X射线衍射和小角X射线散射详解

合集下载

小角X射线散射

小角X射线散射
散射角 = /d 由此可以(kěyǐ)看出中央峰的角宽度随着散射体尺度d 的减小而增加
精品文档
长周期小角散射花样和对应的微细(wēixì) 组织
高分子共混多相区,片晶和非晶堆积层可以形成 长周期,即使是同种聚合物,在样品中存在不同 物相的相间分布(fēnbù),也可以形成长周期,这 些长周期是比晶体周期更大的微细组织,在理想 情况它的点阵是与片层方向垂直的一维点阵。如 果片层组织的取向是随机的,衍射环各处的强度 是均匀的;如果有择优取向,衍射环上会出现强 度集中区。
精品文档
聚乙烯的衍射(yǎnshè)花样(非晶和结 晶)
精品文档
丝蛋白(dànbái)的衍射花样(非晶 部分 结晶)
精品文档
等规立构聚丙烯X-射线(shèxiàn) 图
精品文档
常见聚合物的 X 射线衍射(yǎnshè)
曲线
精品文档
聚乙烯
典型两相结构聚合物 晶态衍射锐峰和非晶态漫射宽峰共存 高密度聚乙烯比低密度聚乙烯的晶态锐射强,除
精品文档
聚对苯二甲酰庚二胺的X射线衍射(yǎnshè)图,仅仅存在子午线
方向的衍射(yǎnshè),即(00l)衍射(yǎnshè)尖锐,说明高聚物具有
纵向有序性。
精品文档
随着高聚物拉伸(lā shēn)倍数的增加(取向度增加),衍射圆弧向赤 道线或子午线汇集成衍射斑点 向赤道线集中的只有(hk0)反射, 向子午线集中的只有(00l)反射
精品文档
具有清晰圆环,为结晶性好的高聚物衍射(yǎnshè)图,如聚 甲醛、聚丙烯、聚乙烯等属此类型。
精品文档
取向(qǔ xiànɡ)高聚物
非晶高聚物的弥散环集中(jízhōng)在赤道线上,形成两个弥 散斑点,如聚苯乙烯属此类型。

X射线衍射原理及应用_XRD

X射线衍射原理及应用_XRD
X射线衍射原理及应用
X射线 射线
短波长的电磁波
1895年伦琴(Roentgen) 1895年伦琴(Roentgen) 年伦琴
本报告主要包括两部分
X射线衍射 射线衍射
(X-Ray diffraction,XRD) - , )
小角X射线散射 小角 射线散射
(Small Angle X-ray Scattering, SAXS)
4.衍射数据的处理- 4.衍射数据的处理-晶体结构的解析 衍射数据的处理
(1)选择大小适度,晶质良好的单晶体作试样, 收集衍射数据 收集衍射数据。 (2)指标化衍射图 指标化衍射图,求出晶胞常数,依据全部衍射线的衍射指 指标化衍射图 标,总结出消光规律,推断晶体所属的空间群。 (3)将测得的衍射强度作吸收校正,LP校正等各种处理以得出 得出 结构振幅| | 结构振幅|F|。 (4) 相角和初结构的推测 相角和初结构的推测。常用推测相角的方法有派特逊函数 法及直接法。
解决方法有二个: 解决方法有二个: 1、晶体不动(αo,βo,γo固定)而改变波长,即用白色 射线; 、晶体不动( 固定)而改变波长,即用白色X射线 射线; 2、波长不变,即用单色X射线,转动晶体,即改变αo,βo,γo。 、波长不变,即用单色 射线 转动晶体,即改变α 射线,
能提供晶体内部三维空间的电子云密度分布,晶体中分 子的立体构型、构像、化学键类型,键长、键角、分子间距 离,配合物配位等。
(5) 结构的精修 结构的精修。由派特逊函数或直接法推出的结构是较 粗糙和可能 不完整的,故需要对此初始结构进行完善和 精修。常用的完善结构的方法称为差值电子密度图,常用 的精修结构参数的方法是最小二乘方法,经过多次反复, 最后可得精确的结构。同时需计算各原子的各向同性或各 向异性温度因子及位置占有率等因子。 (6)结构的表达 结构的表达:获得精确的原子位置以后,要把结构完 结构的表达 美的表达出来,这包括键长键角的计算,绘出分子结构图 和晶胞图,并从其结构特点探讨某些可能的性能。

X射线衍射和小角X射线散射详解

X射线衍射和小角X射线散射详解

SAXS及其应用
X射线的散射现象
晶体中的原子在射入晶体的X射线的作用下 被迫强制振动,形成一个新的X射线源发射 次生X射线。
[X-Ray Diffraction by Macromolecules, p. 15]
广角X射线散射(X射线衍射)
如果被照射试样具有周期性结构(结晶), 则次生X射线会发生干涉现象,该现象被称 为X射线衍射(X-ray Diffraction, XRD )。
X射线衍射需要在广角范围内测定,因此又 被称为广角X射线衍射(Wide-Angle X-ray Scattering, WAXS)。
小角X射线散射
如果被照射试样具有不同电子密度的非周 期性结构,则次生X射线不会发生干涉现象, 该现象被称为漫射X射线衍射(简称散射)。
X射线散射需要在小角度范围内测定,因此 又被称为小角X射线散射(Small-Angle Xray Scattering, SAXS)。
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 153]
粉末衍射图
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 156]
SAXS装置示意图
[Two-Dimensional X-Ray Diffraction, p. 332]
SAXS装置实物照片及剖面图
[Two-Dimensional X-Ray Diffraction, p. 337]
SAXS装置实物俯视图

x射线小角散射和衍射区别

x射线小角散射和衍射区别

小角x射线衍射缩写是SAXD,小角x射线散射的缩写是SAXS,二者的原理还是有很大的区别的。

衍射对应的是周期性结构引起的相干,而散射对应的是电子密度的波动。

小角X射线衍射:
X-射线照射到晶体上发生相干散射(存在位相关系)的物理现象叫衍射,即使发生在低角度也是衍射。

例如,某相的d值为31.5A,相应衍射角为2.80°(Cu-Kα),如果该相有很高的结晶度,31.5A峰还是十分尖锐的。

薄膜也能产生取决于薄膜厚度与薄膜微观结构的、集中在小角范围内的X射线衍射。

在这些情况下,样品的小角X射线散射强度主要来自样品的衍射,称之为小角X射线衍射。

对这类样品,人们关心的是其最大的d值或者是薄膜厚度与结构,必须研究其小角X 射线衍射。

小角衍射,一般应用于测定超大晶面间距或薄膜厚度以及薄膜的微观周期结构、周期排列的孔分布等问题;
小角X射线散射:
X-射线照射到超细粉末颗粒(粒径小于几百埃,不管其是晶体还是非晶体)也会发生相干散射现象,也发生在低角度区。

但是在实验方法、由微细颗粒产生的相干散射图的特征与上述的由超大晶面间距或薄膜产生的小角X射线衍射图的特征完全不同。

这就是小角X射线散射。

小角散射则是应用于测定超细粉体或疏松多孔材料孔分布的有关性质。

小角散射得到的结构信息有两类,一个是微颗粒信息,一个是长周期信息。

与原子尺度和小分子晶体点阵相比较,可以认为这些是结构的“大尺度”信息。

因此小角散射方法主要有这两方面的应用:一个是测量微颗粒形状、大小及其分布,另一个是测量样品长周期,并通过衍射强度分析,进行有关的结构分析。

小角散射

小角散射

一、什么是X射线小角散射一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。

利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。

二、X射线小角散射的用途用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体物质中的超细空穴)的大小、形状及分布。

对于高分子材料,可测量高分子粒子或空隙大小和形状、共混的高聚物相结构分析、长周期、支链度、分子链长度的分析及玻璃化转变温度的测量。

三、X射线小角散射的原理小角散射效益来自物质内部1~l00nm量级范围内电子密度的起伏,当一束极细的x射线穿过一超细粉末层时,经粉末颗粒内电子的散射,X射线在原光束附近的极小角域内分散开来,其散射强度分布与粉末粒度及分布密切相关。

20世纪初,伦琴发现了比可见光波长小的辐射。

由于对该射线性质一无所知,伦琴将其命名为X射线(X-ray)。

到20世纪30年代,人们以固态纤维和胶态粉末为研究物质发现了小角度X射线散射现象。

当X射线照射到试样上时,如果试样内部存在纳米尺度的电子密度不均匀区,则会在入射光束周围的小角度范围内(一般2=<6&ordm;)出现散射X射线,这种现象称为X射线小角散射或小角X 射线散射(Small Angle X-ray Scattering),简写为SAXS 。

其物理实质在于散射体和周围介质的电子云密度的差异。

SAXS已成为研究亚微米级固态或液态结构的有力工具。

横坐标是散射峰的位置,纵坐标是散射峰的强度,这一点与XRD是类似的。

纵坐标的绝对数值没有意义,只是表示相对的强度。

而对于横坐标,XRD的位置通常用角度ө或2ө标示,而SAXS的位置是用q 标示的,q一般叫做散射矢量或者散射因子,q与ө有简单的换算关系q = 4πsinө/λ。

在SAXS中由于ө的数值变化范围很小,所以用q标示更方便。

在XRD中,衍射峰对应的ө可以换算出对应的晶面间距,实际上就是样品中一定范围内的周期性长度。

小角X射线散射

小角X射线散射
2
1: 2 : 3 : 4
由此表明:PI球状微区在空间中以简单立方晶格或 立方密堆砌规则地排列。
用空心箭头表注的峰是孤立 球粒子内的散射干涉。根据各散射 峰位由下式计算球粒的半径R:
hR 4 R / sin mix,i 5.765, 9.100, 12.320,
i =1, 2, 3,…
平均半径R=12.7nm。
三. 谱 图 分 析
散射矢量
h 4 sin
h或q(nm-1)
图3.1 实测SAXS谱图(PP)
长周期(L)如何计算? (1) Lorentz校正:h2I(h)对h作图
(2) 2Lsin
谱图分析例子1——嵌段共聚物
图3.2 苯乙烯(PS)和异戊二烯(PI)二嵌段共聚物的电镜照片
当PI的含量小于22wt%时,PI呈球状微区分布在PS基体中;当PI的含量 为22~39wt%时,PI呈圆柱状微区分散在PS基体;当PI和PB的含量为39~ 60wt%时,两者呈层状交替微区。球状、圆柱状和层状微区在空间中有规则 地排列,具有长程有序。
谱图分析例子2——取向与形变
图3.4 苯乙烯(含量为18.5wt%)与异戊二烯嵌段共聚物的散射曲线
(a)未拉伸状态时的曲线;(b)拉伸比为2.0时的曲线。
拉伸后一级散射峰移向小角一侧,但二级峰和三级峰位置保持不 变。由此表明:一级峰是粒子间散射引起的散射峰,长周期增大。二 级峰和三级峰是粒子内的一级和二级散射峰。
二. 基本原理
图2.1 计算结晶度的分峰图(XRD)
图2.2 半结晶聚合物的形态结构模型
聚丙烯的实测图
示意图
图2.3 半结晶聚合物的SAXS和XRD图
理想两相体系
准理想两相体系
A相分散在B相中,两相互不相溶,具有微观的相分离,无过渡层。

第四章X射线衍射与散射详解

第四章X射线衍射与散射详解

干涉指数与晶面指数的明显差别是干涉指数中有公 约数,而晶面指数只能是互质的整数,当干涉指数也互 为质数时,它就代表一族真实的晶面,所以干涉指数是
广义的晶面指数。习惯上经常将HKL混为hkl来讨论问题。
我们设d=dˊ/n,布拉格方程可以写成:Fra bibliotek2dsinθ=λ
3 布拉格方程的应用
上述布拉格方程在实验上有两种用途。首先,利用 已知波长的特征X射线,通过测量θ角,可以计算出晶面 间距d。这种工作叫结构分析(structure analysis),是本 书所要论述的主要内容。其次,利用已知晶面间距d的晶 体,通过测量θ角,从而计算出未知X射线的波长。后一 种方法就是X射线光谱学(X-ray spectroscopy)。
2. 反射级数与干涉指数--布拉格方程nλ=2dˊsinθ表示面间 距为dˊ的(hkl)晶面上产生了几级衍射,但衍射线出 来之后,我们关心是光斑的位置而不是级数,级数也 难以判别,故我们可以把布拉格方程改写成下面的形 式 2(dˊ/n)sinθ=λ 这是面间距为1/n的实际上存在或不存在的假想晶 面的一级反射。将这个晶面叫干涉面,其面指数叫干 涉指数,一般用HKL表示根据晶面指数的定义可以得 出干涉指数与晶面指数之间的关系为:H=nh,K=nk, L=nl。
X射线光谱仪原理
4 衍射方向对于一种晶体结构总有相应的晶面间距表达式。将布拉 格方程和晶面间距公式联系起来,就可以得到该晶系的衍射方向 表达式。对于立方晶系可以得到: sin2θ=λ2(h2+k2+l2)/4a2 此式就是晶格常数为a 的{h k l}晶面对波长为λ的X射线的衍射 方向公式。上式表明,衍射方向决定于晶胞的大小与形状。反过 来说,通过测定衍射束的方向,可以测定晶胞的形状和尺寸。至 于原子在晶胞中的位置,要通过分析衍射线的强度才能确定。

x射线 微小角度折射

x射线 微小角度折射

x射线微小角度折射
X射线是一种高能电磁波,具有很强的穿透力和散射能力。

当X射线穿过物质时,会与物质中的原子或分子相互作用,从而产生散射和吸收。

当X射线经过微小角度的折射时,会发生衍射现象。

衍射是指当X射线经过一个小孔或遇到一个小障碍物时,会在其背后产生一系列的衍射斑点。

这些衍射斑点的大小和形状取决于X射线的波长和小孔或障碍物的尺寸。

在X射线衍射实验中,通常使用X射线晶体衍射仪来测量X射线的衍射图案。

晶体衍射仪中通常包含一个X射线源和一个旋转的晶体。

当X射线穿过晶体时,会产生衍射现象,这些衍射斑点的位置和强度可以用来确定晶体的晶体结构和晶格参数。

X射线的微小角度折射和衍射现象在材料科学、物理学、化学等领域都有着广泛的应用。

例如,在材料科学中,X射线衍射可以用来分析材料的晶体结构和晶格参数,从而了解材料的物理性质和化学反应行为。

在医学领域中,X射线衍射也被广泛应用于研究物质的结构和性质,以及诊断和治疗疾病。

X射线普通衍射和小角度衍射的区别

X射线普通衍射和小角度衍射的区别

X射线普通衍射和小角度衍射有何区别概述小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。

它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。

无论中子衍射、电子衍射还是X 射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。

从布拉格方程:2dsinq=nl我们可以看到这里有三个变量:入射线经过样品时的光程差D(对于一般晶体材料,主要由面间距d决定;对于胶体颗粒,主要由颗粒电子密度起伏决定);入射角度q和入射射线的波长l。

电子衍射和普通X射线衍射的区别在于入射线本质不同;普通X射线衍射和小角度X射线衍射在于样品对光程差的贡献不同。

2. X射线衍射与电子衍射要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。

用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。

图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。

例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。

图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。

为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。

3. SAXS与WAXS现在固定X射线波长不变,均为CuKa=0.154nm,设想如果被检测的样品不是粉晶样品,也不是大块单晶(例如单晶衬底和金属),而是晶胞巨大的无机化合物、高分子乃至生物分子这样的具有胶体尺度的样品,常规X射线衍射能获得怎样的谱图和分析出怎样的结论呢?胶体尺度的样品具有如下两个性质:一是统计上各向同性,二是长程无序。

第四章X射线衍射与散射详解

第四章X射线衍射与散射详解
材料现代研究方法
朱诚身
第四章:X射线衍射与散射
X射线衍射法概述
X射线分析法原理 广角X射线衍射法 多晶X射线衍射在高聚物中的应用 小角X射线散射法 X射线法应用
第一节 X射线衍射法概述
一. X射线的发现 1895年,W.K.Rontgen(1845—1923)发现 了X-Ray。1906年,英国物理学家巴克拉(1874— 1944)确定了不同金属都有自己特征的X-Ray。1912 年,Max ue(劳厄)发现X-Ray在晶体中的干涉现 象。1913年提出布拉格(Bragg)方程,用于晶体结 构分析。不久在20年代即开始应用于聚合物的结构测 定,最大分子确立的基础之一。
二. X射线的性质
1 .波长范围:0.001~10nm,对高分子有用的是 0.05~0.25nm,最有用的是CuKα线,入=0.1542nm, 与聚合物微晶单胞0.2~2nm相当。
2 . X-Ray的产生 X-射线管效率: E=1.1×10-9 Z V 上面的“E”—效率,“Z”—原子序数,“V” —电压。 电能的0.2%转变为X-Ray,绝大部分变成热,帮阳 极靶须导 热良好,同时水冷。 3 .连续X-Ray和特征X-Ray (1)连续(白色)X-Ray:由于极大数量的电子射到阳 极时穿透阳极物质深浅程度不同,动能降低多少不一, 产生各种波长的X-Ray。
3.典型聚集态衍射谱图的特征 衍射谱图是记录仪上绘出的衍 射强度(I)与衍射角(2θ)的关 系图。右图中:a 表示晶态试样衍 射,特征是衍射峰尖锐,基线缓平。 同一样品,微晶的择优取向只影响 峰的相对强度。图b为固态非晶试 样散射,呈现为一个(或两个)相 当宽化的“隆峰”。图c与d是半晶 样品的谱图。C有尖锐峰,且被隆 拱起,表明试样中晶态与非晶态 “两相”差别明显;d呈现为隆峰 之上有突出峰,但不尖锐,这表明 试样中晶相很不完整。 四种典型聚集态衍射谱图的特征示意图

X-射线仪大角、小角

X-射线仪大角、小角
光谱分析技术( 2 )
X- 射线法
X 射线法 内容:
简介
大角 X 射线衍射法 (WAXD)
大角 X 射线衍射法的应用
小角 X 射线散射法 (SAXS)
大角衍射和小角散射的综合分析
2
X 射线法
简介
1895 年末,德国 Wurzburg 大学物理系教授 W.C. Röntgen 正在进行有关阴极 射线性质的某些实验时,他在暗室中用一个厚的黑纸盒盖住阴极射线管以阻止任 何可见光或者紫外线的辐射透过。当他把一只涂有氰亚铂酸钡的荧光屏移近被覆 盖的阴极射线管时,荧光屏却发出灿烂的辉光。 Röntgen 获得了这一划时代的发 现。 Röntgen 把这种新的射线称之为 X 射线。 1901 年 Röntgen (伦琴)第一个被授予诺贝尔奖。
式中 n :为整数,称为反射级数; θ :为入射线(或反射线)与反 射面的夹角,称为掠射角, 把 2 θ 称为衍射角。
17
X 射线法
WAXD
2dsin θ =nλ
(二) X 射线在晶体中衍射的基本原理及测定方法
测定 X 射线衍射的方法有两类:粉末法,单晶旋转法。 1)粉末法 在粉末中由于晶面以不同的角度与入射 X 射线相交,所以对于某 一组晶面(晶面间距d)而言,只有在一定的反射角θ时才 实际上粉末中晶面的方向各异, 对某一 晶面 来说其 衍射线 形成 一个圆 锥形,衍射线与入射线夹角为2θ。
当X射线(平面波)射入晶体时,晶 体中的原子受迫振动,此振动分为 原子核和电子的振动,在忽略原子 核的振动 ( 核的质量远远大于电子的 质量 ) 时,振动的电子就成为发射 X 射线 ( 球面波 ) 的新波源,由新波源 产生的 X 射线称为散射波 ( 或称为次 生 X 射线,其波长、频率及相位均与 入射 X 射线相同 ,但方向不同 ) 。

小角X射线散射简介

小角X射线散射简介

引起小角X射 线散射的几 种主要情况
.
7
SAXS的几种实现方式
小角X射线散射
同步辐射小角X射线散射仪
集成于多功能X射线衍射系统中
单独的小角X射线散射平台
实验室自组装
.
8
准直系统
小角X射线散射
传统的准直系统主要有:
四狭缝准直系统
针孔准直系统
Kratky 狭缝准直系统
无限长准直系统 等
但是为了使X射线的发散度减小,平行度增加, 通常令狭缝尽量的小,然而这样却使通量降低, 散射信息减弱,给小角X射线散射带来困难。
小角X射线散射技术简介 Small Angle X-ray Scattering
XX 凝聚态物理
.
1
小角X射线散射
主要内容
• X射线物理基础 • 小角X射线散射技术简介 • 应用举例
.
2
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍)
玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
.
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
.
16
分析软件
新型小角X射线散射技术简介
Nanofit •交互式图形界面 •非线性,最小平方分 析
.
17
金属纳米颗粒散射曲线
应用举例
.
18
金属纳米颗Leabharlann 散射曲线应用举例.

X射线衍射和小角X射线散射详解

X射线衍射和小角X射线散射详解

35
WAXS应用实例之取向度测定
冷拉不同倍数的全同聚丙烯薄膜的WAXS 平板照片
精选课件
36
WAXS应用实例之取向度测定
X射线法常用取向指数来表征结晶的取向程 度。例如尼龙6拉伸后,衍射环退化为赤道 弧,在方位角上扫描得峰,求得半峰宽, 定义取向指数(R)
R180W10% 0 180
精选课件
37
[X-Ray Diffraction by Macromole精cu选le课s件, p. 19]
7
不同光程差的X射线叠加
当光程差等于X射线波 长的整数倍时次生X射 线互相叠加而加强; 当光程差等于半波长 时,次生X射线相互完 全抵消。 只有相互叠加的光波 才能有足够的强度被 观察到。
[Crystal Structure An精a选ly课s件is, 3rd Edition, p. 28]
Xc
Ic
Ic kIa
精选课件
33
WAXS应用实例之取向鉴定
未取向的非晶聚合物 衍射图案
取向的非晶聚合物衍 射图案
精选课件
34
WAXS应用实例之取向鉴定
未取向的结晶聚合物 衍射图案
取向的结晶聚合物衍 射图案
[Methods of Experimental Physics精选Vo课l件ume 16 Polymers, Part B Crystal Structure and Morphology, pp. 54 & 55]
精选课件
5
WAXS(XRD)原理
在不同的观测点,从不同的次生源发出的X 线间的光程差通常是不同的。
[X-Ray Diffraction by精选M课a件cromolecules, p. 16]

X射线普通衍射和小角度衍射的区别

X射线普通衍射和小角度衍射的区别

X射线普通衍射和小角度衍射有何区别概述小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。

它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。

无论中子衍射、电子衍射还是X 射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。

从布拉格方程:2dsinq=nl我们可以看到这里有三个变量:入射线经过样品时的光程差D(对于一般晶体材料,主要由面间距d决定;对于胶体颗粒,主要由颗粒电子密度起伏决定);入射角度q和入射射线的波长l。

电子衍射和普通X射线衍射的区别在于入射线本质不同;普通X射线衍射和小角度X射线衍射在于样品对光程差的贡献不同。

2. X射线衍射与电子衍射要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。

用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。

图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。

例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。

图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。

为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。

3. SAXS与WAXS现在固定X射线波长不变,均为CuKa=0.154nm,设想如果被检测的样品不是粉晶样品,也不是大块单晶(例如单晶衬底和金属),而是晶胞巨大的无机化合物、高分子乃至生物分子这样的具有胶体尺度的样品,常规X射线衍射能获得怎样的谱图和分析出怎样的结论呢?胶体尺度的样品具有如下两个性质:一是统计上各向同性,二是长程无序。

X射线普通衍射和小角度衍射有何区别

X射线普通衍射和小角度衍射有何区别

2. X射线衍射与电子衍射
要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。
.X射线普通衍射和小角度衍射有何区别
概述
小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。无论中子衍射、电子衍射还是X射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。
不知道上述问题这样回答能否差强人意,后文给出SAXS的一点介绍以为参考。
4. 附加内容:SAXS
已经知道当入射角非常小的时候,X射线相干散射变得非常微弱,胶体颗粒对X射线散射可以这样想象:样品中的电子与入射X射线频率发生共振并发出二次相干波,发生小角度散射。
我们先考察单个小颗粒散射现象。假设图2a中的小颗粒内部两个电子具有散射角2q和一个波长的光程差。该颗粒所有电子在2q方向的光程差涵盖任一位相,总体衍射强度将为零。如果减小散射角2q,则各散射波将趋于同位相而互相加强,散射最强将发生在0度,然后按统计规律递减,如图2c中的曲线1所示。

小角X射线散射简介(课堂PPT)

小角X射线散射简介(课堂PPT)
新型光学附件的 产生可得到平行度较高且通量较 大的X射线。
9
准直系统
小角X射线散射
Gobel Mirror 线平行汇聚光镜
单色性 高强度 准直光束
抛物线型多层膜,利用不同层面材料的晶面间距值不同, 使所有层面的衍射线变为发散度为0.04°的单色平行光。
Lens 点平行汇聚光镜
电光源的发散光经过Lens的数万条异形光导毛细管后, 将:
a. 研究溶液中的微粒;
b. 动态过程研究;
c. 研究高分子材料;
d. 电子显微镜方法不能确定颗粒内部密闭的微孔,SAXS可以;
e. 小角X射线散射可以得到样品的统计平均信息;
f. 小角X射线散射可以准确地确定两相间比内表面和颗粒体积百分数等
参数,而TEM方法往往很难得到这些参量的准确结果,因为不是全部颗
衍射角度:4-170°
由晶格点阵产生的相干散射
样品
小角X射线散射(SAXS) 散射角: 0-4° 由电子密度变化引起的散射
5
小角X射线散射
小角 X射线散射(Small-Angle X-ray Scattering)是一种用 于纳米结构材料的可靠而且经济的无损分析方法。SAXS能 够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、 粉末和块材的形貌和取向分布等方面的信息。
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
16
分析软件
新型小角X射线散射技术简介

小角X射线散射

小角X射线散射

3.通过下式计算绝对强度(单位:cm-1):
溶液试样:
I
a
(h)
=
W
(T
)
is (h) iw (0)
− −
ir ic
(h) (0)
固体试样:
I
a
(h)
=
W
(T
)
iw
is (0)
(h) − ic
(0)
∫ Q =
∞ 0
I
a
(h)h
2
dh
=2π 2 IeV
<η2
>
< η 2 >= φAφB (ρ A − ρB )276.2718Fe4.1
33.0
Ni
24.6
24.1
Cu
21.2
22.0
Zn
23.2
25.3
H2O SiO2(石英)
976 109.5
8307 1018
(CH=CH)n(Lupolen R)
2547
17975
对于铜靶而言,水或有机溶剂的高分子溶液试样厚度约1mm左右;金属(如钢、
黄铜)试样约10µm;聚合物2mm左右。
2.通过下式归一化(即吸收修正):
(1)Is(h)/μs → is (h)
试样(溶液)
(2)Ir(h)/μr → ir (h)
(溶剂和毛细管)
(3) Iw(h)/μw → iw (h) 取平均值→iw (0) (水和毛细管) (4)Ic (h)/μc → ic(h) 取平均值→ ic (0) (毛细管)
2d sinθ = λ XRD
SAXS
基本原理
理想两相体系
准理想两相体系
A相分散在B相中,两相互不相溶,具有微观的相分离,无过渡层。

9.X射线衍射和散射

9.X射线衍射和散射
27
1 高聚物的物相分析

1)晶态和非晶态结构研究
分析聚合物是否结晶
非晶态聚合物:X射线衍射为漫 散射的“晕环”,钝峰 晶态聚合物:尖锐峰表明存在结 晶。 既不尖锐也不弥散的“突出峰”显 示有结晶存在,但很不完善。
28


a 晶态试样衍射 b固态非晶散射
c与d是半晶样品的谱图。 c表明试样中晶态与非晶态“两相”差别明显。 d表明试样中晶相很不完整

29
2)识别晶体类型


结晶性聚合物在不同结晶条件下可形成不同 晶型,晶系及晶胞参数不同。 结晶类型识别办法是:

将待定试样谱图与已知晶型谱图比较。看试样谱 图中是否出现已知晶型的各衍射峰。

如聚丙烯α、β、γ、δ四种晶型,它们对聚丙 烯材料的性能影响不同。
30
聚丙烯α、β型晶体
(a)含α型晶体的IPP 衍射图 (b)含β型晶体的IPP 衍射图 (c)鉴定的IPP X射线衍射图
Θ -(入射X射线与原子平面间夹角)布拉格角
Β -纯衍射线增宽(用弧度表示) K -常数,称为晶体形状因子
34
4 取向度的研究




取向常常指分子链与某个参考方向或平面平行的 程度。 分类:晶区链取向,非晶区取向;折叠链取向, 伸直链取向等。 晶区分子链方向一般被定为晶体c轴方向。 用X射线衍射法测得结晶高聚物晶区c轴,实际上 也就直接或间接地表明了晶区分子链取向。 而非晶区、或非晶态高聚物材料中的分子链趋向 则需用其他手段测定。
2/˚


c与d是半晶样品的谱图。C有尖锐峰,且被隆拱起, 表明试样中晶态与非晶态“两相”差别明显; d呈现为隆峰之上有突出峰,但不尖锐,这表明试 24 样中晶相很不完整。

小角X射线散射-个人观点

小角X射线散射-个人观点

1:小角X射线散射(Small Angle X-Ray Scattering, SAXS)是研究纳米尺度微结构的重要手段。

根据SAXS理论,只要体系内存在电子密度不均匀(微结构,或散射体),就会在入射X光束附近的小角度范围内产生相干散射,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。

这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。

适用的样品可以是气体、液体、固体。

由于X射线具有穿透性,SAXS信号是样品表面和内部众多散射体的统计结果。

相对于其它纳米尺度分析表征手段,如SEM、TEM、AFM而言,SAXS具有结果有统计性、测试快速、无损分析、制样简单、适用范围广等优点。

对于各向同性体系分析起来没多大困难,但是需要进行各种校正,不校正结果会较差。

对于择优取向体系SAXS分析起来还是一个世界性难题。

两千零几年本.zhu有一篇文章就专门提到这个问题,说择优取向体系计算得到的结果非常不可靠,所以他干脆不分析,stribeck也提出同样的问题,他说:“在面对各向异性体系的时候我们就像科学家在1931年面对各向同性体系时一样。

”现在很多人在做SAXS都只是在做小角度的衍射分析,也就是低角度衍射峰位置的分析,而不是真正的散射分析。

可以这么说,散射普遍存在,衍射只在满足布拉格方程时才出现。

可以参考以下书籍孟昭富. 小角X射线散射理论及应用. 1995.O Glatter OK. Small angle x-ray scattering. 1982.小角X射线散射——理论、测试、计算及应用,朱育平,2008Small angle scattering of X-ray, A.Guinier G.Fournet,1955Methods of X-ray and Neutron Scattering in Polymer Sciencestructure analysis by small angle x-ray and neutron scattering,19872:个人观点,不确切一:1)广角X射线衍射(Wide Angle X-ray Diffraction,简称WAXD)测试范围(2θ):5~100O以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档