第五章电极过程扩散动力学

合集下载

第五章电荷转移步骤动力学与电化学极化PPT课件

第五章电荷转移步骤动力学与电化学极化PPT课件
第五章 电荷转移步骤动力学 与电化学极化
5.1 电化学极化概述 5.2 电化学步骤的基本动力学方程 5.3 电化学步骤的基本动力学参数 5.4 稳态电化学极化动力学方程 5.5 电化学极化与浓差极化的比较
1
5.1 电化学极化概述
液相传质过程发生于“电极/溶液”表面附近 的液层中,即扩散层中。
电化学步骤(电荷转移步骤)则发生于“电极 /溶液”界面上。
但必须注意: (1)上述关系只使用于简单的电极反应; (2)注意浓度的单位换算,浓度单位一般用 “mol / cm3”。当生成不溶的独立相时,其浓度取 110-3 mol/cm3
35
5.4 稳态电化学极化动力学方程
当一定大小的电流流过电极时,电极电位偏离其 平衡电极电位。当达到稳态时,即电极过程各个步 骤的进行速度不再随时间而改变,电极电位与外电
22
电化学平衡
当电极体系处在平衡态时,电极上没有净反应发
生,阳极反应速率( ia0 )与阴极反应速率( ic0 )
相等。
zacRexp(W10
RnTF平)zccoexp(W20
nF平)
RT
写成对数形式并整理后得:
平(W10nF W20
2.3RTlgzc)2.3RTlgco nF za nF cR
平 0' 2.n3RFTlgccR o
ia0 = ic0= i0
交换电流密 度
19
对于阳极反应 = - 平=a
所以有: a2 .3 n RF lT g i02 .3 n RF lT g ia2 .3 n RF lT g iia 0
对于阴极反应 = - 平=-c
所以有: c 2 .3 n RlF T g i0 2 .3 n RlF T g ic 2 .3 n RlF T g iic 0

第五章 电化学步骤的动力学

第五章    电化学步骤的动力学
改变电极电势———就可以直接改变电化学步骤和整个电极反应 的进行速度。
5.1 改变电极电势对电化学步骤活化能的影响 电极电势改变了后阳极 反应和阴极反应的活化能 分别变成:

W W1 F
' 1
'
(5.1a)

W2 W2 F
(5.1b)

和 分别表示改变电极电势对阴极和阳极

k e
阳极过程和阴极过程的电流密度 阳极:
nF 0 ia nFKcR exp 平 RT
=

nF i exp a RT
0
阴极:
nF 0 ic nFKcO exp 平 RT
0 * a R
nF 0 * 1 ik nFKk cO exp RT
z R F 1 c c R exp RT zO F 1 * 0 cO cO exp RT
* R 0
1
z R zO n,
0 i
0

根据能斯特方程式,电极的平衡电极电位 e 可写成下列通式,即:
RT a氧化态 RT aO 0 e ln e ln nF a还原态 nF a R
0 e
5.4

电极电势的“电化学极化”
定义:若体系处于平衡电势下,则 ia ik ,因 而电极上不会发生净电极反应。当电极上 有净电流通过时,由于 ia ik ,故电极上的 平衡状态受到了破坏,电极电势或多或少 会偏离平衡电势,我们称这种现象为电极 电势发生了“电化学极化”。 这时流过电极表面的净电流密度等于:
a
0
I i0

电极过程动力学 ppt课件

电极过程动力学  ppt课件

§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);

电化学理论与方法 第五章 电极过程概述

电化学理论与方法 第五章 电极过程概述

整个测量极化曲线的线路是由两个回路组成的。其中极化 回路中有电流通过,用以控制和测量通过研究电极的电流 密度。测量回路用以测量研究电极的电位,该回路中几乎 没有电流通过。
5.2 原电池和电解池的极化图
1、原电池的极化图
断路时电池的电动势为
E c平- a平
(5.3)
通电后,电流从阳极流入,从阴极流出,在溶液中 形成与电动势方向相反的欧姆降。
5.3 电极过程基本历程和速度控制步骤
一、电极过程的基本历程
电极过程是由一系列性质不同的单元步骤串连组成的 复杂过程,大致由以下各单元串连组成:
(1)反应粒子向电极表面附近液层迁移,称为液相传质步骤。
(2)反应粒子在电极表面或电极表面附近液层中进行电化学反 应前的某种转化过程(前置转化 )。
(3)反应粒子在电极/溶液界面上得到或失去电子,生成还原 反应或氧化反应的产物。 (4)反应产物在电极表面或表面附近液层中进行电化学反应后 的转化过程(随后转化 )。
(5.6)
通电后,电流从阳极流入,从阴极(负极)流出,在溶 液中形成与电动势方向相同的欧姆降。电池的端电压为
V a c IR
E ( c a ) IR

(5.7)
V ( a平 a ) ( c平 c ) IR
V超= a c
电子运动速度>电极反应速度,极化作用>去极化 作用。阳极上,电子流出电极的速度大,造成正电荷 的积累,阳极电极电位向正移动 ;阴极上,电子流 入电极的速度大,造成负电荷的积累 ,阴极电极电 位向负移动。

理想极化电极:通电时不存在去极化作用,流 入电极的电荷全部在电极上不断积累,只起改 变电极电位(改变双电层结构)。

第五章-扩散动力学简介

第五章-扩散动力学简介
第五章、扩散动力学简介
内容
1.菲克定律
2.各种扩散系数 3.扩散系数的测定方法 4.扩散机制
1. 菲克定律
• 菲克第一定律:(
c 0 ,稳态) t J: 某一种物质的扩散通量;
c : 物质的浓度; ―—‖ 表示通量的方向与浓度梯度的方向相反。
J D gradc
• 菲克第二定律:(
*
2.3 化学扩散系数(相互扩散系数) Chemical diffusion coefficient
化学扩散系数:存在化学浓度梯度时测定的扩 ~ 散系数,可以表示为D

♠ 可以由成分-扩散厚度曲线推算出来

通常与成分相关
2.4 本征扩散系数(intrinsic diffusion coefficient)
纯金属元素中的自扩散(如图7a中所示)
fl 2 D 6
A* A
f :相关因子,数值上与晶体结构和扩散机制有关;
l: 原子的跳跃跨度; : 晶体中原子在某一位置停留的时间。
示踪自扩散系数(tracer self-diffusion):
元素在固溶体合金相中的自扩散(dilute solution)(如图7c中所 示) A* A* A* 2 DAB DAB ( X B ) DA [1 b1 X B b2 X B ...]
AB合金中的本征扩散系数(组元扩散系数)DA 和 DB 描

述了A和B两种物质相对于点阵平面的扩散; 由于A和B的扩散系数不同,因而存在着原子通过点阵平面 的净流量; 如果点阵位置数是守恒的,那么点阵平面将沿着样品中某 个固定的轴运动,以弥补原子通过点阵平面的不相等的流 量,同时点阵位置将在扩散带一侧产生而在另一侧消失; 点阵位置的产生与消失是通过点缺陷(如空位,间隙原子) 的形成与消失来实现的; 点阵平面相对于样品中某个固定的轴的偏移: 柯肯达尔效 应.

第五章电极过程扩散动力学

第五章电极过程扩散动力学
s c0 c Ag Ag
l
(5-4)
稳态扩散的电流密度:
i F (J Ag ) FDAg
s c0 c Ag Ag
l
(5-5)
26
将式(5-5)扩展为一般形式,
对于反应:
O ne R
稳态扩散的电流密度:
ci0 cis (5-6) i nF ( J i ) nFDi l s 极限扩散电流密度:当 ci =0时的扩散电流密
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
cc
0
c0 cs
c
c
双电层区
扩散区

电极过程动力学

电极过程动力学

电极过程动力学电极过程动力学是电化学中的一个重要分支,它着重研究电极电荷转移过程和相关的动力学机制。

电极过程动力学的研究对象包括电化学反应速率、电极化学反应的机理以及电化学反应的动态过程等。

本文将从电极反应速率、电位调控机理以及实际应用方面对电极过程动力学进行详细的介绍和分析。

一、电极反应速率1. 项里反应速率常数项里反应速率常数是衡量电极反应速率的重要参数。

它表示单位时间内反应物和产物之间的数量变化率。

在计算过程中,可以根据电荷转移过程中的动力学机制来确定项里反应速率常数。

通常情况下,项里反应速率常数与反应物和产物之间的活化能和电荷转移系数有关。

一般来说,项里反应速率常数越大,反应速率越快。

2. 泊松分布模型泊松分布模型是一种根据电子传输动力学研究电极反应速率的经典方法。

泊松分布模型假设电子从电极表面进入液相中的分布满足泊松分布。

据此,可以利用该模型计算出电极反应速率以及与之相关的电极化学反应机理。

然而,实际情况中,由于电极表面可能存在着非均匀性和多孔性等特征,泊松分布模型过于理想化,难以准确预测电极反应速率。

3. 热力学因素对电极反应速率的影响热力学因素对电极反应速率有着重要的影响。

根据热力学定律,电位差和电极之间的电势差会影响电子传输和离子转移速率。

当电极电位愈高,电位差就愈大,因此,电子和离子的传输速率就变得更快。

此外,反应物和产物之间的物理和化学吸附现象也会影响电极反应速率。

这些因素的影响程度需要结合具体的条件和反应机理来进行考虑。

二、电位调控机理1. 电位和电场电位是电子在电场作用下所具有的势能差。

由于电场力是由电荷带来的,因此,电位和电场强度是密切相关的。

在电极过程动力学中,电位的变化会影响电子传输过程,进而影响电极化学反应的速率和机理。

2. 离子选择电位离子选择电位可以影响电极的电化学反应机理和速率。

当电极表面存在多种离子时,离子选择电位会决定电极表面上离子种类的比例。

因此,在研究电极过程动力学时,需要对离子选择电位进行分析和控制。

电化学 第5章 表面转化步骤

电化学 第5章 表面转化步骤

第5章 表面转化步骤在前面的两章中,我们讨论了两个基本步骤(电化学为控步和扩散为控步的电极过程动力学)的动力学。

如果从溶液中扩散到电极表面来的粒子能直接参加电化学步骤反应(得失电子),并直接形成最终产物,那么整个电极反应就只有扩散和电子得失这两步就足够了。

然而许多研究表明,往往反应粒子的主要存在形式(即初始反应粒子)并不能直接参加电化学反应,它们扩散到电极表面后,往往需经某种转化步骤变成容易反应的形式;同样,电化学步骤中形成的初始产物也往往需要经某种转化步骤形成最终产物。

0**0R R R O O O s nes −−→−−−→−−−→−−−→−−−→−-+扩散转化转化扩散这些转化反应主要发生在S M /界面上,或电极表面附近的薄层溶液中,故称表面转化步骤。

表面转化步骤既可以是化学步骤,如离解、复合等,也可以是吸脱附或新相生成步骤。

其共同特点是它们的反应速度常数一般与电极电势无关。

作为电极过程的基本步骤之一,表面转化步骤在其绝对速度相对较小时也有可能成为整个过程的控制步骤或参与过程的控制,因此也有其自身的动力学规律。

我们通过本章转少的时间将简要的将其特征、规律给大家介绍一下。

[例1]:碱性镀锌液中+2Zn是以与-OH 形成络离子的形式存在的,反应粒子的主要存在形式为-24)(OH Zn ,还有其他形式如:-3)(OH Zn 、2)(OH Zn 、+)(OH Zn 、+2Zn 等,即配位数不同的络离子或络合物,NaOH 为络合剂。

阴极还原时,是哪种粒子在电极上放电呢?是否是主要存在形式-24)(OH Zn 放电?不一定。

研究证实,放电粒子(易于反应)是2)(OH Zn ,而2)(OH Zn 浓度较低,单靠溶液中原有的2)(OH Zn 难以源源不断地供应给电极反应,故必有一从主要形式到反应形式(放电形式)的转化过程(化学过程)。

Zn OH Zn OH Zn e −−→−−−→−-+-2224)()(转化(主要存在形式转化为易反应形式) 即在电化学步骤之前有一转化步骤,是在表面附近液层中进行的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳态扩散与非稳态扩散的区别和联系 :
反应粒子的浓度分布是否为时间的函数 :
稳态扩散 ci f (x)
非稳态扩散 ci f(x,t)
区 别
扩散层厚度是否确定:
非稳态扩散不确定厚度;稳态扩散确定厚度。
第五章 电极过程扩散动力学
➢主要内容:
电极反应中的传质方式,扩散电流和电迁移电流, 对流扩散理论,旋转圆盘电极,理想条件下和 真实条件下的稳态扩散过程。
➢教学要Байду номын сангаас:
1.了解扩散电流和电迁移电流, 2.理解对流扩散理论,旋转圆盘电极,理想条
件下和真实条件下的稳态扩散过程。 3.掌握电极反应中的传质方式。
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
(1)液相传质
Ag(CN)32 (溶液深处) → Ag(CN)32 (电极表面附近)
(2)前置转化 Ag(CN)32 → Ag(CN ) 2CN (3)电子转移(电化学反应)
Ag(CN)2 +e→ Ag(吸附态 2C)N (4)生成新相或液相传质
§5-1电极过程概述
一、概述
1、电池反应
电池反应包括三个部分 :阳极反应过程、阴极 反应过程和反应物质在溶液中的传递过程(液 相传质过程)
2、研究一个电化学体系的方法
研究一个电化学体系中的电化学反应时,应把 整个电池反应分解成单个的过程加以研究
电极过程:在电化学中,把发生在电极/溶液 界面上的电极反应、化学转化和电极附近液层 中的传质作用等一系列变化的总和
1、三种传质方式区别
传质运动的推动力: 电迁移——电场力 对流:自然对流——密度差或温度差,均为重力差
强制对流——搅拌外力 扩散——浓度梯度,实质是化学位梯度 传输的物质粒子: 电迁移——带电粒子:阴、阳离子 扩散和对流——离子、分子等形式的物质微粒
传质作用的区域:
电极表面及
s’ c
其附近的液
Ag(吸附态) →Ag(结晶态) 2CN- (电极表面附近) →2CN-→(溶液深处)
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。
常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的
电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过
阳极极 化
极化度:极化曲线上某一点
的斜率
从极化曲线上求得任一电流 密度下的过电位或极化值;
阴极极 化
了解整个电极过程中电极电
位变化的趋势和比较不同电
极过程的极化规律
不锈钢在硫酸中的极化 曲线
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤 电子转移步骤 随后的表面转化步骤 新相生成步骤和反应后的液相传质步骤
1、电迁移
电迁移:电解质溶液中的带电粒子在电场作用下 沿着一定的方向移动。 动画
电迁移流量: Ji ci i ciU iE (5-1)
电迁移流量与i离子的淌度成正比,与电场强度 成正比,与i离子的浓度成正比,即与i离子的 迁移数有关。
2、对流:
对流:一部分溶液与另一部分溶液之间的相 对流动。 动画
电极过程动力学:有关电极过程的历程、速度 及其影响因素的研究内容的统称,
电极过程动力学研究的范围:包括在电极表面 进行的电化学过程和电极表面附近薄层电解质 中的传质过程及化学过程。
二、电极的极化现象
1、几个概念
极化:有电流通过时,电极电位偏离平衡电位 的现象
过电位:在一定电流密度下,电极电位与平衡 电位的差值 平
取决于速度控制步骤
五、电极过程动力学研究的目的和方法
目的:使电极反应按照人们所需要的方向和 速度进行。
方法: 弄清电极反应的历程;找出电极过程的速度控
制步骤; 测定控制步骤的动力学参数;测定 非控制步骤的热力学平衡常数或其他有关的 热力学数据。
§5-2 液相传质的三种方式
一、液相传质的三种方式
程所引起的电极极化。指单元步骤(3)
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
四.电极过程的特征
异相催化反应 电极可视为催化剂 ,可以人为控制 复杂的多步骤的串连过程,其动力学规律
实质:电极反应速度跟不上电子运动速度而造 成电子在界面的积累,即内在原因正是电子运 动速度 和电极反应速度的矛盾。 两种特殊现象: V反 0 理想极化电极
如: Pt电极,滴汞电极(DME) V反很大 理想不极化电极
如:甘汞电极(SCE)
3、极化曲线
极化曲线:过电位(过电极 电位)随电流密度变化的关 系曲线。
极化值:有电流通过时的电极电位(极化电位)
与静止电位的差值 静
2、极化产生的原因
电流流过电极时,产生一对矛盾作用: 动画 极化作用—电子的流动在电极表面积累电荷,
使电极电位偏离平衡状态的作用 ; 去极化作用—电极反应吸收电子运动传递的电
荷,使电极电位恢复平衡状态的作用 。 极化是由上述两种作用联合作用的结果。
对流两大类 : 自然对流:密度差或温度差而引起的对流 强制对流:用外力搅拌溶液引起的对流
对流流量: Ji cix (5-2)
3、扩散
扩散:溶液中某一组分自发地从高浓度区域向 低浓度区域移动。 动画
扩散分为稳态扩散和非稳态扩散,
稳态扩散引起的扩散流量:
Ji
Di
(dci ) dx
(5-3)
二、液相传质的三种方式的比较
c c0
c0 cs
层区域划分: 双电层区、 扩散层区、 对流区。 如图5.2所示。
cs
c
双电层区
扩散区
对流区
xs0
x1
d
x2 x
图5.2阴极极化时扩散厚度示意图
2、三种传质方式的相互影响
只有当对流与扩散同时存在时才能实现稳态扩 散过程,把一定强度的对流作用的存在,作为 实现稳态扩散过程的必要条件。
没有大量的局外电解质存在时,电迁移将对扩 散作用产生影响,电迁移和扩散之间可能是相 互叠加作用,也可能是相互抵消的作用。
§5-3 稳态扩散传质过程
一、稳态扩散概念
非稳态扩散:反应粒子浓度随时间和距离不断变 化的扩散过程。 稳态扩散:扩散速度与电极反应速度相平衡,反 应粒子在扩散层中各点的浓度分布不再随时间变 化,而仅仅是距离的函数的扩散过程
相关文档
最新文档