高中物理牛顿运动定律的应用 牛顿第二定律的应用之瞬时性问题

合集下载

牛顿运动定律应用——瞬时性问题

牛顿运动定律应用——瞬时性问题

专题:牛顿第二定律的应用——瞬时性问题一、牛顿第二定律1.内容:物体加速度的大小跟作用力成,跟物体的质量成,加速度的方向跟的方向相同。

2.表达式:F合=3.物理意义:反映物体运动的加速度大小、方向与所受的关系。

4.F合与a的关系同向性、正比性、瞬时性、因果性、同一性、独立性、局限性二、小试牛刀1、关于物体运动状态的改变,下列说法中正确的是( )A.运动物体的加速度不变,则其运动状态一定不变B.物体的位置在不断变化,则其运动状态一定在不断变化C.做直线运动的物体,其运动状态可能不变D.做曲线运动的物体,其运动状态可能不变2、设想能创造一理想的没有摩擦力和流体阻力的环境,用一个人的力量去推一万吨巨轮,则从理论上可以说( )A.巨轮惯性太大,所以完全无法推动B.一旦施力于巨轮,巨轮立即产生一个加速度C.由于巨轮惯性很大,施力于巨轮后,要经过很长一段时间后才会产生一个明显的加速度D.一旦施力于巨轮,巨轮立即产生一个速度三、思考:你对牛二律的瞬时性是如何理解的?要点一、力连续变化过程的瞬时性【例1】如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的合外力、加速度、速度的变化情况是怎样的?小步勤挪:1、对小球进行受力分析:2、在接触的初始阶段,那个力大?小球的合力方向怎样?大小如何变化?加速度方向怎样?大小如何变化?速度如何变化?3、当弹力增大到大小等于重力时,合外力、加速度、速度又如何?4、之后,小球向那运动?弹力如何变化?合力的大小方向如何?加速度、速度大小方向怎样变化?【变式1】(2009·上海高考)如图所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是( ) ①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③ B.②③ C.①④ D.②④【变式2】如图所示,物体P以一定的初速度v沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P的加速度大小不断变化,方向也不断变化B.P的加速度大小不断变化,但方向只改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大从压缩最短到恢复原长过程中弹力、合力、加速度、速度变化情况要点二、力突变过程的瞬时性【例2】如图所示,物体甲、乙质量均为m ,弹簧和悬线的质量可以忽略不计.当悬线被烧断的瞬间,甲、乙的加速度数值应是下列哪一种情况( )A.甲是0,乙是gB.甲是g ,乙是gC.甲是0,乙是0D.甲是g/2,乙是g【思路】分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度【点拨】物体瞬时加速度的两类模型:(1)刚性绳(或接触面)的特点:(2)弹簧(或橡皮绳)的特点:【提醒】力和加速度的瞬时对应性是高考的重点.物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然!【例3】如图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度的判断正确的是( ) A.剪断P处瞬间,A 的加速度为零,B 的加速度为g B.剪断P处瞬间,A 的加速度为2g ,B 的加速度为零 C.剪断Q处瞬间,A 的加速度为零,B 的加速度为零 D.剪断Q处瞬间,A 的加速度为2g ,B 的加速度为g【变式1】 在如图所示的装置中,小球m 用两根绳子拉着,绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加速度大小?方向如何?【变式2】如图所示,现将2l 线剪断,求剪断瞬间物体的加速度。

牛顿第二定律的应用(瞬时性、矢量性)

牛顿第二定律的应用(瞬时性、矢量性)
F (ma)2 (mg)2
m a2 g2
设弹力与水平方向的夹角为,则:
tan α mg g ma a
【解题回顾】 (一)硬杆对小球的弹力的方向并不一定 沿杆的方向,这可借助于牛顿运动定律来 进行受力分析:
1、物体处于平衡状态时,合外力应为0; 2、物体处于变速运动状态时,满足:
F合=ma, F合方向与加速度方向一致. (二)应用牛顿定律解题时要注意a与F合方向 一致性的关系.有时可根据已知合力方向确定加
明确“轻绳”和“轻弹簧” 两个理想物理模型的 区别.
如图所示,质量均为m的木块A和B用一轻弹簧相连,竖直 放在光滑的水平面上,木块A上放有质量为2m的木块C,三 者均处于静止状态。现将木块C迅速移开,若重力加速度 为g,则在木块C移开的瞬间( C )
A.木块B对水平面的压力迅速变为2mg
B.弹簧的弹力大小为mg
T1
θ T2
m
F合
mg
T2
F合 TG
F合=mg tan a=g tan
T
T
G2
G1
G
F合=mg sin a=g sin
如图质量为 m 的小球用水平弹簧系住,并用倾角为 30°的光
滑木板 AB 托住,小球恰好处于静止状态.当木板 AB 突然
向下撤离的瞬间,小球的加速度为 A.
( C)
B.大小为2 3 3g,方向竖直向下
【例1】小车上固定着光滑的斜面, 斜面的倾 角为θ.小车以恒定的加速度向前运动,有一物 体放于斜面上, 相对斜面静止, 此时这个物体 相对地面的加速度是多大?
F合=G tan a =g tan
N
F合 a
θ
G
例 2:如图所示,动力小车上有一竖杆,杆顶端

第7节 用牛顿运动定律解决问题(二) 瞬时性问题

第7节 用牛顿运动定律解决问题(二) 瞬时性问题

(练习)如图所示,物体甲、乙质量均为m。弹簧和悬线的质量可 以忽略不计。当悬线被烧断的瞬间,甲、乙的加速度数值应是 下列哪一种情况: A.甲是0,乙是g B.甲是g,乙是g C.甲是0,乙是0运动定律
6
用牛顿运动定律解决问题(二)
——瞬时性问题
瞬时性问题:
(1)物体运动的加速度a与其所受的合外力 F有瞬时对应关 系. 每一瞬时的加速度只取决于这一瞬时的合外力,而与 这一瞬时之前或之后的力无关,不等于零的合外力作用 在物体上,物体立即产生加速度;若合外力的大小或方 向改变,加速度的大小或方向也立即(同时)改变;若合外 力变为零,加速度也立即变为零 (物体运动的加速度可以 突变)。
如图,四个质量均为m的小球,分别用三条轻绳和一根轻弹 簧连接,处于平衡状态,现突然迅速剪断轻绳A1、B1,让小球 下落。在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用 a1、 a2 、a3 、a4表示,则他们那分别等于多少:
a1 a2 g a3 2g
FT ' 2mg
FT ' 2mg
瞬时性问题:
两类模型的区别:
1、绳和支撑面: 是一种不发生明显形变就可产生弹力的物体,若剪断(或脱 离 ) 后,其弹力立即消失,不需要形变恢复时间,一般题目中所 给的细线和接触面在不加特殊说明时,均可按此模型处理。“突 变性”(外界条件发生变化时,力瞬间变化) 2、弹簧和橡皮筋: 当弹簧的两端与物体相连(即两端为固定端)时,由于物体具 有惯性,弹簧的长度不会发生突变,即形变恢复需要较长时间, 所以在瞬时问题中,其弹力的大小往往可以看成不变,即此时弹 簧的弹力不突变。“渐变性”(外界条件发生变化,力逐渐变化)
❸.不可伸长:即无论绳所受拉力多大,绳子的长度不 变,即绳子中的张力可以突变.

《牛顿第二定律的应用——瞬时性问题》导学案

《牛顿第二定律的应用——瞬时性问题》导学案
难点:
培养良好的解题习惯、建立思路、掌握方法是难点。
一、两种基本模型:
1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
A.都等于B. 和0
C.和0 D.0和
四、我学到了什么?
A.22m/s2竖直向上B.22m/s2竖直向下
C.2m/s2竖直向上D.2m/s2竖直向下
3.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定一个质量为m的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:()
A.gB. gC.0D.g
两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为:()
《牛顿第二定律的应用——瞬时性问题》导学案
学习目标:
1、巩固记忆牛顿第二定律内容、公式和物理意义;
2.通过例题分析、讨论、练习学会应用牛顿定律解决力学问题的方法,培养审题能力、分析综合能力和运用数学工具的能力.
3.通过训提高解题规范、画图分析、完善步骤的能力.
重点:
学会应用牛顿第二定律解决力学问题的基本方法.
A和B的加速度aA=,aB=。
3.如图,用轻弹簧相连的A、B两球,放在光滑的水平面上,mA=2kg,mB=1kg,在6N的水平力F作用下,它们一起向右加速运动,在突然撤去F的瞬间,两球加速度aA=,aB=
巩固练习:
1.如图质量为m的小球用水平弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度()

高中物理 牛顿第二定律 基础知识和应用

高中物理   牛顿第二定律 基础知识和应用

(F-mg)sin 37°-Ff=ma
FN=(F-mg)cos 37°,Ff=μFN 代入数据,得a=2 m/s2。
1 (2)由运动学公式,得 L= at2 2 代入数据,得 t=2 s。
【答案】 (1)2 m/s2 (2)2 s
【例1】一物体放在光滑水平面上,初速为零,先对物 体施加一向东的恒力F,历时1s;随即把此力改为向西, 大小不变,历时1s;接着又把此力改为向东,大小不 变.历时1s;如此反复,只改变力的方向,共历时 1min,在此1min内( ) D A.物体时而向东运动,时而向西运动,在1min末静 止于初始位置之东 B.物体时而向东运动,时而向西运动,在1min末静 止于初始位置 C.物体时而向东运动,时而向西运动,在1min末继 续向东运动 D.物体一直向东运动,从不向西运动,在1min末静 止于初始位置之东
C.在3 s~4 s内外力F不断变化
D.在3 s~4 s内外力F恒定
【解析】 对物体受力分析如图,根据牛顿第二定律可知 F-Ff=ma;从v -t图象中可知,0~1 s内,a恒定 1~3 s内a=0,3~4 s内,a逐渐增大。故选B、C。
【答案】 BC
练习
1、下列说法正确的是:



A、两个质量不同的物体,所受合力大的物体,加 速度一定大。
刷子的质量为m=0.5 kg,刷子可视为质点。刷子与天花板间
的动摩擦因数为0.5,天花板长为L=4 m,取 sin 37°=0.6,g=10 N/kg,试求:
(1)刷子沿天花板向上运动的加速度;
(2)工人把刷子从天花板底端推到顶端所用的时间。
【解析】 (1)以刷子为研究对象,受力分析如图所示,
设滑动摩擦力为Ff,天花板对刷子的弹力为FN,由牛顿第 二定律,得

轻松解决瞬时性问题

轻松解决瞬时性问题

课程信息【明确目标有的放矢】二.重难点提示充分利用瞬时性问题中的临界条件解题。

丽考点粘ill【更难要点朋突破]根据牛顿第二定律,a与F具有瞬时对应关系,当F发生究变时,加速度也会跟着变化,瞬时性问题就是分析某个力发生究变后,物体的加速度的变化,或者是引起的其他力的变化。

在求解瞬时性加速度问题时应注意:(1)确定瞬时加速度关键是正确确定瞬时合外力。

(2)当指定的某个力发生变化时,是否还隐含着其他力也发生变化。

(3)对于弹簧相关瞬吋值(某时刻的瞬时速度或瞬吋加速度)进行分析吋,要注意如下两点:①画好一个图:弹簧形变过程图:②明确三个位置:弹簧自然长度位置、平衡位置及形变董最大的位置。

a be©(4)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。

(5)加速度可以随着力的突变而究变,而速度的变化需要一个过程的积累,不会发生突变。

UII典例精祈【頁题十模拟砂通关】例题1如图所示,质量为刃的小球用水平轻弹簧系住,并用倾角为30°的光滑木板力0 托住,小球恰好处于静止状态,当木板加突然向下撤离的瞬间,小球的加速度大小为()思路分析:平衡时,小球受到三个力:重力mg.木板朋的支持力F 科和弹爰拉力 受力情况如图所示究然撤离木板时,/;究然消失而其他力不变,因此片与重力驱的合力F ———= 产生的加速度a= — = — g, B 正确。

cos30° 3in 3答案:B例题2 如图所示,力、0球的质量相等,弹簧的质莹不计,倾角为&的斜面光滑,系 统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()A. 两个小球的瞬时加速度均沿斜面向下,大小均为i n 0B. 0球的受力情况未变,瞬时加速度为零C. /I 球的瞬时加速度沿斜面向下,大小为2的in 6D. 弹簧有收缩的題讲,B 球的瞬吋加速慶向上,力球的瞬时加速度向下,A. 0两球瞬 时加速度A. 0B.2V3都不为零思路分析:对/I、0两球在细线烧斷祈.后的瞬间分别受力分析如图所示:烧断前烧断后细线烧断瞬间,弹簧还未形变,弹簧弹力与原来相等,£球受力平衡,侔i n 8 — kx = 0,即亦=0, Z球所受合力为mgsin 6^k x-ma卩:2mg3ir\ O-ma^解得血=2罚in 6, 故A, D错误,B, C正确。

3-2_牛顿第二定律—瞬时性问题、等时性问题

3-2_牛顿第二定律—瞬时性问题、等时性问题

R+ r g ,即所用的时间t与倾角θ无关,所以t1=t2,B项正
第三章 牛顿运动定律
第22页
金版教程 · 高三一轮总复习 · 新课标 · 物理
主干回顾固基础 典例突破知规律 特色培优增素养 高考模拟提能训 限时规范特训
(1)物体沿着位于同一竖直圆上的所有过圆周最低点的光 滑弦由静止下滑, 到达圆周最低点的时间均相等, 且为 t=2 (如图甲所示). (2)物体沿着位于同一竖直圆上的所有过顶点的光滑弦由 静止下滑,到达圆周低端时间相等为 t=2 R g (如图乙所示). R g
间,木块 1 、 2 的加速度大小分别为 a1 、
a2.重力加速度大小为g.则有( )
A. a1=0,a2=g B. a1=g,a2=g m+ M C. a1=0,a2= M g m+ M D. a1=g,a2= M g
[解题探究]
提示:不变
(1)木板抽出后的瞬间,弹簧的弹力变吗?
提示:
木块1
木块2
[尝试解答] 选 C. 依题意可知,小球受重力 mg、弹簧的弹力 F1 和细线的拉 力 F2 作用处于平衡状态,根据共点力的平衡知识可得 F1 = 4 mg 5 mgtan53° = mg,F2= = mg,故选项 A、B 均错误;细 3 cos53° 3 线烧断的瞬间,弹簧对小球的弹力不变,此时重力与弹簧弹力 5 5 的合力 F′=F2= mg,由牛顿第二定律可得加速度 a= g,故 3 3 选项 C 正确;
物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速
度,此类问题应注意以下几种模型:
特性 模型 轻绳 橡皮绳
受外力时 的形变量 微小不计 较大
力能 否突变 可以 不能
产生拉力 或支持力 只有拉力 没有支持力 只有拉力没 有支持力 既可有 拉力也可 有支持力 既可有 拉力也可 有支持力

牛顿第二定律瞬时性问题

牛顿第二定律瞬时性问题

牛顿运动定律专题(二)※【模型解析】——瞬时性问题(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是() A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是( )A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】1.如右图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( )A .0B .2gsin θ,方向沿斜面向下C .2gsin θ,方向沿斜面向上D .gsin θ,方向沿斜面向下1题图 2题图 3题图2.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。

第11讲 牛顿第二定律的应用

第11讲  牛顿第二定律的应用

第11讲 牛顿第二定律的应用姓名 学校 日期知识点一 牛顿第二定律的应用一、牛顿第二定律的瞬时性问题:分析物体的瞬时问题,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意两种基本模型的建立.1.刚性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要考虑形变恢复时间.一般题目所给细线和接触面在不加特殊说明时,均可按此模型处理.2.弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变【例1】如图3-3-1所示,A 、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是( ) A .a A =g ; a B =g B .a A =2g ;a B =g C .a A =2g ;a B =0 D .a A =0 ; a B =g【例2】如图3-3-2a 所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态.现将l 2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设l 1线上拉力为T 1,l 2线上拉力为T 2,物体重力为mg ,物体在三力作用下保持平衡T 1cos θ=mg ,T 1sin θ=T 2,T 2=mgtan θ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图a 中的细线l 1改为长度相同、质量不计的轻弹簧,如图3-3-2b 所示,其他条件不变,求解的步骤和结果与(l )完全相同,即 a =g tan θ,你认为这个结果正确吗?请说明理由.图3-3-2二、用牛顿定律处理临界问题的方法1. 临界与极值问题是中学物理中的常见题型,结合牛顿运动定律求解的也很多,临界是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的某些物理量达到极值.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变.2.处理临界状态的基本方法和步骤 ①分析两种物理现象及其与临界相关的条件; ②用假设法求出临界值;③比较所给条件和临界值的关系,确定物理现象,然后求解. 3.处理临界问题的三种方法①极限法:在题目中如出现“最大”、“最小”、“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.②假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题,一般用假设法.③数学方法:将物理过程转化为数学公式根据数学表达式求解得出临界条件.【例 3】如图3-3-3所示,在水平向右运动的小车上,有一倾角为α的光滑斜面,质量为m 的小球被平行于斜面的细绳系住并静止在斜面上,当小车加速度发生变化时,为使球相对于车仍保持静止,小车加速度的允许范围为多大?【例4】如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球.试求(1)当滑块至少以多大的加速度向左运动时,小球对滑块的压力等于零;(2)当滑块以a =2g 的加速度向左运动时线中的拉力F T 为多大?图3-3-3 图3-3-4三、牛顿运动定律与图象的结合1.图象在中学物理中应用十分广泛,因为它具有以下优点:①能形象地表达物理规律;②能直观地描述物理过程;③能鲜明地表示物理量之间的依赖关系,因此理解图象的意义,自觉地运用图象表达物理规律很有必要.2.要特别注意截距、斜率、图线所围面积、两图线交点的含义.很多情况下写出物理量的解析式与图象对照,有助于理解图象的物理意义.【例5】放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图3-3-6所示。

高考物理一轮复习 专题3.2 牛顿第二定律及其应用教学案

高考物理一轮复习 专题3.2 牛顿第二定律及其应用教学案

专题3.2 牛顿第二定律及其应用1.理解牛顿第二定律的内容、表达式及性质.2.应用牛顿第二定律解决瞬时问题和两类动力学问题.一、瞬时加速度的求解1.牛顿第二定律(1)表达式为F=ma.(2)理解:核心是加速度与合外力的瞬时对应关系,二者总是同时产生、同时消失、同时变化.2.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.二、动力学中的图象问题1.动力学中常见的图象v-t图象、x-t图象、F-t图象、F-a图象等.2.解决图象问题的关键:(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原点是否从零开始。

(2)理解图象的物理意义,能够抓住图象的一些关键点,如斜率、截距、面积、交点、拐点等,判断物体的运动情况或受力情况,再结合牛顿运动定律求解.三、连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.高频考点一、牛顿第二定律的理解例1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A .由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比 B .由m =F a 可知,物体的质量与其所受的合力成正比,与其运动的加速度成反比 C .由a =F m 可知,物体的加速度与其所受的合力成正比,与其质量成反比 D .由m =F a可知,物体的质量可以通过测量它的加速度和它所受到的合力而求出答案: CD【变式探究】下列关于速度、加速度、合外力之间的关系,正确的是( ) A .物体的速度越大,则加速度越大,所受的合外力也越大 B .物体的速度为0,则加速度为0,所受的合外力也为0C .物体的速度为0,则加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为0,所受的合外力也可能为0解析: 物体的速度大小和加速度大小没有必然联系。

牛顿第二定律的瞬时性问题——教学反思1

牛顿第二定律的瞬时性问题——教学反思1

《牛顿第二定律的瞬时性问题》——教学反思一、课题的准备阶段牛顿运动定律这一章节在高中物理中的地位举足轻重,在物理的教学公开课中,也经常被老师们选择其中的某一节内容作为上课主题。

教材中包含五个课题:牛顿第一定律、牛顿第二定律、牛顿第三定律、牛顿运动定律的应用、超重与失重。

其中牛顿第二定律定量的给出了物体的加速度与合外力、质量的关系,牛顿第二定律具有丰富的内涵,其具有五个性质:因果性、矢量性、瞬时性、独立性和相对性。

牛顿第二定律的每一个性质都可以用一个物理课时进行深入的研究。

结合成都七中和成都七中八一学校的高一物理教学进度,由成都市教科院组织了一次在成都七中八一学校的同课异构的展示课,课题确定为《牛顿第二定律的瞬时性》,上课时间11月21日,组上老师在一个月前推荐了我去上这次公开课,给我一次锻炼和展示的机会,同时我也借此课题作为学校分散献课的上课课题。

在七中老师中流行着这样一句话:不怕上公开课,就怕上公开课的准备过程。

因为每一次公开课都是一次重要的亮相,对老师个体来说,是个人教学能力的集中展示,对备课组和教研组来说,就是集体力量的集中展示。

为了把这节课上出新颖,上出高度,上出水平。

我做了充分的构思和准备,去学校的图书馆查阅相关资料,在网上也查阅了关于牛顿第二定律瞬时性问题的理论研究,在这节课的实验中,我也做了大胆的尝试,期间做了很多次改进和调整,这些都源于物理教研组的老师们给带来的启发和建议。

二、课题框架的搭建牛顿第二定律的瞬时性,指的是合外力与加速度瞬时一一对应关系,合外力不变,加速度不变;合外力渐变,加速度渐变;合外力突变,加速度突变。

由此我确定了三个教学内容和环节:一是合外力恒定,加速度恒定(问题1:地铁列车启动阶段的瞬时加速度问题为例)。

二是合外力渐变,加速度渐变,(问题2:“蹦极”过程中“人”的加速度变化问题)。

三是合外力突变,加速度突变(问题3:轻弹簧、轻绳模型中的瞬时加速度问题)。

针对这节课的内容,我请教了物理组的范波老师、谢英胜老师。

专题3.3 牛顿第二定律中的瞬时性问题(解析版)

专题3.3 牛顿第二定律中的瞬时性问题(解析版)

【2 年模拟再现】
1.(6 分)(2019 江西南昌二模)如图所示,细线 AB 和 BC 连接着一质量为 m 的物体 P,其中绳子的 A 端固定,C 端通过小定滑轮连接着一质量也为 m 的另一个物体 Q,开始时,用手抓住物体 Q,使物体 P、Q 均静止,此时 AB 和 BC 两绳中拉力大小分别为 T1,T2 把手放开瞬间,AB 和 BC 两绳中拉力大小分别为 T1′、
2
T2′.已知 ABC 处于同一竖直平面内,绳子间连接的夹角如图。则( )
A.T1:T1'=1:1 【参考答案】AC
B.T1:T2=1:2
C.T2:T2'=2:3
D.T1′:T2'= :1
【名师解析】根据共点力的平衡,可以得出拉力的大小;在放手的瞬间要考虑瞬时加速度问题,根据牛顿
第二定律可以求出放手后拉力的大小。
用手抓住物体 Q 时,以悬点为研究对象,悬点受力平衡,有:
T1=mgcos30°…①,T2=mgsin30°…② 把手放开瞬间,设 Q 加速度为 a,则 P 在瞬间沿 BC 加速度也为 a,根据牛顿第二定律,有:对 Q:mg﹣T'2 =ma…③
对 P,在 BC 方向:T'2﹣mgcos60°=ma…④ 在 AB 方向:T'1=mgsin60°…⑤ 联立①②③④⑤得:T1:T1'=1:1,T2:T2'=2:3,选项 AC 正确。 【点评】本题考查共点力的平衡,关键要注意在放手瞬间,在 BC 方向有加速度,而在 AB 方向受力平衡。
C.若弹簧 b 的左端松脱,则松脱瞬间小球的加速度为 2
D.若弹簧 b 的左端松脱,则松脱瞬间小球的加速度为 3g
【参照答案】 B
【名师解析】 本题可用正交分解法求解,将弹簧 a 的弹力沿水平和竖直方向分解,如图所示,则 Tacos 30° =mg,Tasin 30 °=Tb,结合胡克定律可求得 a、b 两弹簧的伸长量之比为2k2,结合牛顿第二定律可求得松

牛顿第二定律_例题详解

牛顿第二定律_例题详解

牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。

B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。

(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。

B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。

不能承受压力。

C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。

【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。

2牛顿第二定律瞬时性问题.

2牛顿第二定律瞬时性问题.

牛顿运动定律专题(二※【模型解析】——瞬时性问题(1刚性绳 (或接触面 :一种不发生明显形变就能产生弹力的物体, 剪断 (或脱离后, 弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2弹簧 (或橡皮绳 :当弹簧的两端与物体相连(即两端为固定端时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中, 其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例 1.如图,物体 A 、 B 用轻质细线 2相连,然后用细线 1悬挂在天花板上,求剪断轻细线 1的瞬间两个物体的加速度 a 1、 a 2大小分别为 (A . g, 0B . g , gC . 0, gD . 2g , g例 1题图例 2题图例 3题图例 2. 如图所示, 吊篮 P 悬挂在天花板上, 与吊篮质量相等的物体 Q 被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝 P 和物体 Q 的加速度大小是 (A . a P =a Q =gB . a P =2g , a Q =0C . a P =g , a Q =2gD . a P =2g , a Q =g例 3. 如图所示,物块 1、 2间用刚性轻质杆连接,物块 3、 4间用轻质弹簧相连,物块 1、 3质量为 m, 2、 4质量为 M , 两个系统均置于水平放置的光滑木板上, 并处于静止状态. 现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块 1、 2、 3、4的加速度大小分别为 a 1、 a 2、 a 3、 a 4. 重力加速度大小为 g ,则有 (A.a 1=a2=a3=a4=0B. a1=a2=a3=a4=gC . a 1=a 2=g , a 3=0, a 4=m +M M gD . a 1=g , a 2=m +M M g , a 3=0, a 4=m +M M g例 4.细绳拴一个质量为 m 的小球, 小球用固定在墙上的水平弹簧支撑, 小球与弹簧不粘连. 平衡时细绳与竖直方向的夹角为 53°, 如图所示. 以下说法正确的是 (已知cos 53°=0.6, sin 53°=0.8(大智者必谦和,大善者比宽容。

牛顿运动定律的10种典型案例

牛顿运动定律的10种典型案例

牛顿运动定律典型案例案例1: 牛顿第二定律的矢量性牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

例1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?案例2: 牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。

例2、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。

现将L 2线剪断,求剪断瞬时物体的加速度。

(l )下面是某同学对该题的一种解法:分析与解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有T 1cos θ=mg , T 1sin θ=T 2, T 2=mgtan θ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。

因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向。

你认为这个结果正确吗?请对该解法作出评价并说明理由。

(2)若将图2(a)中的细线L 1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l )完全相同,即 a =g tan θ,你认为这个结果正确吗?请说明理由。

案例3: 牛顿第二定律的独立性当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。

牛顿运动定律的应用之瞬时性问题 (解析版)

牛顿运动定律的应用之瞬时性问题 (解析版)

牛顿运动定律的应用之瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失。

分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型:模型受外力时的形变量力能否突变产生拉力或压力轻绳微小不计可以只有拉力没有压力轻橡皮绳较大不能只有拉力没有压力轻弹簧较大不能既可有拉力也可有压力轻杆微小不计可以既可有拉力也可有支持力【规律方法】抓住“两关键”、遵循“四步骤”(1)分析瞬时加速度的“两个关键”:①分析瞬时前、后的受力情况和运动状态。

②明确绳或线类、弹簧或橡皮条类模型的特点。

(2)“四个步骤”:第一步:分析原来物体的受力情况。

第二步:分析物体在突变时的受力情况。

第三步:由牛顿第二定律列方程。

学,科网第四步:求出瞬时加速度,并讨论其合理性。

【典例1】两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图所示。

现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则()A.a1=g,a2=gB.a1=0,a2=2gC.a1=g,a2=0D.a1=2g,a2=0【答案】 A【解析】 由于绳子张力可以突变,故剪断OA 后小球A 、B 只受重力,其加速度a 1=a 2=g 。

故选项A 正确。

【典例2】如图所示,光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为a 1和a 2,则( ).A .a 1=0,a 2=0B .a 1=a ,a 2=m 2m 1+m 2aC .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=m 1m 2a【答案】 D【典例3】用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图所示.将细绳剪断后( ).A .小球立即获得kxm的加速度B .小球在细绳剪断瞬间起开始做平抛运动C .小球落地的时间等于2h gD .小球落地的速度大于2gh 【答案】 CD【解析】 细绳剪断瞬间,小球受竖直方向的重力和水平方向的弹力作用,选项A 、B 均错;水平方向的弹力不影响竖直方向的自由落体运动,故落地时间由高度决定,选项C 正确;重力和弹力均做正功,选项D 正确.【典例4】如图所示,A 、B 、C 三球质量均为m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法中正确的是( )A. A 球的受力情况未变,加速度为零B. C 球的加速度沿斜面向下,大小为gC. A 、B 之间杆的拉力大小为2mg s in θD. A 、B 两个小球的加速度均沿斜面向上,大小均为12g s in θ【答案】D【跟踪短训】1.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的弹簧,则当木块接触弹簧后( ).A .木块立即做减速运动B .木块在一段时间内速度仍可增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块加速度为零 【答案】 BC【解析】 木块在光滑水平面上做匀加速运动,与弹簧接触后,当F >F 弹时,随弹簧形变量的增大,向左的弹力F 弹逐渐增大,木块做加速度减小的加速运动;当弹力和F 相等时,木块速度最大,之后木块做减速运动,弹簧压缩量最大时,木块加速度向左不为零,故选项B 、C 正确.2.(多选)质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如图所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力F 撤去,此瞬间( ).A .A 球的加速度为F2mB .A 球的加速度为零C .B 球的加速度为F2mD .B 球的加速度为Fm【答案】 BD【解析】 恒力F 作用时,A 和B 都平衡,它们的合力都为零,且弹簧弹力为F .突然将力F 撤去,对A 来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A 球的合力为零,加速度为零,A 项错,B项对.而B球在水平方向只受水平向右的弹簧的弹力作用,加速度a=Fm,故C项错,D项对.3. 如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。

牛顿第二定律专题——连接体和瞬时性问题+课件-高一上学期物理人教版(2019)必修第一册+

牛顿第二定律专题——连接体和瞬时性问题+课件-高一上学期物理人教版(2019)必修第一册+
平衡条件;若处于加速状态则利用牛顿运动定律)。 2.对状态变化后的物体的受力分析
当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力 变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物 接触面上的弹力都立即消失)。 3.求物体在状态变化后所受的合外力
CD.根据题意,若将绳 OA 换为轻质弹簧,以结点O 为研究对象,受灯笼的拉力G 、弹簧 OA 的拉力FA 和绳 OB 的
拉力 FB ,如图所示
由平衡条件可得 FA
cos 60
G

FA
sin 60
FB
,解得 FA
mg cos 60
, FB
mg
tan 60
将绳OB 割断,绳 OB 的拉力消失,轻弹簧OA 弹力不发生突变,则灯笼所受合外力为 F合2 mg tan 60
T
mA gsin
mA gcos
mAa
mA F mA mB
=F 1+ mB
要增加T,可增大A物的质量,或减小B物的质量。改变倾m角Aθ和改变动
摩擦因数不能改变细线上的拉力,故A正确。
03 规律总结
连接体的动力分配原理:两个物体(系 统的两部分)在外力(总动力)的作用下以共 同的加速度运动时,单个物体分得的动力与 自身的质量成正比,与系统的总质量成反比。 相关性:两物体间的内力与接触面是否光滑 无关,与物体所在接触面倾角无关。
“摩擦力”连接在一起。
01 典例
例1.用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球 a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30° 的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ()

2025高考物理备考复习教案 第三章 第2讲 牛顿第二定律的基本应用

2025高考物理备考复习教案  第三章 第2讲 牛顿第二定律的基本应用

受外力时形变 受外力时
特点
不可伸长
只能变长,不
能变短
形变量
微小不计
较大
弹力能否突变
可以突变
产生拉力或压力
只能受拉力作用,不
能承受压力
两端连有物体时不能
只能受拉力作用,不
突变
能承受压力
返回目录
第2讲 牛顿第二定律的基本应用
模型
轻弹簧
轻杆
受外力时形变
受外力时
特点
形变量
既可变长,又
可变短
不可伸长,不
可缩短
析,如图乙所示,由于弹簧的弹力不发生突变,则弹簧的弹力还保持不变,有F cos
θ=mg,mgtan θ=ma2,所以FT:F= cos 2θ:1,a1:a2= cos θ:1,故D正确.
返回目录
第2讲 牛顿第二定律的基本应用
方法点拨
利用建模思想求解瞬时加速度
返回目录
第2讲 牛顿第二定律的基本应用
运动定律应用于生产、生活实
2021:河北 T13,浙江6 际;能认识牛顿运动定律的应
月 T4,浙江6月 T19
命题分析预测
核心素养对接
用对人类文明进步的推动作用.
牛顿第二定律是每年高考必考内容,主要考查两类动力学问题和对
生活中现象的解释.预计2025年高考仍是必考点,可能会结合图像或
航天实际在选择题中考查,还可能结合运动学知识考查简单计算题.
5. [超失重与现代科技/2024湖北黄冈统考]某同学用橡皮筋悬挂智能手机做如下实
验:如图甲所示,将橡皮筋上端固定在铁架台上的O点,打开手机加速度传感器,
同时从O点由静止释放手机,获得一段时间内手机在竖直方向的加速度随时间变化

牛顿第二定律瞬时性问题

牛顿第二定律瞬时性问题

牛顿第二定律瞬时性问题轻绳、轻弹簧共同之处是均不计重力。

不同点在于:1.轻绳:不可伸长。

即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。

由此特点可知:绳(或线)中的张力可以突变,为瞬时力。

2.轻弹簧由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,为延时力。

【例1】如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?练习:如图4所示,质量为m的小球被弹簧和水平细绳悬挂而处于静止,弹簧与竖直方向的夹角为,现剪断水平绳,此瞬间弹簧的拉力为___________;小球的加速度为_________,方向为___________。

连接体问题两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一【例】如图2-1,质量为2 m的物块A与水平地面的摩擦可忽略不计,质量为m的物块B 与地面的动摩擦因数为μ,在已知水平推力F的作用下,A、B做加速运动,A对B的作用力为____________.弹簧问题(动力学角度)如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下临界与极值如图,A,B两个物体间用最大张力为100N的轻绳相连,A,B两物质量各为4Kg,8Kg,在拉力F的作用下向上作加速运动,为使轻绳不被拉断,Fmax是多大?1、如图,质量m=10kg的小球挂在倾角α=37º的光滑斜面上,当斜面和小球以a1=g/2的加速度向右加速运动时,小球对绳子的拉力和对斜面的压力分别多大?如果斜面和小球以a 2= 3 g的加速度向右加速运动时,小球对绳子的拉力和对斜面的压力分别多大?2.质量分别为m A=2kg、m B=4kg的物体叠放在水平地面上,B与水平地面间的摩擦系数为0.4,A与B间的静摩擦系数为0.8,水平力F作用在B上(如图),要使A与B间不发生滑动,则F的最大值为多少?若改为F加在A上呢?牛顿运动定律中的图像问题质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v—t图象如图12所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-牛顿运动定律的应用牛顿第二定律的应用之瞬时性问题牛顿第二定律的“瞬时性”指:物体的加速度与物体所受合外力的瞬时对应关系分析物体的瞬时问题,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意两种基本模型的建立。

刚性绳(或接触面):1.认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要考虑形变恢复时间。

一般题目所给细线和接触面在不加特殊说明时,均可按此模型处理。

2. 弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变【名师点睛】即为该时刻物体所受a为某一瞬时的加速度,FF1. 物体的加速度a与物体所受合外力瞬时对应。

合合的合力。

物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动2.看变分析。

求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化。

先看不变量,再化量;加速度与合外力瞬时一一对应。

轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零,同一根绳(线、弹簧、橡皮绳)的两3.端及其中间各点的弹力大小相等。

绳(线、橡皮绳)只能发生拉伸形变,只能产生拉力;而轻弹簧既能发生拉伸形变,又能产生压4. 轻缩形变,所以轻弹簧既能承受拉力,也能承受压力。

无论轻绳(线)所受拉力多大,轻绳(线)的长度不变,即轻绳(线)发生的是微小形变,因此轻5.绳(线)中的张力可以突变。

由于弹簧和橡皮绳受力时,发生的是明显形变,所以弹簧和橡皮绳中的弹力不能发生突变。

两者之间的弹力为零,注意弹簧轻弹簧的弹力不能突变;两物体相互分离的瞬间,6. 涉及弹簧问题时,但注意该时刻它们的速度和加速度仍相等。

7. 加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。

AB m 的小球之间用一根轻弹簧(即不计其质量)连接,并两个质量均为【典例1】如图所示,用、AB 两球的加、球均保持静止。

若用火将细绳烧断,则在绳刚断的这一瞬间,细绳悬挂在天花板上,两小速度大小分别是1aaaa=g B. =2g =g;;=g A. BAAB aaaa=g=0 =2g ;;=0 D. C. BABA BAAB球受三、、A为研究对象,做剪断前和剪断时瞬间的受力分析。

剪断前静止,【解析】分别以FmgFBTmg。

和弹力个力,细绳拉力球受两个力,重力、重力′和弹力FmgAT①- = 0 对-球:mgFB = 0 球:′-②对mgmgFT,=2由①②式解得= A 球受两个力,因为绳无弹性剪断瞬间拉力不存在,而弹簧有形变,瞬间形状不可改变,弹剪断时,FFmgAmg和弹力′。

、弹簧给的弹力B;同理球受重力簧弹力不变,球受重力C【答案】llml的一端悬挂在天花如图所示,一质量为的物体系于长度分别为的两根细线上,、【典例2】1 12ll线剪断,水平拉直,物体处于平衡状态。

现将求剪断瞬时物体的加速度。

板上,与竖直方向夹角为θ,2 2)下面是某同学对该题的一种解法:(1mgTTmgllT,,物体在三力作用下保持平衡=cos解:设线上拉力为,θ线上拉力为,物体重力为12112mgtanTTT=sinθθ,=212TT反方向获得加速度。

剪断线的瞬间,突然消失,物体即在22 2mgmaag T反方向。

=tan,所以加速度θ=因为,方向在 tanθ2你认为这个结果正确吗?请对该解法作出评价并说明理由。

alb所示,其他条件不变,求解的步中的细线改为长度相同、质量不计的轻弹簧,如图(2)若将图1ag tanθ=,你认为这个结果正确吗?请说明理由。

骤和结果与(l)完全相同,即ll上的拉力不1)这个结果不正确。

这个同学的错误主要是认为剪断线的瞬间,细线【解析】(12lTl 上的拉力也发生的瞬间,变,把细线和弹簧的特点混为一谈;实际上,剪断线突然消失,且细线122mglT两个力的作细线突变,这时相当于一个单摆从最高点由静止释放的瞬间,物体受重力上的拉力和1Fmg sinθ,用,将重力沿细线方向和垂直细线方向正交分解,则物体所受的合外力为由牛顿第二定律得:=mgmaag sinθ。

,即物体的加速度应为 =sinθ=allT突然消失,正确。

若将图改为长度相同、质量不计的轻弹簧,则剪断线中的细线的瞬间,(2) 221ag sinθ;(2)正确。

【答案】(1)不正确, =【典例3】如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量m,M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突4质量为2、为aaaag,则、的加速度大小分别为重力加速度大小为、.、2然抽出,设抽出后的瞬间,物块1、、3、44321有( )aaaaaaaag.=A.=======0 B43211423mMmMmM+++g agagaagaaaga==,==0,0=,,=D..C,==42431321MMM【解析】在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自aag;而物块3、4==间的轻弹簧的形变还来不及改变,此时弹簧对3重力,所以由牛顿第二定律知向上21mgmgFa=0=;由牛顿第二定律得物块,的弹力大小和对物块4向下的弹力大小仍为4,因此物块3满足3FMgMm++ga,所以C==对。

满足4MM【答案】CmAB,它的小球、定斜面上,有两个质量均为如图所示,在倾角为【典例4】α=30°的光滑固L、kAFAB均静止在斜面上,、们用原长为劲度系数为的轻弹簧连接,现对施加一水平向右的恒力,使下列说法正确的是3mg3mgLF A. 弹簧的长度为大小为+ B. 水平恒力k23g BFFAg的瞬间小球的瞬间小球的加速度大小为的加速度大小为 D. 撤掉恒力C. 撤掉恒力21mgmg12mg30?=mgF sin?x??B,所以弹簧分析知,,则弹簧的伸长量:【解析】对小球弹2kk232mg30?cos F2mg sin30?LL?mg?F错误;B,解得,,的长度为:A正确;对整体分析,1k23F+30?mg sin弹g?a?AF正确。

撤去恒力C瞬间,弹簧的弹力不变,对,球,根据牛顿第二定律得,A m BBF。

错误;故选球,合力为零,则AC撤去恒力球的加速度为零,瞬间,弹簧的弹力不变,对DAC【答案】mBmABA,【典例5】如图所示,光滑水平面上,的质量分别为、、两物体用轻弹簧连接在一起,、21BFAABaF的、,此瞬时作用下,共同做匀加速直线运动,加速度大小为和在拉力,某时刻突然撤去拉力aa),则加速度大小为( 和21m2aaaaaa.,=0,=0 B.==A2121mm+21mmm211aaaaaaaa D===C.,.=,2121mmmmm++22121D【答案】 420XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。

努力实现教学创新,改革教学和学习方式,提高课堂教学效益,促进学校的内涵性发展。

同时,以新课程理念为指导,在全面实施新课程过程中,加大教研、教改力度,深化教学方法和学习方式的研究。

正确处理改革与发展、创新与质量的关系,积极探索符合新课程理念的生物教学自如化教学方法和自主化学习方式。

主要工作一、教研组建设方面:、深入学习课改理论,积极实施课改实践。

、以七年级新教材为“切入点”,强化理论学习和教学实践。

、充分发挥教研组的作用,把先进理念学习和教学实践有机的结合起来,做到以学促研,以研促教,真正实现教学质量的全面提升。

、强化教学过程管理,转变学生的学习方式,提高课堂效益,规范教学常规管理,抓好“五关”。

()备课关。

要求教龄五年以下的教师备详案,提倡其他教师备详案。

要求教师的教案能体现课改理念。

()上课关。

()作业关。

首先要控制学生作业的量,本着切实减轻学生负担的精神,要在作业批改上狠下工夫。

()考试关。

以确保给学生一个公正、公平的评价环境。

()质量关。

、加强教研组凝聚力,培养组内老师的团结合作精神,做好新教师带教工作。

二、常规教学方面:加强教研组建设。

兴教研之风,树教研氛围。

特别要把起始年级新教材的教研活动作为工作的重点。

、教研组要加强集体备课共同分析教材研究教法探讨疑难问题由备课组长牵头每周集体备课一次,定时间定内容,对下一阶段教学做到有的放矢,把握重点突破难点、教研组活动要有计划、有措施、有内容,在实效上下工夫,要认真落实好组内的公开课教学。

、积极开展听评课活动,每位教师听课不少于20节,青年教师不少于节,兴“听课,评课”之风,大力提倡组内,校内听随堂课。

、进一步制作、完善教研组主页,加强与兄弟学校的交流。

我们将继续本着团结一致,勤沟通,勤研究,重探索,重实效的原则,在总结上一学年经验教训的前提下,出色地完成各项任务。

校内公开课活动计划表日期周次星期节次开课人员拟开课内容10月127四王志忠生物圈10月137五赵夕珍动物的行为12月114 五赵夕珍生态系统的调节12月 2818四朱光祥动物的生殖镇江新区大港中学生物教研组xx-20X 下学期生物教研组工作计划范文20X年秋季生物教研组工作计划化学生物教研组的工作计划生物教研组工作计划下学期生物教研组工作计划年下学期生物教研组工作计划20X年化学生物教研组计划20X年化学生物教研组计划中学生物教研组工作计划第一学期生物教研组工作计划20XX—019学年度第二学期高中英语教研组工作计划XX—XX学年度第二学期高中英语教研组工作计划一.指导思想:本学期,我组将进一步确立以人为本的教育教学理论,把课程改革作为教学研究的中心工作,深入学习和研究新课程标准,积极、稳妥地实施和推进中学英语课程改革。

以新课程理念指导教研工作,加强课程改革,紧紧地围绕新课程实施过程出现的问题,寻求解决问题的方法和途径。

加强课题研究,积极支持和开展校本研究,提高教研质量,提升教师的研究水平和研究能力。

加强教学常规建设和师资队伍建设,进一步提升我校英语教师的英语教研、教学水平和教学质量,为我校争创“三星”级高中而发挥我组的力量。

二.主要工作及活动:.加强理论学习,推进新课程改革。

组织本组教师学习《普通高中英语课程标准》及课标解度,积极实践高中英语牛津教材,组织全组教师进一步学习、熟悉新教材的体系和特点,探索新教材的教学模式,组织好新教材的研究课活动,为全组教师提供交流、学习的平台和机会。

.加强课堂教学常规,提高课堂教学效率。

强化落实教学常规和“礼嘉中学课堂教学十项要求”。

做好集体备课和二备以及反思工作。

在认真钻研教材的基础上,抓好上课、课后作业、辅导、评价等环节,从而有效地提高课堂教学效率。

加强教学方法、手段和策略的研究,引导教师改进教学方法的同时,引导学生改进学习方法和学习策略。

相关文档
最新文档