右盘,横梁静止后的情景如图所示。

下列说法正确的是()[单选题] *A.道具石头的质量比小石块的质量大B.道具石头的密度比小石块的密度大C.质量相同时,道具石头的体积比小石块的体积小D.体积相同时,道具石头的质量比小石块的质量小(正确答案)7、67.关于粒子和宇宙,下列认识中正确的是()[单选题] *A.光年是时间单位,宇宙是一个有层次的天体结构B.电子的尺度比原子的尺度大;原子核带负电,电子带正电C.水和酒精混合后总体积变小,说明分子间有引力D.汤姆生发现了电子,卢瑟福建立了原子核式结构模型(正确答案)8、错答案解析:应要先刹后轮,但不能抱死,否则会失控。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ?和r ?有区别吗?v ?和v ?有区别吗?0dv dt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+ dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ?===? t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-?=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ?---====-? (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。

大学物理课后习题册答案 第二版王建邦主编

大学物理课后习题册答案  第二版王建邦主编

参考答案 第一章1-1 已知质点运动学方程分量式为2x t =262y t =- (1)求轨道方程,并画出轨迹图;(2)求1t =到2t =之间的∆r ,r ∆和v ;(本题中x ,y的单位是m ,t 的单位是s ,v 的单位为1s m -⋅。

)[答案] (1)262x y =-,(2)26-i j ,0,26-i j .(1)由质点在水平方向、竖直方向的位置-时间函数关系:2x t=262y t =-消去t ,得轨道方程为262x y =-轨迹为抛物线,如题1-1图所示。

(2)将质点的位矢分量式:2x t =262y t =-代入位矢()()()t x t y t ==+r r i j ,可得质点的位置矢量22(62)t t =+-r i j 。

代入时间参量t ,得质点在某一时刻的位置r 。

由质点位移和平均速度的定义,可求得21∆=-r r r 21r r r ∆=- t∆=∆r v1-2 如图1-2所示,一足球运动员在正对球门前25.0m 处以120.0m s -⋅的初速/y率罚任意球,已知球门高为3.44m 。

若要在垂直于球门竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球(足球可视为质点)?[答案] 171.1169.92θ≥≥,127.9218.89θ≥≥. 以踢球点为坐标原点取平面坐标系xOy 。

按高中物理,设斜抛小球初速度0v ,斜抛仰角0θ,写出小球水平方向、竖直方向的位置-时间函数关系:00cos x v t θ= (1)2001sin 2y v t gt θ=- (2)消去t 得足球的轨迹方程 202200tan 2cos gy x x v θθ=-依题意以25.0x m =,120.0v m s -=⋅及3.440m y ≥≥代入后,可解得 171.1169.92θ≥≥ 127.9218.89θ≥≥。

1-3 一质点在xy 平面内运动,在某一时刻它的位置矢量(45)m =-+r i j ,经5s t ∆=后,其位移(68)m ∆=-r i j 。

物理学教程(第二版)第1~5章答案

物理学教程(第二版)第1~5章答案

第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ (C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程R m θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B). *2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin(1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m·s-2 上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m·s-2 上升时,得绳张力的值为F T =3.24 ×103 N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的. 解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来. 2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2 =2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得()m m g μm s +'''=22v 2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?题 2-10 图分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2) 且有()Rh R θ-=cos (3) 由上述各式可解得钢球距碗底的高度为 2ωg R h -=可见,h 随ω的变化而变化.2 -11 在如图(a )所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg 和2 kg 的物体A 和B ,现以50 N 的恒力F 向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A 和B 的加速度各为多少?题 2-11 图分析 在上提物体过程中,由于滑轮可以转动,所以A 、B 两物体对地加速度并不相同,故应将A 、B 和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有T 2F F =.解 隔离后,各物体受力如图(b )所示,有滑轮02T =-F F AA A A T a m g m F =- BB B B T a m g m F =- 联立三式,得2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅ 讨论 如由式a m m g m m F )()(B A B A +=+-求解,所得a 是A 、B 两物体构成的质点系的质心加速度,并不是A 、B 两物体的加速度.上式叫质心运动定理.2 -12 一质量为50 g 的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后物体作上下振动,若以物体静平衡位置为原点,向下为y 轴正向.测得其运动规律按余弦形式即)2/5cos(20.0π+=t y ,式中t 以s 计,y 以m 计,试求:(1)作用于该物体上的合外力的大小;(2)证明作用在物体上的合外力大小与物体离开平衡位置的y 距离成正比.分析 本题可直接用22d /d t y m ma F ==求解,y 为物体的运动方程,F 即为作用于物体上的合外力(实为重力与弹簧力之和)的表达式,本题显示了物体作简谐运动时的动力学特征.解 (1)由分析知F )(2/5cos 25.0d /d 22π+-===t t y ma (N )该式表示作用于物体上的合外力随时间t 按余弦作用周期性变化,F >0表示合力外力向下,F <0表示合外力向上.(2) F y t t 25.1)]2/5(cos 20.0[25.1)2/5cos(25.0-=+-=+-=ππ.由上式知,合外力F 的大小与物体离开平衡位置距离y 的大小成正比.“-”号表示与位移的方向相反.2 -13 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N, t的单位的s.在t =0时,质点位于x =5.0 m 处,其速度v 0=6.0 m·1s -.求质点在任意时刻的速度和位置.分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tm t d d 40120v =+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1 ,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0v v v v =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=t xx t t t x 020d 0.60.40.6d x =5.0+6.0t+2.0t 2 +2.0t 32 -14 轻型飞机连同驾驶员总质量为1.0 ×103 kg .飞机以55.0 m·s-1 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102 N·s-1 ,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αt m ma F -===d d v ⎰⎰-=t t m t α0d d 0v v v 得 202t mα-=v v 因此,飞机着陆10s后的速率为v =30 m·s-1 又 ⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -15 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h .把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为b v 2 ,其中b 为一常量.若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v 与y 的函数关系;(2) 如b /m =0.40m -1 ,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0 的1/10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)题 2-15 图分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力f F 的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -f F -F =ma由题意P =F 、f F =b v 2 ,而a =d v /d t =v (d v /d y ),代入上式后得-b v 2= m v (d v /d y )考虑到初始条件y 0 =0 时, gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫ ⎝⎛-v v v v 0d d 0ty b m m by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1 ,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v v b m y 2 -16 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.题 2-16 图分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v /d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d v v v v 得αrg cos 2=v则小球在点C 的角速度为r αg r ω/cos 2==v 由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N N cos 3-=-=' 负号表示F ′N 与e n 反向.2 -17 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少2/0v 时,物体所经历的时间及经过的路程.题 2-17 图分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有Rm ma F n N 2v == tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得 tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v 020d d μR t tt μR R 00v v v +=(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μR s =2 -18 一物体自地球表面以速率v 0 竖直上抛.假定空气对物体阻力的值为F r =km v 2 ,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)题 2-18 图分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v v v k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v(2) 物体下落过程中,有yvmkm mg d d 2v v =+- 对上式积分,有⎰⎰--=02d d v v v v k g y y则2/1201-⎪⎪⎭⎫ ⎝⎛+=g k v v v2 -19 质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是v m .试计算从静止加速到v m /2所需的时间以及所走过的路程.分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =k v 2 ,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF mt v v v v 2101220d 1d则 3ln 2Fm t mv =又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则Fm F m x m m 22144.034ln 2v v ≈=*2 -20 在卡车车厢底板上放一木箱,该木箱距车箱前沿挡板的距离L =2.0 m,已知制动时卡车的加速度a=7.0 m·s-2 ,设制动一开始木箱就开始滑动.求该木箱撞上挡板时相对卡车的速率为多大?设木箱与底板间滑动摩擦因数μ=0.50.分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F 0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a ′为木箱相对车厢的加速度. 解 由牛顿第二定律和相关运动学规律有F 0 -f F =ma -μmg =ma′ (1) v ′ 2 =2a′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()L g a μ-='2v =1s m 9.2-⋅=第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( ) (A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( ) (A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C). 2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( ) (A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rmθmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( ) (A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin(1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则()αμααg lt cos sin cos 2-=(2)。

《大学物理学》第二版上册习题解答

《大学物理学》第二版上册习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x xt =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t tdt ==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆(3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。

大学物理课后习题答案,大学物理第二版课后习题答案

大学物理课后习题答案,大学物理第二版课后习题答案
t?0时,v0x?0,v0y?4,x0?3m,y0?0
解:vx?vx0?
?adt??3sint
z
t
vy?vy0??aydt?4?4cost0?4cost
t
t
则x?x0?
?
t
?3sintdt?3?3cost0?3cost
t
同理y?4sint
x2y2
所以有2?2?1质点的轨迹为一椭圆。
34
4、一质点沿着半径为R的圆周运动,在t=0时经过P点,此后的速率按
解:dvdt?0,即?0质点做匀速直线运动(包括静止)
?
?
dvdt?0,即at?0质点做匀速率运动(包括上一种及匀速圆周运动)
4、物体在某一时刻开始运动,在?t时间后,经任一路径回到出发点,此时的速度大小与开始时相同,但方向不同,试问:在?t时间内,平均速度是否为零?平均速率是否为零?平均加速度是否为零?
cos??cos??
?v2(sin??
L
cos?)H
车速至少如上时,货物刚好不会被雨水淋着。
6、如图1.5所示,在倾角为??30?的斜坡上,以初速度v0发射炮弹,设v0与斜坡的夹角为
??
??60?。求炮弹落地点离发射点的距离L。
解:
图1.5
12t2
12t
2
由上图可知?0t?方法一:由右图
12t2
?x?v0cos300t??y?vsin300t?1gt2
Bt2
?
?
雨滴下落的速度v2的方向与铅直方向夹角为θ,偏向于汽
车前进的方向,今在汽车后放一长方形物体(长为L)。问,车速v1为躲大时,此物体刚好不会被雨水淋着?解:
雨相对于车的速度2?2?1由右图可得:所以

《大学物理学》第二版上册课后答案之欧阳育创编

《大学物理学》第二版上册课后答案之欧阳育创编

大学物理学习题答案习题一答案习题一1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3)s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。

大学物理习题册及解答_第二版_第一章_质点的运动

大学物理习题册及解答_第二版_第一章_质点的运动

( A ) 3i 3 j (C) - 3i 3 j
(B) - 3i 3 j ( D) 3i 3 j
二、填空题
1.一质点沿x轴运动,其加速度a与位置坐标的关系为 a 3 6 x 2 (SI), 如果质点在原点处的速度为零,试求其在任意位置的速度 为 .
d d dx d a dt dx dt dx
8. 半径为R的圆盘在固定支撑面上向右滚动,圆盘质心C的运动速 度为 ,圆盘绕质心转动的角速度为 ,如图所示.则圆盘边 缘上A点的线速度为 ;B点的线速度为 ;O点的 线速度为 . A

分析:刚体上某质点的运动可看为随质心的 平动和绕质心转动的合成
B

C O

A C R
B R
1
消去t得轨道方程为 y M
o
o dr (2) A sinωt i A cosωt j d t d a A cosωt i A sinωt j r dt
x y 2 1 2 A1 A2
2
(椭圆)
1 2

x
2
2
2
1
2
上式表明:加速度恒指向椭圆中心。
质点在通过图中M点时,其速率是增大还是减小?
x A cos t y A sin t
1 2
at
M
y
Q
a
o
V an
P
o
x
(3)当t=0时,x=A1,y=0,质点位于图中P点
质点位于
t 2
时, x A1 cos

y A sin
2

解:(1)从运动方程中消去时间就得到轨道方程

大学物理第二版上册课后习题答案

大学物理第二版上册课后习题答案

大学物理第二版上册课后习题答案【篇一:物理学教程第二版马文蔚上册课后答案完整版】 (a) |v|= v,||=(b) |v|≠v,||≠ (c) |v|= v,||≠(d) |v|≠v,||=,即||≠.但由于|dr|=ds,故drdt?dsdt,即||=.由此可见,应选(c).1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 (1)drdt; (2)drdt; (3)dsdt; (4)?dx??dy???????dt??dt?22.下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确 (c) 只有(2)(3)正确 (d) 只有(3)(4)正确分析与解drdt表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常drdt用符号vr表示,这是速度矢量在位矢方向上的一个分量;dsdt表示速度矢量;在自然坐标系中?dx??dy???????dt??dt?22速度大小可用公式v?选(d).计算,在直角坐标系中则可由公式v?求解.故1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的分析与解dvdt表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方drdt向的一个分量,起改变速度大小的作用;dsdt在极坐标系中表示径向速率vr(如题1 -2 所述);dvdt在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d). 1 -4 一个质点在做圆周运动时,则有( ) (a) 切向加速度一定改变,法向加速度也改变 (b) 切向加速度可能不变,法向加速度一定改变 (c) 切向加速度可能不变,法向加速度不变 (d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).231 -5 已知质点沿x 轴作直线运动,其运动方程为x?2?6t?2t,式中x 的单位为m,t 的单位为 s.求:(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t=4 s时质点的速度和加速度.的大小和路程就不同了.为此,需根据dxdt?0来确定其运动方向改变的时刻tp ,求出0~tp 和dxdt质点速度和加速度可用和dxdt22两式计算.题 1-5 图解 (1) 质点在4.0 s内位移的大小dxdt(2) 由得知质点的换向时刻为?0tp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dxdt2t?4.0s??48m?s?1a?dxdt2t?4.0s2??36m.s?21 -6 已知质点的运动方程为r?2ti?(2?t)j,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;y?2?14x2这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得22?5.66m x2?y2?22?r2?r0?x0?y0?2.47m22题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?vy?dxdtdydt??10?60t ?15?40tv0?v0x?v0y22?18.0m?s?1v0yv0x??32(2) 加速度的分量式为ax?dvxdt?60m?s?2, ay?dvydt?2则加速度的大小为a?ax?ay22?72.1m?s?2ayax??23分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为y1?v0t?12at 12gt22y2?h?v0t?当螺丝落至底面时,有y1 =y2 ,即v0t?12at2?h?v0t?12gt2t?2hg?a?0.705s(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有0?h?12(g?a)t2t?2hg?a?0.705s(2) 由于升降机在t 时间内上升的高度为h??v0t?12at2则 d?h?h??0.716m【篇二:物理学教程(第二版)上册课后习题答案详解】s=txt>第一章质点运动学(a) |v|= v,||=(b) |v|≠v,||≠ (c) |v|= v,||≠(d) |v|≠v,||=但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1 -2dr(1)dt一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即; (2)drdt;ds(3)dt; (4)?dx??dy???????dt??dt?22.下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确(c) 只有(2)(3)正确 (d) 只有(3)(4)正确分析与解drdt表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,drdt表示速度矢量;在自然坐标系中速度大小可用公式v22?ds计dt?dx??dy?算,在直角坐标系中则可由公式v???????dt??dt?求解.故选(d).1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的分析与解dvdt表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;drdt在极坐标系中表示径向速率vr(如题1 -2 所述);dsdt在自然坐标系中表示质点的速率v;而dvdt表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d).1 -4 一个质点在做圆周运动时,则有( ) (a) 切向加速度一定改变,法向加速度也改变 (b) 切向加速度可能不变,法向加速度一定改变 (c) 切向加速度可能不变,法向加速度不变 (d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b). 1 -5 已知质点沿x 轴作直线运动,其运动方程为s.求:(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t=4 s时质点的速度和加速度.x?2?6t2?2t3,式中x 的单位为m,t 的单位为?xt?x0,而在求路程时,就必dx?0来dt须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据dxd2xs??x1??x2,如图所示,至于t =4.0 s 时质点速度和加速度可用和2两式计算.dtdt题 1-5 图解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为dx?0 dttp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dx??48m?s?1dtt?4.0sd2xa?2??36m.s?2dtt?4.0s1 -6 已知质点的运动方程为r(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;?2ti?(2?t2)j,式中r 的单位为m,t 的单位为s.求:y?2?这是一个抛物线方程,轨迹如图(a)所示.12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得其中位移大小2222?r2?r0?x2?y2?x0?y0?2.47m题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?dx??10?60t dtdyvy??15?40tdt-1当t =0 时, v0x =-10 m2s , v0y =15 m2s ,则初速度大小为-1v0?v0x?v0y?18.0m?s?122v0yv0x??3 2(2) 加速度的分量式为ax?则加速度的大小为dvdvx?60m?s?2 , ay?y??40m?s?2 dtdta?ax?ay?72.1m?s?2ayax??2 3-11 -8 一升降机以加速度1.22 m2s上升,当上升速度为2.44 m2s时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =-2y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为1y1?v0t?at221y2?h?v0t?gt22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h?0.705sg?a12gt?0.716m 2(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有10?h?(g?a)t22t?(2) 由于升降机在t 时间内上升的高度为2h?0.705sg?a1h??v0t?at22则 d?h?h??0.716m【篇三:物理学教程第二版马文蔚上册课后答案完整版】(1) 根据上述情况,则必有( )(2) 根据上述情况,则必有( )(a) |v|= v,||=(b) |v|≠v,||≠(c) |v|= v,||≠(d) |v|≠v,||=个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 drdrds?dx??dy?(1); (2); (3);(4)?????. dtdtdt?dt??dt?下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确(c) 只有(2)(3)正确 (d) 只有(3)(4)正确 22dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常dtdr用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中dt分析与解ds?dx??dy?速度大小可用公式v?计算,在直角坐标系中则可由公式v??????求解.故dt?dt??dt?选(d).1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的(c) 只有(2)是对的(d) 只有(3)是对的 22dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方dtdr向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);dt分析与解dsdv在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因dtdt此只有(3) 式表达是正确的.故选(d).1 -4 一个质点在做圆周运动时,则有( )(a) 切向加速度一定改变,法向加速度也改变(b) 切向加速度可能不变,法向加速度一定改变(c) 切向加速度可能不变,法向加速度不变(d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).231 -5 已知质点沿x 轴作直线运动,其运动方程为x?2?6t?2t,式中x 的单位为m,t 的单位为 s.求:(1) 质点在运动开始后4.0 s内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位的大小和路程就不同了.为此,需根据dx?0来确定其运动方向改变的时刻tp ,求出0~tp 和dtdtdt题 1-5 图解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为 dx?0 dttp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dx??48m?s?1 dtt?4.0sd2xa?2??36m.s?2 dtt?4.0s1 -6 已知质点的运动方程为r?2ti?(2?t2)j,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;分析质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为y?2?这是一个抛物线方程,轨迹如图(a)所示. 12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得?r2?r0?题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?dx??10?60t dtdyvy??15?40t dtv0x3?? 2(2) 加速度的分量式为ax?dvdvx?60m?s?2 , ay?y??40m?s?2 dtdt则加速度的大小为a?ax?ay?72.1m?s?2花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为1y1?v0t?at2 21y2?h?v0t?gt2 2当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt2 22t?2h?0.705s g?a12gt?0.716m 2 (2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有10?h?(g?a)t2 2t?2h?0.705s g?a(2) 由于升降机在t 时间内上升的高度为 1h??v0t?at2 2则 d?h?h??0.716m。

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)习题解答第一章质点运动学1-1(1)质点t时刻位矢为:r(3t5)i12t23t4j(m)(2)第一秒内位移r1(某1某0)i(y1y0)j3(10)i12(10)23(110)j3i3.5j(m)(3)前4秒内平均速度Vr1t4(12i20j)3i5j(m1)(4)速度Vdr3i(t3)j(m1dt)∴V43i(43)j3i7j(m1)A;/。

(5)前4秒平均加速度aVV4V0734jj(m2t40)(6)加速度adVdtj(m2)a4j(m2)1-2vd某dtt33t22某d某vdtc14t4t32tc当t=2时某=4代入求证c=-12即某14t4t32t12vt33t22adv3t2dt6t将t=3代入证某41134(m)v356(m1)a345(m2)1-3(1)由运动方程某4t22t消去t得轨迹方程y3某(y3)20(2)1秒时间坐标和位矢方向为某14m[4,5]m:tgy某1.25,51.3(3)第1秒内的位移和平均速度分别为y15mr1(40)i(53)j4i2j(m)r1V4i2j(m1)t(4)质点的速度与加速度分别为drV8i2j,dtdVa8idt故t=1时的速度和加速度分别为V18i2jm1,a18im21-4该星云飞行时间为9.4610152.741096.5910172.091010a73.9310即该星云是2.091010年前和我们银河系分离的.1-5实验车的加速度为v1600103a2.47102m/225(g)t36001.80基本上未超过25g.1.80内实验车跑的距离为v1600103t1.80400(m)2236001-6(1)设第一块石头扔出后t秒未被第二块击中,则hv0t12gt2代入已知数得11115t9.8t22解此方程,可得二解为t11.84,t11.22第一块石头上升到顶点所用的时间为tmv10/g15/9.81.53由于t1tm,这对应于第一块石头回落时与第二块相碰;又由于t1tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于hv20(t1t1)1g(t1t1)22所以hv2011g(t1t1)2119.8(1.841)222t1t11.84117.2m/同理.2v20h11g(t1t1)2119.8(1.221)2221.221t1t151.1(m/)(2)由于t21.3t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为h12g(t)21119.8(1.841.3)2v201t2tt2121.841.323.0(m/)1-7以l表示从船到定滑轮的绳长,则v0dl/dt.由图可知l2h2于是得船的速度为vdldl2h2dtl2h2dtv0习题1-7图负号表示船在水面上向岸靠近.船的加速度为advdldtvdlh2v20dll2h20dt3负号表示a的方向指向岸边,因而船向岸边加速运动.1-8所求位数为2r42n2r42(6104)2gg0.16029.841051-9物体A下降的加速度(如图所示)为a2h20.40.2m/2t222此加速度也等于轮缘上一点在t3时的切向加速度,即at0.2(m/2)在t3时的法向加速度为av2(att)2R(0.23)2n1.00.36(m/2R)习题1-9图习题1-10图1-10a1.2m/2,t00.5,h01.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为3v0at01.20.50.6(m/)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为hv0t12gt2电梯下降的距离为hv0t12at2又h0hh1(ga)t22由此得t2h021.50.59ga9.81.2而小球相对地面下落的距离为hv0t12gt20.60.599.80.5922.06m1-11v风地v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是同一矢量.可知(a)v风人画出速度矢量合成图(a)又v风地12图必是底角为45的等腰直角三角形,所以,风向应为西北风,风速为v风地4.23(m1)v0人地co452v0人地1-12(1)t(2)2L2LvvLL2vLtt1t22vuvuvu222Lu1vv1习题1-11图(3)u由东习题1-12图tt1t2LL,如图所示风速vv向西,由速度合成可得飞机对地速度vuv,则Vv2u2.t2L2L22vvu2Luv1v2证毕1-13(1)设船相对岸的速度为V(如图所示),由速度合成得VuVV的大小由图1.7示可得VVcouco习题1-13图4即VcoVuco323332而Vinuin21船达到B点所需时间tAB两点之距SDctgOBDD1000()VVincoin12D将式(1)、(2)代入可得SD(33)1268(m)(2)由D1103tVinuin船到对岸所需最短时间由极值条件决定dt1du1in2co0即co0,/2故船头应与岸垂直,航时最短.将值代入(3)式得最短航时为3t110minuin/2110320.5103500()(3)设OBl,则lDVDDu2V22inuVcoVinuin欲使l最短,应满足极值条件.dlDu2V22uVcoduacoainuVin2ain2au2V22uVco0简化后可得2u2V2coauVco10即co2a136co10解此方程得co23co12348.2故船头与岸成48.2,则航距最短.将值代入(4)式得最小航程为2lu2v22uvco10002232223minDu1co23221231.5103m1.5(km)AB两点最短距离为52SminlminD21.511.12(km)第二章质点动力学2-1(1)对木箱,由牛顿第二定律,在某向:Fmincofma某0y向:NFmininMg0还有fma某N习题2-1图木箱将要被推动的情况下如图所示,解以上三式可得要推动木箱所需力F的最小值为FminMgcoin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为FminkMgcokin(2)在上面Fmin的表示式中,如果coin0,则Fmin,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是coin0由此得的最小值为arctan12-2(1)对小球,由牛顿第二定律某向:TcoNinmay向:TinNcomg0联立解此二式,可得Tm(acogin)0.5(2co309.8in30)3.32(N)Nm(gcoain)0.5(9.8co302in30 )3.74(N)由牛顿第三定律,小球对斜面的压力NN3.74(N)(2)小球刚要脱离斜面时N=0,习题2-2图则上面牛顿第二定律方程为Tcoma,Tinmg由此二式可解得ag/tan9.8/tan3017.0m/22-3要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

(1) t 时刻的速度为 v
kt m
v0e ;
(2)由 0 到 t 的时间内经过的距离为 x (mv0 k ) [1 e kt m] ;
kv( k 为常数) 作用,
(3)停止运动前经过的距离为 mv0 k 。
证明:
(1)
由 ma
dv m
F
dt
kv 分离变量得 dv v
k dt ,积分得 m
v dv v0 v
最初 2s 内的平均速度为: vave
x 0 0(m / s) t2
dx
t 时刻的瞬时速度为: v(t)
4 4t
dt
2s末的瞬时速度为: v(2) 4 4 2 4m / s
(2) 1s 末到 3s末的平均加速度为: aave
v v(3) v(1)
t
2
80 2
dv d(4 4t )
(3) 3s末的瞬时加速度为: a
a0t
b t2 2
再利用 dx vdt ,并取积分 [ 设 t 0 时 x0 0 ]得
x
dx
x0
t
vdt , x
0
1 a0 t2 2
b t3 6
1.4 一质点从位矢为 r (0) 4 j 的位置以初速度 v(0) 4i 开始运动, 其加速度与时间的关系
为 a (3t)i 2 j . 所有的长度以米计,时间以秒计 . 求:
dt x dt t 缩短 ),所以船速为
x 2 h2
v
v0
x
负号表明船速与 x 轴正向反向,船速与 x 有关,说明船作变速运动。将上式对时间求导,可
得船的加速度为
dv a
dt
h2v02 x3
负号表明船的加速度与 x 轴正方向相反, 与船速方向相同,加速度与 x 有关, 说明船作变加

物理学教程第二版马文蔚上册课后答案完整版

物理学教程第二版马文蔚上册课后答案完整版

第一章质点运动学之袁州冬雪创作1 -1 质点作曲线运动,在时刻t质点的位矢为r,速度为v ,速率为v,t 至(t +Δt)时间内的位移为Δr, 旅程为Δs, 位矢大小的变更量为Δr ( 或称Δ|r|),(1) 根据上述情况,则必有( )(A) |Δr|= Δs = Δr(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|d r|= d s ≠ d r(C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|d r|= d r ≠ d s(D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|d r|= d r = d s(2) 根据上述情况,则必有( )(A)(B)(C)分析与解(1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中旅程Δs=PP′, 位移大小|Δr|=PP′,而Δr=|r|-|r|暗示质点位矢大小的变更量,三个量的物理含义分歧,在曲线运动中大小也不相等(注:在直线运动中有相等的可以).但当Δt→0 时,点P′无限趋近P点,则有|d r|=d s,但却不等于d r.故选(B).(2) 由于|Δr|≠但由于|d r|=d s,,应选(C).1 -2一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即下述断定正确的是( )(A) 只有(1)(2)正确(B) 只有(2)正确(C) 正确 (D) 只有(3)(4)正确,在极坐标系中v r暗示,算,(D).1 -3 质点作曲线运动,r暗示位置矢量,v暗示速度,a暗示加速度,s 暗示旅程, at暗示切向加速度.对下列表达式,即(1)d v /d t(2)d r/d t=v;(3)d s/d t=v;(4)d v /d t|=at.下述断定正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的at,,是加速度矢量沿速度方向的一个分量,v r(如题1 -2 所述)速率v at.因此只有(3) 式表达是正确的.故选(D).1 -4一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可以不变,法向加速度一定改变(C) 切向加速度可以不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不竭改变,相应法向加速度的方向也在不竭改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5已知质点沿x轴作直线运动,式中x 的单位为m,t的单位为 s.求:(1) 质点在运动开端后4.0 s内的位移的大小;(2) 质点在该时间内所通过的旅程;(3) t=4 s时质点的速度和加速度.分析位移和旅程是两个完全分歧的概念.只有当质点作直线运动且运动方向不改变时,t 时间内的位移Δx而在求旅程时,就必须,此时,位移的大小和旅程就分歧了.为此,~t p和t p~t内的位移大小Δx1、Δx2,则t 如图所示,至于t=4.0 s题 1-5 图解(1) 质点在4.0 s(2) 由得知质点的换向时刻为t=0分歧题意)则所以,质点在4.0 s时间间隔内的旅程为(3) t=4.0 s时1 -6式中r的单位为m,t的单位为s.求:(1) 质点的运动轨迹;(2) t=0 及t=2s时,质点的位矢;(3) 由t=0 到t=2s内质点的位移Δr和径向增量Δr;分析质点的轨迹方程为y=f(x),可由运动方程的两个分量式x(t)和y(t)中消去t即可得到.对于r、Δr、Δr、Δs来讲,物理含义分歧,(详见题1-1分析).解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为这是一个抛物线方程,轨迹如图(a)所示.(2) 将t=0s和t=2可得相应位矢分别为图(a)中的P、Q 两点,即为t=0s和t=2s时质点所在位置.(3)题 1-6 图1 -7质点的运动方程为式中x,y的单位为m,t的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解(1) 速度的分量式为当t=0 时,v0x=-10 m·s-1 ,v0y=15 m·s-1 ,则初速度大小为设v0与x轴的夹角为α,则α=123°41′(2) 加速度的分量式为则加速度的大小为设a 与x轴的夹角为β,则β=-33°41′(或326°19′)1 -8一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降间隔.分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1=y1(t)和y2=y2(t),并思索它们相遇,即位矢相同这一条件,问题即可解;另外一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的旅程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y1=y2 ,即(2) 螺丝相对升降机外固定柱子下降的间隔为解2(1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g+a,螺丝落至底面时,有(2) 由于升降机在t则题 1-8 图1 -9质点沿直线运动,加速度a=4 -t2 ,式中a的单位为m·s-2 ,t的单位为s.如果当t =3s时,x=9 m,v=2 m·s-1 ,求质点的运动方程.分析本题属于运动学第二类问题,,a=a(t)或v=v(t),则可双方直接积分.如果a 或v不是时间t 的显函数,则应颠末诸如分离变量或变量代换等数学操纵后再做积分.解由分析知,应有得由得将t=3s时,x=9 m,v=2 m·s-1代入(1)、(2)得v0=-1 m·s-1,x0=0.75 m于是可得质点运动方程为1 -10一石子从空中由运动下落,由于空气阻力,石子并不是作自由落体运动,现测得其加速度a=A -B v,式中A、B 为正恒量,求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题,度v的函数,因此,需将式d v=a(v)d t分.解选取石子下落方向为y轴正向,(1) 由题意知用分离变量法把式(1)改写为将式(2)得石子速度,通常称为极限速度或收尾速度.(2)得石子运动方程1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题分歧处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t )得运动方程为固定形式,两个分运动均为匀变速直线运动.读者无妨自己验证一下.解 ,根据初始条件t 0 =0时v 0 =0,积分可得t =0 时,r 0=(10 m)i ,积分可得由上述成果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3yα=33°41′.轨迹如图所示.1 -12 质点在Oxy 平面内运动,其运动方程为r t i t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,置的变更率,Δt 的大小有关,当Δt →0 时,平均t 和a n ,前者只反映质点在切线方向速度大小的变更率,即后者只反映质点速度方向的变更,它可由总加速度a 和a t 得到.在求得t1时刻质点的速度和法向加速度的大小后,求ρ.解(1) 由参数方程xt, yt2消去t得质点的轨迹方程:y x2(2) 在t1=1.00s到t2(3) 质点在任意时刻的速度和加速度分别为则tv(t)|t =1si -j切向和法向加速度分别为(4) t1 -13飞机以100 m·s-1的速度沿水平直线飞行,在离地面高为100 m时,驾驶员要把物品空投到前方某一地脸孔标处,问:(1) 此时方针在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看方针的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地脸孔标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x、v y求出,这样,也便可将重力加速度g 的切向和法向分量求得.解(1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x=vt, y=1/2 gt2飞机水平飞行速度v=100 m·s-1 ,飞机离地面的高度y=100 m,由上述两式可得方针在飞机正下方前的间隔(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1 -14为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小57 m,平安着陆在西岸木桥上,求:题 1-14 图(1)柯飞车逾越黄河用了多长时间?(2)若起飞点高出河面10 m,柯驾车飞行的最高点距河面为几米?(3)西岸木桥和起飞点的高度差为多少?分析由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来讲,运用叠加原理是求解此类问题的普适方法,操纵程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g,故两个分运动均为匀变速直线跃跨度.解(1)(2)(3)(1) 由式(132(3代入式(2),得西岸木桥位置为y= - 4.22 m“-”号暗示木桥在飞车起飞点的下方.讨论本题也可以水面为坐标系原点,则飞车在y方向上的运动方程应为1 -15v0=1 m·s-1,忽略空气阻力,问球落在山坡上处离山坡底端的间隔为多少?此过程履历多长时间?题 1-15 图分析 求解方法与上题近似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g αcos 和-g αsin ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 120)sin (21)]cos([t g t v x ααβ-+-= (1)20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(231.230tan 20== g v t s将 t 值代入式(1),得1.263220===g v x OP m解 2 由分析知,在图(b )坐标系中,对小球t v x )cos (0β=(1)2021)sin (gt t v y -=β (2) 对点P αtan x y =' (3)ββ2202cos 2tan v gx x y -= (4)落地时,应有y y '=,即解之得落地点g v x 3320= (5)则 1.263230cos 20===g v x OP m联解式(1)和式(5)可得飞行时间讨论?1 -16一质点沿半径为R ,v0、b 都是常量.(1) 求t时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b?(3) 当加速度达到b时,质点已沿圆周运行了多少圈?分析在自然坐标中,s暗示圆周上从某一点开端的曲线坐标.由给定的运动方程s=s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量at,而加速度的法向分量为a n=v2 /R.这样,总加速度为a=atet+a n e n.至于质点在t时间内通过的旅程,即为曲线坐标的改变量Δs=s t -s0.因圆周长为2πR,质点所转过的圈数自然可求得.解(1) 质点作圆周运动的速率为故加速度的大小为(2) 要使|a|=b,(3) 从t=0 开端到t=v0 /b 时,质点颠末的旅程为因此质点运行的圈数为1 -17一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t=2.0s时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析首先应该确定角速度的函数关系ω=kt2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k,ω=ω(t)确定后,注意到运动的角量描绘与线量描绘的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解因ωR=v,由题意2所以则t′=0.5s时的角速度、角加速度和切向加速度分别为总加速度1 -18一质点在半径为0.10 m的圆周上运动,式中θ的单位为rad,t的单位为s.(1) 求在t=2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t为多少时,法向加速度和切向加速度的值相等?分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解(1) t=2 s时,法向加速(2) ,得(3) 则有t1 -19一无风的下雨天,一列火车以v1=20.0 m·s-1的速度匀速前进,在车内的搭客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2.(设下降的雨滴作匀速运动)题 1-19 图分析这是一个相对运动的问题.设雨滴为研究对象,地面为运动参考系S,火车为动参考系S′.v1为S′相对S的速度,v2为雨滴相对S的速度,操纵相对运动速度的关系即可解.解以地面为参考系,火车相对地面运动的速度为v1 ,看到雨滴下落的速度v2′为相对速度,如图所示),于是可得1 -20如图(a)所示,一汽车在雨中沿直线行驶,其速率为v1 ,下落雨滴的速度方向偏于竖直方向之前θ角,速率为v2′,若车后有一长方形物体,问车速v1为多大时,此物体正好不会被雨水淋湿?分析这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车(即雨点相对于汽车的运动速度v2′的方向)应知即可求出所需车速v1.题 1-20 图解(b)],有则第二章牛顿定律2 -1如图(a)所示,质量为m的物体用平行于斜面的细线联合置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sinθ(B) g cosθ(C) g tanθ(D) g cotθ分析与解当物体分开斜面瞬间,斜面临物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下发生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mg cotθ,故选(D).求解的关键是正确分析物体刚分开斜面瞬间的物体受力情况和状态特征.2 -2用水平力F N把一个物体压着靠在粗糙的竖直墙面上坚持运动.当F N逐渐增大时,物体所受的静磨擦力F f的大小( )(A) 不为零,但坚持不变(B) 随F N成正比地增大(C) 开端随F N增大,达到某一最大值后,就坚持不变(D) 无法确定分析与解与滑动磨擦力分歧的是,静磨擦力可在零与最大值μF N范围内取值.当F N增加时,静磨擦力可取的最大值成正比增加,但详细大小则取决于被作用物体的运动状态.由题意知,物体一直坚持运动状态,故静磨擦力与重力大小相等,方向相反,并坚持不变,故选(A).2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的磨擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) (B)(C) 还应由汽车的质量m决议分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为包管汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静磨擦力提供,可以提供的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能包管不侧向打滑.应选(C).2 -4一物体沿固定圆弧形光滑轨道由运动下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率坚持不变(B) 它受到的轨道的作用力的大小不竭增加(C) 它受到的合外力大小变更,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不竭增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N作用,其合外力方向并不是指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cosθ) 使物体的速率将会不竭增加(由机械能守恒亦可断定),则物体)将不竭增大,由轨道法向方向上的动,随θ角的不竭增大过程,轨道支持力F N 也将不竭增大,由此可见应选(B).*2 -5图(a)示系统置于以a =1/4 g的加速度上升的升降机内,A、B 两物体质量相同均为m,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的磨擦,其实不计空气阻力,则绳中张力为( )(A) 5/8 mg(B) 1/2 mg(C) mg (D) 2mg分析与解本题可思索对A、B 两物体加上惯性力后,以电梯这个非惯性参考系停止求解.此时A、B 两物体受力情况如图(b)所示,图中a′为A、B 两物体相对电梯的加速度,m a为惯性力.对A、B 两物体应用牛顿第二定律,可解得FT=5/8 mg.故选(A).讨论对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明白,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A和a B均应对地而言,本题中a A和a B的大小与方向均不相同.其中a A应斜向上.对a A、a B、a和a′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者无妨自己测验测验一下.2 -6图示一斜面,倾角为α,底边AB 长为l=2.1 m,质量为m的物体从题2 -6 图斜面顶端由运动开端向下滑动,斜面的磨擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?分析动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个详细题目中,这两类问题并没有截然的边界,且都是以加速度作为中介,把动力学方程和运动学规律接洽起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点O则为使下滑的时间最短,由式(2)有则可得此时2 -7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00 ×102 kg,乙块质量为m2=1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的成果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采取“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据毗连体中物体的多少可列出相应数目标方程式.连系各物体之间的相互作用和接洽,可处理物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力求,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT-( m1+m2 )g =(m1+m2 )a (1)F N2- m2 g =m2 a (2)解上述方程,得FT=(m1+m2 )(g +a) (3)F N2=m2 (g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度分歧,绳中所受张力也分歧,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的平安.2 -8 如图(a)所示,已知两物体A、B 的质量均为m=3.0kg 物体A 以加速度a =1.0 m·s-2运动,求物体B 与桌面间的磨擦力.(滑轮与毗连绳的质量不计)分析该题为毗连体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的磨擦不计的前提下成立.同时也要注意到张力方向是分歧的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有m A g-FT=m A a (1)F′T1 -Ff=m B a′ (2)F′T -2FT1=0 (3)思索到m A=m B=m, FT=F′T , FT1=F′T1 ,a′=2a,可联立解得物体与桌面的磨擦力题 2-8 图讨论动力学问题的一般解题步调可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字成果;(4) 核对量纲,再代入数据,计算出成果来.2 -9质量为m′的长平板A 以速度v′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动磨擦因数为μ,求木块在长平板上滑行多远才干与板取得共同速度?分析当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差别而存在滑动磨擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变成木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有磨擦力作功,根据系统的动能定理,磨擦力的功应等于系统动能的增量.木块解1 以地面为参考系,μmg的作用下,根据牛顿定律分别=ma1m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2 ,木块相对平板以初速度- v′作匀减速运动直至最终停止.由运动学规律有-v′2=2as由上述各式可得木块相对于平板所移动的间隔为解2以木块和平板为系统,它们之间一对磨擦力作的总功为式中l为平板相对地面移动的间隔.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有由上述各式可得2 -10如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?题 2-10 图分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N的分力来提供的,由于支持力F N始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程且有由上述各式可解得钢球距碗底的高度为可见,h随ω的变更而变更.2 -11在如图(a)所示的轻滑轮上跨有一轻绳,绳的两头毗连着质量分别为1 kg和2 kg的物体A和B,现以50 N的恒力F向上提滑轮的轴,不计滑轮质量及滑轮与绳间磨擦,求A和B的加速度各为多少?题 2-11 图分析在上提物体过程中,由于滑轮可以转动,所以A、B两物体对地加速度其实不相同,故应将A、B和滑轮分别隔离后,运用牛顿定律求解隔离后,各物体受力如图(b滑轮联立三式,得A、B两物体构成的讨论质点系的质心加速度,其实不是A、B两物体的加速度.上式叫质心运动定理.2 -12一质量为50 g的物体挂在一弹簧结尾后伸长一段间隔后运动,t以s计,y以m计,试求:(1)作用于该物体上的合外力的大小;(2)证明作用在物体上的合外力大小与物体分开平衡位置的y分析y为物体的运动方程,F即为作用于物体上的合外力(实为重力与弹簧力之和)的表达式,本题显示了物体作简谐运动时的动力学特征.解(1N)该式暗示作用于物体上的合外力随时间t按余弦作用周期性变更,F>0(2)由上式知,合外力F的大小与物体分开平衡位置间隔y的大小成正比.“-”号暗示与位移的方向相反.2 -13一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t+40,式中F的单位为的单位的s.在t=0时,质点位于x=5.0 m处,其速度v0置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=d v/d t,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t);由速度的定义v=d x /d t,用积分的方法可求出质点的位置.解因加速度a=d v/d t,在直线运动中,根据牛顿运动定律有依据质点运动的初始条件,即t0=0 时v0=6.0 m·s-1 ,运用分离变量法对上式积分,得vt+t2又因v=d x /d t,并由质点运动的初始条件:t0=0 时x0=5.0 m,对上式分离变量后积分,有x +t+t2t32 -14轻型飞机连同驾驶员总质量为1.0 ×103kg.飞机以55.0 m·s-1的速率在水平跑道上着陆后,驾驶员开端制动,若阻力与时间成正比,比例系数α=5.0 ×102N·s-1 ,空气对飞机升力不计,求:(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 -5 已知质点沿x 轴作直线运动,其运动方程为3
2262t t x -+=,式中x 的单位为m,t 的单位为 s .求:
(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;
(3) t =4 s 时质点的速度和加速度.
分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:
0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移
的大小和路程就不同了.为此,需根据
0d d =t
x
来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时
质点速度和加速度可用t
x d d 和22d d t x
两式计算.
题 1-5 图
解 (1) 质点在4.0 s 内位移的大小
m 32Δ04-=-=x x x
(2) 由 0d d =t
x
得知质点的换向时刻为
s 2=p t (t =0不合题意)

m 0.8Δ021=-=x x x
m 40Δ242-=-=x x x
所以,质点在4.0 s 时间间隔内的路程为
m 48ΔΔ21=+=x x s
(3) t =4.0 s 时
1s
0.4s m 48d d -=⋅-==
t t x
v
2s
0.422m.s 36d d -=-==t t x a
1 -6 已知质点的运动方程为j i r )2(22
t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;
(2) t =0 及t =2s时,质点的位矢;
(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;
分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).
解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为
24
12x y -
= 这是一个抛物线方程,轨迹如图(a)所示.
(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为
j r 20= , j i r 242-=
图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得
j i j i r r r 24)()(Δ020212-=-+-=-=y y x x
其中位移大小m 66.5)(Δ)(ΔΔ22=+=
y x r
而径向增量m 47.2ΔΔ2020222202=+-+=
-==y x y x r r r r
题 1-6 图
1 -9 质点沿直线运动,加速度a =4 -t
2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.
分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =
和t
x
d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操
作后再做积分.
解 由分析知,应有
⎰⎰
=t
t a 0
d d 0
v
v v
得 03
3
14v v +-=t t (1)

⎰⎰
=t
x
x t x 0
d d 0
v
得 004
2
12
12x t t t x ++-
=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得
v 0=-1 m·s-1, x 0=0.75 m
于是可得质点运动方程为
75.012
124
2+-
=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.
分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为
t a d )
(d =v v
后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.
(1) 由题意知 v v
B A t
a -==
d d (1) 用分离变量法把式(1)改写为
t B A d d =-v
v
(2)
将式(2)两边积分并考虑初始条件,有
⎰⎰
=-t t B A 0d d d 0
v v
v
v
v
得石子速度 )e 1(Bt B
A
--=v 由此可知当,t →∞时,B
A
→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt B
A
t y --==
v 并考虑初始条件有 t B
A y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程
)1(e 2-+=
-Bt B
A
t B A y 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.
分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t
ΔΔr
=v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度t
d d r =
v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t
t t
e a d d v =,后者只
反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加
速度的大小后,可由公式ρ
a n 2v =求ρ.
解 (1) 由参数方程
x =2.0t , y =19.0-2.0t 2
消去t 得质点的轨迹方程:
y =19.0 -0.50x 2
(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度
j i r r 0.60.2ΔΔ1
21
2-=--==
t t t r v (3) 质点在任意时刻的速度和加速度分别为
j i j i j i t t
y t x t y x 0.40.2d d d d )(-=+=
+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=t
y
t x t
则t 1 =1.00s时的速度
v (t )|t =1s=2.0i -4.0j
切向和法向加速度分别为
t t y x t t t
t
t e e e a 222s
1s m 58.3)(d d d d -=⋅=+==
v v v n n t n a a e e a 222s m 79.1-⋅=-=
(4) t =1.0s质点的速度大小为
122s m 47.4-⋅=+=y x v v v
则m 17.112
==n
a ρv
1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为3
42t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?
分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.
解 (1) 由于3
42t θ+=,则角速度212d d t t
θ
ω==.在t =2 s 时,法向加速度和切向加速度的数值分别为
22s
2s m 30.2-=⋅==ωr a t n
2s
2s m 80.4d d -=⋅==t
ω
r
a t t
(2) 当222
12/t n t a a a a +=
=时,有2
23n
t a a =,即 ()()
4
222
12243t r rt =
得 3
213
=t
此时刻的角位置为
rad 15.3423=+=t θ
(3) 要使t n a a =,则有
()()
4
222
12243t r rt =
t =0.55s。

相关文档
最新文档