轴向拉伸与压缩2(材料的力学性能)

合集下载

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

5 材料力学第二章 轴向拉伸和压缩

5 材料力学第二章 轴向拉伸和压缩
μ
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+

12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学之轴向拉伸和压缩

材料力学之轴向拉伸和压缩
率作为弹性模量, 称为 割线弹性模量。
铸铁经球化处理成为球 墨铸铁后, 力学性能有 显著变化, 不但有较高 的强度, 还有较好的塑 性性能。
国内不少工厂成功地用 球墨铸铁代替钢材制造 曲轴、齿轮等零件。
2.6.4 金属材料在压缩时的力学性能
低碳钢压缩时的弹性模量E和屈服极限ss都与拉
伸时大致相同。屈服阶段以后, 试样越压越扁, 横截面面积不断增大, 试样抗压能力也继续增高, 因而得不到压缩时的强度极限。
冷作时效不仅与卸载 后至加载的时间间隔 有关, 而且与试样所处 的温度有关。
2.6.3 其它金属材料在拉伸时的力学性能
工程上常用的塑性材 料, 除低碳钢外, 还有 中碳钢、高碳钢和合 金钢、铝合金、青铜、 黄铜等。
其中有些材料, 如Q345 钢, 和低碳钢一样, 有 明显的弹性阶段、屈 服阶段、强化阶段和 局部变形阶段。
并用s0.2来表示, 称为名义屈
服应力。
铸铁拉伸时的力学性能
灰口铸铁拉伸时的应 力—应变关系是一段微 弯曲线, 没有明显的直 线部分。
它在较小的拉应力下就 被拉断, 没有屈服和缩 颈现象, 拉断前的应变 很小, 伸长率也很小。 灰口铸铁是典型的脆性 材料。
铸铁拉断时的最大应力 即为其强度极限, 没有屈
比较图中的Oabcdef和d'def两条曲线, 可见在第 二次加载时, 其比例极限(亦即弹性阶段)得到了 提高, 但塑性变形和伸长率却有所降低。这种现 象称为冷作硬化。冷作硬化现象经退火后又可 消除。
工程上经常利用 冷作硬化来提高 材料的弹性阶段。 如起重用的钢索 和建筑用的钢筋, 常用冷拔工艺以 提高强度。
在屈服阶段内的 最高应力和最低 应力分别称为上 屈服极限和下屈 服极限。

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案

直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案

直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案第一章:直杆轴向拉伸与压缩的基本概念1.1 学习目标1. 了解直杆轴向拉伸与压缩的基本概念;2. 掌握直杆轴向拉伸与压缩的变形与应力分析方法。

1.2 教学内容1. 直杆轴向拉伸与压缩的定义;2. 直杆轴向拉伸与压缩的变形与应力分析方法。

1.3 教学活动1. 讲解直杆轴向拉伸与压缩的基本概念;2. 分析直杆轴向拉伸与压缩的变形与应力分析方法。

第二章:直杆轴向拉伸与压缩的变形分析2.1 学习目标1. 了解直杆轴向拉伸与压缩的变形规律;2. 掌握直杆轴向拉伸与压缩的变形分析方法。

2.2 教学内容1. 直杆轴向拉伸与压缩的变形规律;2. 直杆轴向拉伸与压缩的变形分析方法。

2.3 教学活动1. 讲解直杆轴向拉伸与压缩的变形规律;2. 分析直杆轴向拉伸与压缩的变形分析方法。

3.1 学习目标1. 了解直杆轴向拉伸与压缩的应力分布;2. 掌握直杆轴向拉伸与压缩的应力分析方法。

3.2 教学内容1. 直杆轴向拉伸与压缩的应力分布;2. 直杆轴向拉伸与压缩的应力分析方法。

3.3 教学活动1. 讲解直杆轴向拉伸与压缩的应力分布;2. 分析直杆轴向拉伸与压缩的应力分析方法。

第四章:拉伸与压缩时材料的力学性能4.1 学习目标1. 了解拉伸与压缩时材料的力学性能指标;2. 掌握拉伸与压缩时材料的力学性能分析方法。

4.2 教学内容1. 拉伸与压缩时材料的力学性能指标;2. 拉伸与压缩时材料的力学性能分析方法。

4.3 教学活动1. 讲解拉伸与压缩时材料的力学性能指标;2. 分析拉伸与压缩时材料的力学性能分析方法。

第五章:实例分析与应用5.1 学习目标2. 能够应用所学知识解决实际问题。

5.2 教学内容1. 直杆轴向拉伸与压缩的实例分析;2. 应用所学知识解决实际问题。

5.3 教学活动1. 分析直杆轴向拉伸与压缩的实例;2. 解决实际问题,巩固所学知识。

第六章:弹性模量的概念与应用6.1 学习目标1. 理解弹性模量的定义及其物理意义;2. 掌握弹性模量在材料力学中的应用。

材料力学第二章 轴向拉伸和压缩

材料力学第二章 轴向拉伸和压缩
伸长 l2 0.24mm 缩短
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆

材料力学之轴向拉伸与压缩

材料力学之轴向拉伸与压缩
第二章 轴向拉伸和压缩
§1 轴向拉伸与压缩的概念
拉伸
压缩
受力特征:外力合力的作用线与杆件的轴线重合 变形特征:轴向伸长或缩短
§2 内力、截面法、轴力及轴力图
1、内力的概念
固有内力:分子内力.它是由构成物体的材料的物理性质所决
定的.(物体在受到外力之前,内部就存在着内力)
附加内力:在原有内力的基础上,又添加了新的内力
以AB杆为研究对象
mA 0
FNFBNCBC 9101k8N 5 0
以CDE为研究对象
mE 0
FNCD 40kN
20kN 18kN 4m
FNCD sin 300 8 FNBC 8 20 4 0
30O FNCD C
FNBC
B 4m
BC
FNBC ABC
CD
FNCD ACD
书中例题
注意:1.轴力是杆横截面上分布内力系的合力,其作用线也与杆件的轴
线重合,所以称为轴力。 2.静力学中的力或力偶的可传性原理,在用截面法求内力的过程
中是有限制的。
内力的正负号规则
同一位置处左、右侧截面上内力分量必须具有相 同的正负号。
FN
FN
FN
FN
FN
FN
拉力为“正” 压力为“负”
例题 2.1
2.12
2.1×105MPa,设在结点A处悬挂一重物F=100kN,试求
结点A的位移δA。
X 0
FNAC
FNAB
F
2 cos
FNAC sin FNAB sin 0
B1
2 C
Y 0 FNAC cos FNAB cos F 0
FNAB FNAC
αα
DLAB

材料力学轴向拉伸和压缩第2节 杆的变形

材料力学轴向拉伸和压缩第2节 杆的变形
直杆在轴向拉力或压力作用下,杆件产生的变形 是轴向伸长或缩短。同时,杆件的横向尺寸还会产生 缩小或增大。前者称为纵向变形,后者称为横向变形。
一、纵向变形和线应变的概念
纵向变形
l l1l
纵向变形反映的是与杆件原长有关的绝对变形。
为了消除杆件原长度的影响,采用单位长度的变
形量来度量杆件的变形程度,称为纵向线应变,用
(3)计算各段杆的线应变
1

l1 l1

3.05 10 4
2

l2 l2

2.04 10 4
3

l3 l3
3.93 104
1
2
3
1
2
3
解(1)作轴力图
1
2
3
FN1 30kN
FN2 FN3 20kN
1
2
3
(2)计算纵向变形
l1

FN1l1 EA1
7.33105 m
l1 7.33 105 m l2
l3

FN3l3 EA3
1.18 104 m

FN 2l2 EA2
4.89 10 5 m
实验测定。
表2-1 几种常用材料的 E 和 的值
材料名称
铸铁 碳钢 合金钢 铝合金

弹性模量 E(GPa)
80~160 196~216 206~216 70~72 100~120
泊松比
0.23~0.27 0.24~0.28 0.25~0.30 0.26~0.33 0.33~0.35
例2-3 钢制阶梯杆如图,已知轴向外力F1=50kN, F2 = 20kN,各段杆长为l1 = 150mm,l2 = l3 = 120mm, 截面直径为:d1 =d2 = 600mm,d3 = 300mm,钢的弹性 模量 E = 200GPa。求各段杆的纵向变形和线应变。

材料力学轴向拉伸与压缩

材料力学轴向拉伸与压缩
轴向拉压变形
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。

材料在拉伸和压缩时的力学性能

材料在拉伸和压缩时的力学性能

表6-3 几种常用材料在常温与静载下的力学性能
6.4.3 工程材料的选用原则
综上所述,根据塑性材料和脆性材料的力学性能,可按照以下思想选择工 程材料。
① 塑性材料适于制作需进行锻压、冷拉或受冲击荷载、动力荷载的构件, 而脆性材料则不能。因为塑性材料的延ห้องสมุดไป่ตู้率大、塑性好,而脆性材料的延伸率 小、塑性差。
图6-14b
(2) 屈服阶段
当材料屈服时,如果试件表面经过磨光,则在光滑的试件表面会出现与轴 线约成 45o 倾角的斜纹,如图6-15a 所示。这种条纹是由于材料的微小晶粒之间 产生滑移而形成的,称为滑移线。考虑到轴向拉伸时,在与杆轴线成 45o 的斜截 面上,剪应力最大,可知屈服现象的出现,与最大剪应力有关。当应力达到屈服 极限时,材料会出现过大的塑性变形,将使构件不能正常工作,所以屈服极限 σs 是衡量材料强度的一个重要指标。低碳钢的屈服极限应力约为σs = 235 MPa,所 以低碳钢又称为 Q235 钢。
① 在应力未超过屈服阶段前,两个图形是 重合的。因此,受压时的弹性模量E、比例极限 σp 和屈服极限 σs 与受拉时相同。
图6-17
② 当应力超过屈服极限后,受压的曲线不断上升,其原因是试件的截面不断 增加,由鼓形最后变成了薄饼形,如图6-17 所示。
由于钢材受拉和受压时的主要力学性能 ( E、σp、σs ) 相同, 所以钢材的力 学性能都由拉伸试验来测定,不必进行压缩试验。
l1 l 100% l
延伸率 δ 是衡量材料塑性的一个指标。低 碳钢的 δ = 25% ~ 27%。
图6-14b
工程中使用的材料种类很多,习惯上根据试件在破坏时塑性变形的大 小,将材料分为塑性材料和脆性材料两类。 δ ≥ 5% 的材料称塑性材料,如 钢、铜、铝等;δ < 5% 的材料的称脆性材料,如铸铁、玻璃、石料、混凝 土等。需要指出的是,材料的力学性能不是固定不变的,随着材料所处条 件的不同,其力学性能可能会发生改变。

轴向拉伸与压缩

轴向拉伸与压缩

轴向拉伸与压缩的特点:
◆ 受力特点:
◆ 变形特点:
F
F
F
F
承受轴向变形的杆件称为拉杆或压杆。
外力合力的作用线与杆轴线重合
主要是沿轴线方向伸长或缩短
第二节 轴力与轴力图 一、内力与截面法 内力 —— 外力引起的构件内部相连部分之间的相互作用力。 ◆ 内力为作用于整个截面上的连续分布力。今后,内力一般被用来特指截面上的分布内力的合力、或合力偶矩、或向截面形心简化所得到的主矢和主矩。
塑性材料为塑性屈服;脆性材料为脆性断裂
极限应力 ——
材料强度失效时所对应的应力,记作 u ,有
塑性材料(拉压相同)
脆性材料(拉压不同)
2.许用应力与安全因数
材料安全工作所容许承受的最大应力,记 作 [ ],规定
许用应力 ——
02
其中,n 为大于 1 的因数,称为安全因数 。
对于塑性材料,压缩与拉伸的许用应力基本相 同,无需区分;对于脆性材料,压缩与拉伸的许 用应力差异很大,必须严格区分。
(2)计算两杆应力
解得
AB 杆:
(2)计算两杆应力
AB 杆: AC 杆:
拉(压)杆斜截面上的应力 斜截面的方位角 : 以 x 轴为始边,以外法线轴 n 为终边,逆时针转向的 角为正,反之为负 。 斜截面上的全应力
将 p 沿斜截面的法向和切向分解,即得 斜截面上的正应力、切应力分别为 —— 横截面的面积 —— 横截面上的正应力 切应力的正负号规定:围绕所取分离体顺时针转向的切应力为正,反之为负。
[例 2-3] 试作出图示拉压杆的轴力图。
解:省略计算过程,直接作出轴力图如上图所示。
第三节 拉压杆的应力
一、应力的概念 应力是指截面上分布内力的集度 如图 为分布内力在 k 点的集度,称为 k 点的应力

材料力学第2章 轴向拉伸和压缩

材料力学第2章 轴向拉伸和压缩

(b),由静力平衡条件:
∑X = 0
N AB + N BC cos30 = 0

…(1) NBC …(2) NAB 30
y
Y =0 ∑ N BC sin 30 - P = 0

B P
x
(b)
由(2)式可得
N BC
P 2 = = = 4kN (拉) sin 30 0.5
将NBC的值代入(1),可得
6
40 106 Pa 40 MPa

杆端加载方式对正应力分布的影响
圣维南原理:若用与外力系静力等效的合力代替原力 系,则这种代替对构件内应力与应变的影响只限于原 力系作用区域附近很小的范围内。
对于杆件, 此范围相 当于横向 尺寸的 1~1.5倍。
圣维南原理:“ 力作用于杆端方式
不同,只会使与杆端距离不大于杆 的横向尺寸的范围内受影响。”
用径向截面将薄壁圆环截开,取其上半部分为分离 体,如图b所示。分布力的合力为
d FR ( pb d )sin pbd 0 2
π
FR pba 由SFy=0,得 FN 2 2
径向截面上的拉应力为
FN 1 pbd pd ( 2 10 Pa)(0.2 m) s ( ) A bd 2 2d 2(5 10-3 m)
符号规定:
正号轴力-- N的方向与截面外法线方向一致。
负号轴力-- N的方向与截面外法线方向相反。
也即:拉伸为正、压缩为负。
3.轴力图 例1:一直杆受力如图所示。试求各段中横截面上的 轴力。
6kN
A
I I I I
II B 10kN II
III D C 4kN 8kN III
6kN
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)无强度极限
塑性材料拉压性能基本一致,抗拉与抗压能力基本一样, 测试材料性能时一般只测其拉伸性能。
s(Mpa)
2、脆性材料
600
如铸铁、玻璃
500
P
等 ,压缩图如
400
右图
300
200
100
P
(%)
0
0.02 0.04 0.06 0.08 0.10 0.12
铸铁的压缩图
1)破坏时σb远大于拉伸时, 压缩时的σb>拉伸时的 σb 一般为4---5倍
137
1、温度升高,E、sS下降
s(Mpa)
700
sb
2、在2500C—3000C之前,温 600
度升高, 、 降低,而 sb增加
500
400
3、在2500C—3000C之后,温
度升高, 、 增加,而 300
ss
sb下降
200
、(%)
100 90 80 70 60 50 40 30 20
100
10
0 100 200 300 400 500 (oC)
性变形
3)滑移线:45o
4)塑性材料的使用极限:ss
(3)强化阶段(b′d段)
变形量很大,载荷增加
s
b a cb a
sb
d ★ b′d------过了屈服阶段 后,随着外力P不断增加, 材料的变形在不断增大,即 材料又恢复了对载荷的抵抗 能力,但此时,材料已有了 明显的不可恢复的变形(塑 性变形)------材料被强化了----强化阶段
塑性材料: δ>5% 明显的变形
脆性材料:δ<5% 几乎看不到变形
(6)卸载定律及冷作硬化
1)卸载定律:
s
f g
b a cb a
sp
h
d
在强化阶段的某一点f,
卸去载荷,则表现为:
(A)线性规律
(B)不可恢复的变形(在h点)
2)冷作硬化:
卸载后在h点,若再次加载,则 s~关系是h→g → d → e,hg成为 新的弹性阶段,g点对应的应力成
为新的比例极限,材料的强度提高 了,但变脆了。----冷作硬化
二、无明显屈服现象的塑性材料
s 名义屈服应力:
s0.2 即此类材料的失效应力。 s 0.2
三、铸铁拉伸时的机械性能
s
sb
0.2%
sb---铸铁拉伸强度极限(失效应力)
§2–5 材料压缩时的机械性能
一、试件: 短试件 h/d在1—3之间,太长有失去稳定性的可能
二、试验过程 常温(20℃);静载(缓慢加载);标准试件。
1、塑性材料
如低碳钢,铝及铝 合金等,如右图
s(Mpa)
450 400 350 300 250 200 150 100
50
0 0.05
压缩
P
0.10 0.15
拉伸
0.20 0.25
1)弹性阶段、屈服阶段与拉伸时一样(基本重合) E 、σp 、σS一样
材料失效时未产生明显的塑性变形而突然断裂。脆性材料 如铸铁等以脆断为失效标志。
2、塑性材料与脆性材料的比较 1)变形(δ)不同 塑性材料: δ>5% 明显的变形 脆性材料: δ<5% 几乎看不到变形 2)强度 塑性材料—---抗拉、抗压能力差不多 脆性材料—---抗压能力 远大于抗拉能力
3、几种常用材料的主要力学性能 ( 书P27)
sb ss
低碳钢试件的应力--应变曲线(s-- 图)
s
d
sb s sses p
bc
ab a
e
(1)、弹性阶段 (oa′段)
s
d
bc ab a
se sp
1)oa--比例段: ---比例极限
1 s s E
E
E tg
2)aa′--曲线段: se--弹性极限
s f ( )
一般情况下,sp 与se相差很小,可视为一个极限,用 sp表示,材料使用时一般要求构件的应力不能超过sp。
验测出极限应力,打一折扣,除以一 个大于 一的数值所得到的应力。
s
ss
ns
-------塑性材料
sb
nb
-------脆性材料
3、安全系数: 一个大于1的常数------ns , nb
*§2–6 温度和时间对材料力学性能的影响
E(Gpa)
216
一、温度对材料力学性能的
E
177
影响(以低碳钢为例)
(2)屈服(流动)阶段(a′b′段)
1)a′b′--屈服阶段:
s
d 外力P不增加的情况下,材料
的变形在不断增大,材料暂
b a cb
时失去了对载荷的抵抗能力, 称为屈服。
a
b---上屈服极限 c---下屈服极限
ss
变形量很大, 载荷波动
ss---屈服极限(对应c点的应力)
2)在屈服阶段,材料有明显的塑
1)优质钢材料的强度高;
2)所有钢材E相差不大,约为200GPa。
四、极限应力、安全系数、许用应力
1、极限应力: 杆件发生失效时的应力称之---由实验测得
1)塑性破坏的极限应力∶ 2)脆性破坏的极限应力∶
s jx s s (s 0.2 )
s jx s b
2、许用应力[ s] : 构件工作时所许可的最大应力 。------ 由实
第二章 轴向拉伸与压缩
§2-4 材料拉伸时的力学性能 §2-5 材料压缩时的力学性能 §2-6 温度和时间对材料力学性
能的影响
§2–4 材料拉伸时的力学性能
* 材料的力学性能:
外力作用下材料在强度(应力)与变形方面所表现出来 的种种特性。
** 性能的测试:
基本试验,常温 、静载下的试验
*** 试验条件及试验仪器
2)试件在较小的变形下突然破坏 断面与轴线约成45°~55°倾角
3) σb在600MPa左右
脆性材料的抗压能力远大于抗拉 能力,因而一般在承受压力时使 用脆性材料。
铸铁压缩约50度破坏面
三、讨论:
1、材料的两种失效形式
(1)塑性屈服
指材料失效时产生明显的塑性变形,并伴有屈服现象。 塑性材料如低碳钢等以塑性屈服为标志。 (2)脆性断裂
I) 试验条件:
常温(20℃);静载(缓慢加载);标准试件。 A
d
长试件:l=10d
l 短试件:l=5d
II、试验仪器: 万能材料试验机; 变形仪(常用引伸仪)。
一、低碳钢试件的拉伸图(P--L图)(试验全过程)
低碳钢 含碳0.3%以下
P
1)低碳钢试件的拉伸图(P--L图) Pb Ps
△L
s
2)低碳钢试件的s ~ 图
★ d点后材料即将发生断
裂,其所对应的应力为材 料的断裂极限
1)sb---强度极限(断裂极限) 2)弹性应变、塑性应变
(4)颈缩(断裂)阶段(de段)
s
d
sb ss sp
bc
ab a
e
(5)弹塑性指标
1)延伸率:
L1 L
L 100 00
2)截面收缩率:
A - A1 A
100 0 0
3)脆性、塑性指标 以 5 00 为界
s(kg/cm2)
相关文档
最新文档