《复变函数》总结
复变函数重要知识点总结
复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
(完整版)复变函数知识点总结
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
复变函数总结完整版
第一章复数1 i 2=-1 i = ∙, -1 欧拉公式z=x+iy实部Re Z 虚部Im Z2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2)乙Z2③=χ1 iy1 χ2 iy2X1X2iχ1y2iχ2y1- y1y2=X1X2 -y』2 i χ1y2 χ2y1④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y22 2 2 2Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2⑤z = X - iy 共轭复数z z =(x+iy I x — iy )=χ2+ y2共轭技巧运算律P1页3代数,几何表示^X iy Z与平面点χ,y-------- 对应,与向量--- 对应辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3…把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz04如何寻找arg Zπ例:z=1-i4πz=i2πz=1+i4z=-1 π5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin利用欧拉公式e i 71 =COS71 i Sin71例2 f Z = C 时有(C )=0可得到z=re°Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方n n in 「nZ Z Z Z ............ z=re r COS 1 Sin nv凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z☆当丄二f Z o时,连续例1 证明f Z =Z在每一点都连续证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续3导数f Z o Jm fZ一f zoz-⅛z°Z-Z o,2n第二章解析函数1极限2函数极限①复变函数对于任一Z- D都有W FP与其对应川=f Z注:与实际情况相比,定义域,值域变化例f z = zZ—Z o 称f Z当Z-:Z o时以A为极限df(z lZ=Zo1例2 f Z = C 时有(C )=0根据C-R 条件可得2x =0,2y = 所以该函数在Z =O 处可导4解析若f z 在Z 00= X = 0,^0的一个邻域内都可导,此时称用C-R 条件必须明确u,v 四则运算 f 一 g =「- g rkf =kf f g = f g f gf Z 在Z 0处解析。
复变函数总结
n
复数数列收敛等价于 u 和 v 分别收敛 级数绝对收敛比值法 a=|zn+1/zn|,a<1 收 a>1 发 幂级数 收敛圆 Abel 第一定理
lim k ck 1 0 ck
(4)高阶导数公式
f (n) ( z) n! 2 i
(3)有界 Cauchy 积分公式
m 1
f ( k ) ( z0 ) 1 f ( )d s 是? ck k! 2i s ( z0 )k 1
bk
1 f ( )d 2i ( z 0 ) k 1 s
(8)留数 res f(z0)
b1 1 2 i
(9)留数定理
s
f ( z )dz
(7) Laurent 级数 R1<|z-z0|<R2
f ( z)
k
唯一性
b (z z
k
0
)k
唯一性 s 是?
收敛半径 R 1/ (12)极点 res f(z0)
1 d ( z z0 )m f ( z ) z z0 (m 1)! dz m 1 lim
m
f ( x)eipx dx 2 i res[ f ( z )eipz ]z z k
k 1
0
m
(1) 由 CR 条件和 Green 公式推得。对于任意解析区域都适用。 另一种方法,由于围道内没有奇点, 所以(9)式的右边为 0。 z z 积分与路径无关:定积分 F ( z )z0 f ( )d cz0 f ( )d F ( z )F ( z0 ). (2)复连通区域可划成单连通区域, 即得 (3) l 可化为绕 z 的无穷小围道,这时 f(ζ )趋于常数 f(z),提到积分外, 剩下部分的积分部分正好为 2πi 另一种方法,将 f(ζ )在 z 附近 Taylor 展开,f(z)正好是-1 次 项系数,而积分后其他幂次项为 0. (4) 将(3)式两边对 z 求导即得 (5) (3)式在无穷远点留数为 0 即得 (6) 对(3)式的 1/(ζ -z)用幂级数展开,结合(4)即得 它是(7)的 f(z)在 R1 内不含奇点的情形 S 是圆域内绕逆时针 z0 一周的闭合围道. (7) 对(3)式的 1/(ζ -z)在 R2 用幂级数展开,得正幂次项部分,在 R1 展开对 k 做替换得负幂次项部分,最后对它们的系数用(2)归 纳便可得到该结论 S 是圆环域内绕逆时针 z0 一周的闭合围道. (8) 令(7)的 k= -1 得 (9) (8)和(2)结合即得 (10) 这是定义 (11) 将(9)代入(10)即得 (12) 把 f(z)的 Laurent 展开式写出经式中的运算,结果正好是 b-1 (13) 用 1/z 替换(10)中的 z, 然后求 z=0 的留数即可,
【最新】《复变函数》总结
【最新】《复变函数》总结复变函数是指把一个复变量的变量表示为函数的过程,也是复变量和复函数之间的等价关系,它有着重要的数学意义和重要的实际应用。
复变函数通常由实数域和虚数域组成,用公式来描述,它是一种在复平面上根据定义域及值域定义复函数的方法。
它把定义域上的复变量转换成在值域上定义的复函数,从而可以求解复变量的取值,具体来说,复变函数由两个函数f(z) = u (z) + iv (z) 组成,其中,u(z)是定义域上的一个实函数,v(z)是定义域上的一个虚函数。
可以知道,复变函数既可以是实函数,也可以是虚函数,这要取决于其定义域以及值域中所包含的复变量的表达式。
复变函数的求法有三种:一是复变量方法,二是参数方法,三是Laplace变换方法。
1. 复变量方法就是把复变量z表示为对应的复数f(z)=p (x, y)+qi(x, y),其中x, y表示实数部分和虚数部分,p(x, y)是实函数,q(x, y)是虚函数,并求出复变函数f(z)的极值;2. 参数方法则是把复变量z表示成参数形式z=a+bi,其中a, b均为实数,把f(z)用a, b来表示,用参数求极值,求得f(z);3. Laplace变换方法就是把复变函数f(z)用局部Laplace变换求解,利用计算机软件计算出来。
复变函数在数学思维中具有广泛的应用,它不仅常用于线性系统,还应用在微分方程、概率论、信号处理、最优控制、网络控制等领域。
例如,在机器学习中,复变函数可以用来描述模型的行为,对系统的性能进行优化和分析;在仿生学中,复变函数也可以用来模拟动物思维;在信号处理中,复变函数可以用来求解幅度、相位、频率等特性;在最优控制中,复变函数可以把控制问题转换成数学形式,来求解最优全局策略;在网络控制中,复变函数可以把网络的复杂性转换为可求解的数学问题,用以搜索网络中的最佳状态。
总之,复变函数是一种独特的函数,在数学思考和实际应用中都具有重要的意义。
复变函数总结
若函数 f (z) u( x, y) iv( x, y) 在点 z x yi 处 可导,则其导数公式:
定理2 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是: u( x, y)与 v( x, y) 在 D内可微, 并且满足柯西-黎曼方程.
又
w1 z
1 x iy
x iy x2 y2
1 ( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
26
(2) x 2. 解 因为 z x iy 2 iy
1 (1 2
3i ),
z2
sin
3
i
cos
, 3
求
z1
z2
和
z1 z2
.
解
因为
z1
cos
3
i sin
3
,
z2
cos
6
i
sin
6
,
所以
z1
z2
cos
3
6
i sin
3
6
i,
z1 z2
cos
3
6
i
sin
3
6
3 1i. 22
19
例 计算 3 1 i 的值.
解 因为 n 1 所以 1 2 n1 1 n 0. 1
8
例
设
z1
5 5i,
z2
3 4i,
求 z1 z2
与
z1 z2
复变函数初步例题和知识点总结
复变函数初步例题和知识点总结一、复变函数的基本概念复变函数是指定义在复数域上的函数。
一个复变函数通常可以表示为$w = f(z)$,其中$z = x + iy$ 是复数,$x$ 和$y$ 分别是实部和虚部,$w = u + iv$ 也是复数,$u$ 和$v$ 分别是其实部和虚部。
例如,函数$f(z) = z^2$ 就是一个简单的复变函数。
将$z = x +iy$ 代入,可得:\\begin{align}f(z)&=(x + iy)^2\\&=x^2 y^2 + 2ixy\end{align}\从而得到实部$u = x^2 y^2$,虚部$v = 2xy$。
二、复变函数的极限与连续(一)极限如果对于任意给定的正数$\epsilon$,都存在正数$\delta$,使得当$0 <|z z_0| <\delta$ 时,有$|f(z) A| <\epsilon$,则称$A$ 为函数$f(z)$当$z$ 趋向于$z_0$ 时的极限,记作$\lim_{z \to z_0} f(z) = A$。
例如,考虑函数$f(z) =\frac{z}{|z|}$,当$z$ 沿着实轴正方向趋近于$0$ 时,极限为$1$;当$z$ 沿着实轴负方向趋近于$0$ 时,极限为$-1$。
由于这两个极限不相等,所以该函数在$z = 0$ 处极限不存在。
(二)连续如果函数$f(z)$在点$z_0$ 处的极限存在且等于$f(z_0)$,则称函数$f(z)$在点$z_0$ 处连续。
例如,函数$f(z) = z$ 在整个复数域上都是连续的。
三、复变函数的导数复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程。
设函数$f(z) = u(x, y) + iv(x, y)$,则其导数为:\f'(z) =\lim_{\Delta z \to 0} \frac{f(z +\Delta z) f(z)}{\Delta z}\柯西黎曼方程为:\\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y},\quad \frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}\例如,函数$f(z) = z^2 =(x + iy)^2 = x^2 y^2 + 2ixy$,则$u = x^2 y^2$,$v = 2xy$。
复变函数总结
复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。
它在物理、工程、经济等领域具有广泛的应用。
复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。
在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。
一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。
复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。
复数的加法、减法、乘法和除法规则与实数的运算规则相似。
二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。
复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。
复函数在复平面上的图像通常是曲线、点或者区域。
三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。
2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。
3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。
4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。
5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。
四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。
2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。
3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。
4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。
5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。
复变函数初步例题和知识点总结
复变函数初步例题和知识点总结在数学的广阔领域中,复变函数犹如一座神秘而又充满魅力的城堡。
它不仅为我们打开了理解数学世界的新视角,还在众多科学和工程领域有着广泛的应用。
接下来,让我们一起走进复变函数的世界,通过一些例题来深入理解其重要的知识点。
一、复变函数的基本概念复变函数是指定义在复数域上的函数,通常可以表示为\(f(z) =u(x,y) + iv(x,y)\),其中\(z = x + iy\),\(x\)和\(y\)是实数,\(i\)是虚数单位,\(u(x,y)\)和\(v(x,y)\)是实函数。
例如,\(f(z) = z^2 =(x + iy)^2 = x^2 y^2 + 2ixy\)就是一个复变函数。
二、复变函数的极限与连续(一)极限若对于任意给定的正数\(\epsilon\),存在正数\(\delta\),使得当\(0 <|z z_0| <\delta\)时,都有\(|f(z) A| <\epsilon\),则称\(A\)为\(f(z)\)当\(z\)趋于\(z_0\)时的极限,记作\(\lim_{z \to z_0} f(z) = A\)。
例题:求\(\lim_{z \to 1 + i} (z^2 2z + 2)\)解:将\(z = 1 + i\)代入\(z^2 2z + 2\)得:\\begin{align}&(1 + i)^2 2(1 + i) + 2\\=&1 + 2i + i^2 2 2i + 2\\=&1 + 2i 1 2 2i + 2\\=&0\end{align}\(二)连续如果\(\lim_{z \to z_0} f(z) = f(z_0)\),则称\(f(z)\)在\(z_0\)处连续。
三、复变函数的导数复变函数的导数定义为:\(f'(z) =\lim_{\Delta z \to 0} \frac{f(z +\Delta z) f(z)}{\Delta z}\)例题:求\(f(z) = z^3\)的导数解:\(f'(z) = 3z^2\)四、解析函数如果函数\(f(z)\)在区域\(D\)内处处可导,则称\(f(z)\)在\(D\)内解析。
复变函数小结
《复变函数》 小结第一章一、复数基本概念及其运算1. 复数:z x yi =+,i =(2)共轭复数:z x i y =-,记作:z 。
性质:z z =; 1212z z z z =;“”可以是:“,,,+-⨯÷”()()2222Re Im z z z z x y ⋅=+=+;Re 2z z x z +==,Im 2z zy z -== (3)复数的模、主辐角arg (,]z ππ∈-、辐角z =()()()arctan 0,arctan 0,0arg arctan 0,020,020,0y x x y y x x y z y x x y x y x y ππππ⎧>∀⎪+<≥⎪⎪=-<<⎨⎪=>⎪⎪-=<⎩一四象限二象限三象限正虚轴负虚轴rg arg 2A z z k π=+2. 复数的表示代数表示:复数z x i y =+11-←−→向量(,)x y 11-←−→点z ;三角表示: cos sin z r i r θθ=+(cos sin )r i θθ=+ 指数表示:(cos sin )z r i θθ=+i r e θ=.注:r 是z 的模,θ是z 的任意一个辐角。
3. 复数的运算四则运算:设有111z x i y =+,222z x i y =+两个复数:121212()z z x x i y y ±=±+±; 1212121221()()z z x x y y i x y x y ⋅=-++; 12z z z =; 乘幂与方根(利用指数表示、三角表示)设有复数i z r e θ=,则()ni nn in z re r eθθ==;21k i n n n k w r eθπ⎛⎫+ ⎪⎝⎭== (0,1,21k n =-)Note :① 1212||||z z z z ⋅=⋅;1212Arg ()Arg Arg z z z z ⋅=+;②1122||||z z z z =;1122Arg Arg Arg z z z z ⎛⎫=- ⎪⎝⎭; 三、复变函数及其运算 1. 复变函数:()w f z =。
复变函数重要知识点总结
03 复变函数的级数与幂级数展开
幂级数展开
幂级数展开是复变函数的一种表示方法,它将一个复数函数表示为一个无 穷级数。
幂级数展开在复变函数中具有广泛的应用,例如在求解微分方程、积分方 程以及研究函数的性质等方面。
幂级数展开的收敛性是一个重要的问题,它涉及到级数的收敛范围和条件 。
洛朗兹级数展开
01
勒让德函数
01
勒让德函数是一种在复数域上的特殊函数, 它经常用于解决物理和工程问题。
03
02
勒让德函数分为两种类型:P型和Q型,每 种类型都有其特定的定义和性质。
勒让德函数的定义基于勒让德方程,该方程 是一个二阶线性常微分方程。
04
勒让德函数具有一些重要的性质,如正交性 、积分表示、零点和无穷大行为等。
洛朗兹级数展开是复变函数的一种特殊形式的幂级数展 开,它在研究函数的奇异点和分支点等方面具有重要作 用。
02
洛朗兹级数展开可以用来求解某些具有特定性质的复数 函数的积分和微分方程。
03
洛朗兹级数展开的收敛性和奇异性是一个重要的研究课 题,它涉及到级数的收敛范围和条件以及函数的奇异性 。
欧拉公式与双曲函数
复变函数在物理中的应用
波动方程
复变函数用于描述波动现象,如 电磁波、声波等。波动方程的解 是复变函数,描述了波的传播和
变化。
电路分析
在电路分析中,电压和电流可以用 复变函数表示,从而简化计算和分 析。
量子力学
在量子力学中,波函数通常可以表 示为复变函数,描述微观粒子的状 态和行为。
复变函数在工程中的应用
欧拉公式是复变函数中的一个基本公 式,它将三角函数与复数运算联系起 来,从而将实数域上的三角函数扩展 到复数域上。
复变函数-总结
18
例2 问 f (z) = x +2yi 是否可导?
f (z +∆z) − f (z) 解:这里 lim ∆z→0 ∆z ( x + ∆x) + 2( y + ∆y )i − x − 2 yi ∆x + 2∆yi = lim = lim ∆z → 0 ∆x + ∆yi ∆z → 0 ∆x + ∆yi
∂u ∂v ∂v ∂u = , =− ∂x ∂y ∂x ∂y
解析 ( 可导) ⇔ u , v 可微且满足C-R方程
若 推论 : u, v在( x, y )处一阶偏导数连续且满足C − R
方程,则f ( z ) = u + iv在 z = x + iy 处可导.
22
§2.2 解析函数与调和函数的关系
y
由 C − R 方程知:
u x = v y = − 2 y u y = − v x = −2 x
u( x 1 y ) =
0
( x, y )
(x,0)
x
∫
( x, y)
∆x + 2∆yi ∆x = lim =1. 取∆z = ∆x → 0 , lim ∆z→0 ∆ +∆ x yi ∆z→0 ∆x ∆x + 2∆yi 2∆y 取∆z = i∆y → 0, lim = lim = 2. ∆z→0 ∆ +∆ x yi ∆z→0 ∆y 所以 f (z) = x + 2yi 的导数不存在.
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 , 则
lim u(x, y) = u0 x→x0 y→y0 lim f (z) = A ⇔ . z→z0 lim x→x0 v(x, y) = v0 y→y0 运算性质:
《复变函数》总结
复变小结1.幅角(不赞成死记,学会分析).2argtg 20,0,0,0,arctg 0,0,20,arctg arg πππππ<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏<arg z ≤∏Arg(z1z2)=Argz1+Argz2 Arg(z1/z2)=Argz1-Argz2 2. 求根:由z=θi e =r(cos θ+isin θ)得z n =e in θ=r n (cosn θ+isinn θ) 当r=1时,)sin (cos θθi n +=)sin (cos θθn i n + (*1) 当z w n =w= (*2) z arg =θ 例: 可直接利用(*1)式求解可令z=1+i,利用(*2)式求解 3.复函数:a. 一般情况下:w=f(z),直接将z=x+iy 代换求解但遇到特殊情况时:如课本P12例1.13(3)可考虑: z=θi e =r(cos θ+isin θ)代换。
()222cos sin 0,1,2,,1k k n n k i n n n n z rer i k n θπθπθπ+++==+=-L 求方根公式(牢记!):其中。
10(sin cos )55i ππ+41i+b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式:(向量) OC=tOA+(1-t )OB=OB+tBAc.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。
d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.84.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程a.在某个区域内可导与解析是等价的。
但在某一点解析一定可导,可导不一定解析。
b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加)c.指数函数:复数转换成三角的定义。
复变函数知识点总结
复变函数知识点总结1. 复数及复平面- 复数由实部和虚部组成,形式为 `z = a + bi`,其中 `a` 为实部,`b` 为虚部,`i` 为虚数单位。
- 复平面将所有复数表示为二维平面上的点,实轴表示实部,虚轴表示虚部。
- 复数可用极坐标和指数形式表示。
2. 复变函数的定义与性质- 复变函数是将复数域映射到复数域的函数。
- 复变函数的导数称为复导数,由极限定义及柯西—黎曼方程求得。
- 复变函数的连续性与分析性与实变函数类似。
3. 元素函数- 复指数函数:`exp(z) = e^z`,其中 `e` 为自然对数的底数。
- 复对数函数:`Log(z) = ln|z| + i(arg(z) + 2πn)`,其中 `arg(z)` 是复数 `z` 的辐角。
- 复正弦函数:`sin(z) = (e^(iz) - e^(-iz))/(2i)`。
- 复余弦函数:`cos(z) = (e^(iz) + e^(-iz))/2`。
4. 复变函数的级数展开- 柯西—黎曼方程可推导出复变函数的泰勒级数展开。
- 复变函数的泰勒级数展开在某一区域内收敛于该函数。
5. 复积分- 路径积分:沿曲线的积分,路径可用参数方程表示。
- 狭义路径积分与宽义路径积分分别对应于可积与不可积的情况。
- 围道积分:路径围成的图形内积分。
6. 复变函数的解析性- 柯西—黎曼方程刻画了函数在一个区域内的解析性。
- 解析函数满足柯西—黎曼方程,其导函数也是解析函数。
7. 复变函数的应用- 复变函数在电路分析、流体力学、量子力学等领域具有广泛应用。
以上是对复变函数的一些知识点的总结,希望能为您提供参考。
复变函数重点知识点总结
复变函数重点知识点总结复变函数是数学分析中的一门重要课程,主要研究复数域上的函数。
复变函数具有许多特殊性质和重要应用,在数学、物理学等领域有广泛的运用。
以下是复变函数的一些重点知识点总结。
1.复变函数的定义及运算法则:-复变函数是定义在复数域上的函数,可以表示为f(z)=u(x,y)+i*v(x,y),其中z=x+i*y为复数,u(x,y)和v(x,y)为实函数,分别称为f的实部和虚部。
-复变函数的加法、减法、乘法和除法运算法则与实数类似,可以进行复数的加减乘除运算。
-复变函数可以表示为级数形式,如幂级数、三角级数等。
2.复变函数的解析性:- 解析函数是指在其定义域内可导的函数,复变函数的解析性与其实部和虚部的连续性及Cauchy-Riemann条件密切相关。
- Cauchy-Riemann条件是解析函数必须满足的条件,即函数的实部和虚部的偏导数满足一定的关系。
-如果一个复变函数在其定义域内解析,则其在该域内无穷次可导,并且导数处处存在。
3.高阶导数及全纯函数:-复变函数的高阶导数可以通过对复变函数的导数进行重复求导得到。
-如果一个复变函数在其定义域内高阶导数均存在,则称该函数为全纯函数。
-全纯函数具有许多优良性质,如解析、无奇点等。
4. 路径积分及Cauchy定理:-路径积分是指沿着一条曲线对复变函数进行积分的操作,复变函数的路径积分与路径无关。
- Cauchy定理是复分析中的重要定理之一,它指出如果一个函数在一个简单连通区域内解析,那么它在该区域中的曲线积分等于零。
5.解析延拓及解析函数的唯一性定理:-解析延拓是指将一个函数的定义域扩展到更大的区域上,使得该函数在扩展后的区域内解析。
-解析函数的唯一性定理是指如果两个解析函数在一些区域内相等,那么它们在该区域内处处相等。
-解析函数的唯一性定理是复分析中的一个重要定理,它可以用于证明解析函数的存在性、奇点的性质等。
6.高阶亚纯函数及留数计算:-亚纯函数是指解析函数和有限阶极点函数的叠加,亚纯函数可以表示为f(z)=P(z)+Q(z),其中P(z)为解析函数,Q(z)为有限阶极点函数。
复变函数总结汇总
第一章复数与复变函数、复数几种表示(1)代数表示z =x • yi(2)几何表示:用复平面上点表示(复数z、点z、向量z视为同一概念)(3)三角式:z = r(cosv isi nr)(4)指数式:z = re iT1辐角Argz =arg z 2k 二|zh ,x2y2yarctan丄,x》0,xyarcta n丄+兀,x<0,y〉0xargz={ yarcta n± - x,x<0,yc0x兀/2, x = 0, y:>0-■: /2, x =0,y : 0z - z2i、乘幕与方根(1)乘幕:(2)方根:re i-____ 2k n/t argz.R'z=n:|z|e n , k= 0,1,2,…n—1第二章解析函数一、连续、导数与微分概念类似于一元实变函数求导法则与一元实变函数类似注:(1)点解析=点可导,点可导推不出点解析(2)区域内解析与可导等价二、定理1 W = f (z)=u • iv在Z o可导二u,v在Z o可微,满足C-R方程定理2 w二f⑵二u • iv在区域D内解析(可导)二u,v在区域D内可微,满足C-R方程讨论1 u,v在区域D内4个偏导数存在且连续,满足C-R方程=w = f (z)二u iv在区域D内解析(可导)三、解析函数和调和函数的关系1、定义1调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。
定义2设(x,y)^ (x, y)是区域D内调和函数,且满足C-R方程, xx,则称是「的共轭调和函数。
2、定理1解析函数的虚部与实部都是调和函数。
定理2函数在D内解析二虚部是实部的共轭调和函数。
3、问题:已知解析函数的实部(或虚部),求虚部(或实部)理论依据:(1)虚部、实部是调和函数。
(2)实部与虚部满足C-R方程。
求解方法:(例如已知v)(1)偏积分法:先求u x,u y,再求u = udx (y),得出(y)(2)利用曲线积分:求u x,u y,du,再u = u x dx u y dy c(x o,y o)(3)直接凑全微分:求u x,u y,du,再du四、初等函数1、 指数函数 w=e z =e x e iy =e x (cosy i sin y )性质:(1) e z 是单值函数,(2) e z 除无穷远点外处处有定义(3) e z = 0(4) e z 处处解析,(e z )'eZ(5) e z1 Z2 =e Zl e Z2(6) e z 是周期函数,周期是2k 「:i2、 对数函数w =Lnz =ln |z| i argz i2k 二 (多值函数)主值(枝)ln z=l n | z| iargz (单值函数)性质:(1)定义域是z = 0,(2) 多值函数(3) 除去原点和负实轴的平面内连续(5) Ln(wz 2) = Lnz j Lnz 2 Ln 三二 Ln^ - Lnz 2J3、幕函数w = z ,e-Lnz (z = 0「是复常数)(1) 为正整数,函数单值、处处解析,(2) 〉为负整数,函数单值、除去z = 0及其负实轴处处解析,4、三角函数欧拉公式 e i = c 0'S i s i n(4)除去原点和负实轴的平面内解析,1 1(Lnz) (In z): z ,z或 eJe 乂cos , s i n 二 2 2iiz _iz iz _iz定义: e +e . e -e cosz , sin z 二 2 2itan z=sin z/cosz, cot z = cosz/sin zsecz =1/cosz, cscz =1/sin z性质: 周期性、可导性、奇偶性、零点、等于实函数一样各种三角公式、求导公式照搬注: sin z, cosz 的有界性 保护成立。
复变函数总结可修改文字
tan z sin z , cot z cos z ,
cos z
sin z
sec z 1 , csc z 1 ,
cos z
sin z
4. 双曲函数
ez ez
ez ez
sinhz
, cosh z
,
2
2
tanh z sinh z , coth z cosh z ,
k 0
称为以 b 为展开中心的幂级数。其中 ak 为复常数。
幂级数的收敛圆及其收敛半径
k
对于幂级数 ak (z b)k ,必定存在一以 b 为圆心,R 为
k 0
半径的圆,在圆内该级数绝对收敛(而且在较小的圆内 一致收敛),而在圆外发散。这个圆称为该幂级数的收敛 圆,R 称为它的收敛半径。
确定幂级数的收敛半径
z rei
(1.2.14)
复数的乘幂与方根
zn z z z
zn rn (cos n i sin n )
wk
n
i 2kπ
re n
n
r [cos(
2kπ ) i sin(
n
2kπ )], n
(k 0,1, 2,, n 1)
区域
z0的去心邻域 : 点集 z 0 z z0
复变函数总结
复数的表示
1.2.1 复数的几何表示
y
P y
r
x
o
图 1.1
x
y
0
x
2kπ 0
图 1.2
复数的指数表示
定义 1.2.6 复数的指数表示 利用欧拉(Euler)公式
ei cos i sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f.三角函数和双曲函数:
e cos z 只需记住:
iz
e iz e iz e iz , sin z . 2 2i
其他可自己试着去推导一下。
反三角中前三个最好自己记住,特别 因为下一章求积分会用到 (arctan z ) 5.复变函数的积分
, 1
z
2
1
形如:
e
ix
f ( x )dx
的积分
使用条件:其中 f(z)在 Imz≥0 内除可能有有限各孤立奇点外 处处解析,并且当 z 在 Imz≥0 上时 P104 引理 5.3 中(5.15) 式成立。 (具体理解大家可参考课本中的例题) 老师所给划题目:P22-例、P26-例、P33-3
P26-例、P33-1 P88-11(1-6) P113-5、相关例子 P55-7(1、2)、相关例子 P79-80 例、P89-16(2、5) P97 例、P113-6(1-5) P46-例、P47 例、P55-8 P90-18(1、2、3) P114-8、相关例子
a.注:只有当函数解析即满足柯西-黎曼公式时求积分才与路 径无关只与出没位置有关。 (勿乱用) 例如: zdz 与路径无关。而 zdz 与路径有关。
c c
b.柯西-古萨基本定理:当函数 f(z)在以简单闭曲线 C 为边界 的有界区域 D 内解析且在闭区域上连续时:Biblioteka f ( z) d z 0
奇点:即使得函数 f(z)无意义的点。 (P82 定理 4.18 的三条关 于孤立奇点的等价式实为可去奇点的特征) 奇点又分为:可去奇点,本性奇点,一般奇点。 可去奇点:即洛朗展开式中不存在 Z 的负次数方幂。 本性奇点:即展开式中存在 Z 的负无穷次方幂。 一般奇点:即展开式中存在 Z 的有限次负次数方幂。 极点:即为奇点中除去可去奇点后的所有奇点。 极点一定是奇点,但奇点不一定是奇点。 (奇点容易判断, 极点可借助 P83 定理 4.19 判断同时可以学 会判断是几阶极点,对于第五章中求留数有用) P84 定理 4.22:极点和零点的关系。 7.留数 a.留数定理: R e s [
其余可由式:
1 1 z z 2 ( 1) n z n , | z | 1. 1 z
直接推导。 (注意各展开式的[z]取值范围) e.洛朗展开式:与泰勒展开式的主要区别在于其包含 Z 的负次 数方幂。泰勒展开式是洛朗展开式的特殊形式。 (即当洛朗 展开式中奇点为可去奇点时展开式为泰勒形式) f.零点,奇点,极点 零点:即使得函数 f(z)=0 的点。
以上基本上是理论的东西。有些东西仅为个人理解,如有问 题可提出来。例题大家可参考吴林峰发到群邮箱内的试卷。 里面全部附有答案(如果找不到的可找我要) 。复变看书是 作用不是很大,大家还是多做做题练习一下,效果会更好。
f ( z ) cn ( z z 0 ) n
n 0
成立, 其中cn
五个重要初等函数展开式:
1 (n) f ( z0 ), n 0,1,2, . n!
( 4 .8 )
z2 zn e 1 z . 2! n!
z
z3 z5 z 2 n 1 n sin z z ( 1) 3! 5! ( 2 n 1 )! ( 4 . 10 ) z2 z4 z 2n n cos z 1 ( 1) 2! 4! ( 2 n )! ( 4 . 11 )
n
w
n
z
求方根公式(牢记!):
w=
n
z n re
i
2 k
n
n r cos 2n k i sin 2n k 其中k 0,1, 2, , n 1。
(sin i cos )10 例: 5 5
(*2)
arg z
可直接利用(*1)式求解 可令 z=1+i,利用(*2)式求解
(5 .7 )
有些情况下利用留数和定理:
Res[ f ( z ), ]
n
Res[ 1 2 π i
f ( z ), z
k 1
k
]
1 2 π i
C
f (z) d z
C
f (z) d z 0.
更便于求解
1 1 Res[ f ( z ), ] Res f z z 2 ,0 特殊转换:
f ( z ), z 0 ] 1 2 i
C
f (z) d z
( 5 .3 )
利用课本 P93-94 三种情形及第五章中判断极点的阶数求留数 (没什么特殊方法,希望大家通过多练来掌握) b.利用留数定理求积分:
C n
f ( z ) d z 2 π i Res[
k 1
f ( z ), z k ].
argtg
y . x 2
Arg(z1/z2)=Argz1-Argz2
2.
求根:
i
由 z= e
=r(cos +isin )得
z =e
n
in
=
r
n
(cosn +isinn ) (*1)
当 r=1 时, 当
(cos i sin ) = (cos n i sin n )
i e e i i , , e ,i 能够区分:
当底数不为 e 时,w= z a = eaLnz (幂指数为 Ln 而非 ln) 的计算。
e y e y cos iy ch y 2 (2.15) 及 y y e e sin iy i sh y 2i i 1 iz Arctg z Ln 2 1 iz
C
重要公式
2 π i, n 0, dz n 1 ( z z0 ) 0, n 0. | z z0 | r
c.柯西积分公式和高阶导数公式及其应用于计算积分:
f ( z0 )
1 f ( z) d z. 2 π i C z z0
n! f ( z) dz n 1 2πi ( z z ) 0 C
(3.17)
(3.20)
f ( n ) ( z0 )
n 1, 2,。
d.调和函数:
2 2 ( x, y )调和: 2 2 0 x y
一般与柯西-黎曼公式一起用:熟知课本 P52 中的例 3.11 中三 种解法即可。 6.级数
a.熟知课本 P59 定理 4.2 及其推导(其中 1 最重要)性质。 b.阿贝尔定理:判断收敛和发散区间。 c. 幂级数的收敛半径:利用比值法和根值法。 (方法同于高 数级数) d.泰勒级数:
4
1 i
3.复函数: a. 一般情况下:w=f(z),直接将 z=x+iy 代换求解 但遇到特殊情况时:如课本 P12 例 1.13(3)可考虑: z= ei =r(cos +isin )代换。
b. 对 于 P12 例 题 1.11 可 理 解 为 高 中 所 学 的 平 面 上 三 点 (A,B,C)共线所满足的公式: (向量) OC=tOA+(1-t)OB=OB+tBA c.对于 P15 例题 1.14 中可直接转换成 X 和 Y 的表达式后判断 正负号来确定其图像。 d.判断函数 f(z)在区域 D 内是否连续可借助课本 P17 定义 1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达 式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定 可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k ) e.幂函数:底数为 e 时直接运算(一般转换成三角形式)
复变小结 1.幅角(不赞成死记,学会分析)
y x0 arctg x , , x 0, y 0 arg z 2 y arctg , x 0, y 0 x , x 0, y 0 2 -∏<arg z≤∏ Arg(z1z2)=Argz1+Argz2 其中
c.用留数计算实积分:
2π
0
R (cos , sin ) d
形如:
的积分,一般令 z= ei
使用条件:R(x,y)变量 x,y 的有理函数,并且在单位圆上分 母不为零。
形如
R( x) d x 的积分
使用条件:函数 R(x)是 x 的有理函数, 而分母的次数至少比 分子的次数高二次, 并且 R(x)在实轴上没有孤立奇点时, 积 分是存在的.