八上 1.6 等腰梯形的轴对称性(2)
八年级数学复习考点1 轴对称及轴对称图形的意义
ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。
4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。
二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。
变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。
变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。
三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。
3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。
人教版八年级数学讲义梯形及等腰梯形(含解析)(2020年最新)
第19讲梯形及等腰梯形知识定位讲解用时:3分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习梯形及等腰梯形。
梯形和等腰梯形属于四边形章节,选择填空中会涉及到,也经常出现在几何大题中,是中考考查范围内的一个重要知识点,熟练掌握一般梯形、直角梯形和等腰梯形及它们的性质和判定,灵活运用并处理含梯形的综合类型题目.知识梳理讲解用时:20分钟梯形的认识1、定义:一组对边平行而另一组对边不平行的四边形叫做梯形(概念记清楚哦)一般梯形梯形标注:梯形是特殊的四边形,有且只有一组对边平行哦梯形的分类2、梯形的分类:一般梯形、特殊梯形(直角梯形、等腰梯形)直角梯形:有一个角是直角的梯形叫做直角梯形等腰梯形:两腰相等的梯形叫做等腰梯形直角梯形等腰梯形AB//CD AB//CDAD≠BC AD=BCAD⊥CD AD不平行BC梯形的中位线3、梯形的中位线:连接梯形两腰上的中点的线段叫做梯形的中位线. 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半你知道怎么证明吗?EF//AB//CDEF=12(AB+CD)等腰梯形的性质和判定1、等腰梯形的性质定理性质定理1:等腰梯形同一底边上的两个角相等性质定理2:等腰梯形的两条对角线相等性质3:等腰梯形既是轴对称图形,只有一条对称轴(底边的垂直平分线)∠A=∠B AC=BD 虚线为等腰梯形的对称轴∠C=∠D2、等腰梯形的判定定理判定定理1:同一底边上两个内角相等的梯形是等腰梯形判定定理2:对角线相等的梯形是等腰梯形判定3:利用定义课堂精讲精练【例题1】已知,在梯形ABCD中,AD∥BC,AD=4,AB=CD=6,∠B=60°,那么下底BC的长为.【答案】10【解析】首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,进而得到CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.解:如图,过A作AE∥DC交BC与E,∵AD∥BC,∴四边形AECD是平行四边形,∴AD=EC=4,AE=CD,∵AB=CD=6,∴AE=AB=6,∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=6,∴BC=6+4=10.故答案为:10.讲解用时:3分钟解题思路:此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.教学建议:利用梯形的知识作辅助线构造出平行四边形和等边三角形.难度: 3 适应场景:当堂例题例题来源:普陀区期中年份:2017【练习1.1】如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB= .【答案】5【解析】过点D作DE∥AB交BC于E,根据平行线的性质,得∠DEC=∠B=30°,根据三角形的内角和定理,得∠EDC=75°,再根据等角对等边,得DE=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则AB=DE=CE=7﹣2=5,从而求解.解:过点D作DE∥AB交BC于E,∴∠DEC=∠B=30°.又∵∠C=75°,∴∠CDE=75°.∴DE=CE.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE=2.﹣BE=BC﹣AD=7﹣2=5.∴AB=DE=CE=BC故答案为:5.讲解用时:3分钟解题思路:此题综合考查了平行四边形的判定及性质、平行线的性质、等角对等边的性质,解题的关键是作平行线构造平行四边形.教学建议:利用梯形的知识作辅助线构造出平行四边形进行求解.难度: 3 适应场景:当堂练习例题来源:潍坊三模年份:2016【例题2】如图,在梯形ABCD中,AB∥CD,∠ABC=90°,如果AB=5,BC=4,CD=3,那么AD= .【答案】2【解析】试题分析:过点D作DE⊥AB于点E,后根据勾股定理即可得出答案.解:过点D作DE⊥AB于点E,如下图所示:则DE=BC=4,AE=AB﹣EB=AB﹣DC=2,AD==2.故答案为:2.讲解用时:3分钟解题思路:本题考查了梯形及勾股定理的知识,难度不大,属于基础题.教学建议:利用梯形和勾股定理的知识进行求解.难度: 3 适应场景:当堂例题例题来源:普陀区期末年份:2016【练习2.1】如图,已知梯形ABCD中,AD∥BC,E为AB中点,DE⊥EC.求证:(1)DE平分∠ADC;(2)AD+BC=DC.【答案】(1)DE平分∠ADC;(2)AD+BC=DC【解析】试题分析:(1)延长DE交CB的延长线于F,可证得△AED≌△BEF,根据三线合一的性质可得出CD=CF,推出∠CDF=∠F,由∠ADF=∠F即可证明;(2)由△AED≌△BEF,根据三线合一的性质可得出CD=CF,进而利用等线段的代换可证得结论;证明:(1)延长DE交CB的延长线于F,∵AD∥CF,∴∠A=∠ABF,∠ADE=∠F.在△AED与△BEF中,,∴△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴∠CDF=∠F,∵AD∥CF,∴∠ADE=∠F,∴∠ADE=∠CDF,∴ED平分∠ADC.(2)∵△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴CD=CF=BC+BF,∴AD+BC=DC.讲解用时:4分钟解题思路:本题考查梯形、全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是因为点E是中点,所以应该联想到构造全等三角形,这是经常用到的解题思路,同学们要注意掌握.教学建议:学会运用梯形、全等三角形的判定和性质、线段垂直平分线的性质进行解题.难度: 4 适应场景:当堂练习例题来源:松江区期末年份:2017【例题3】如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .【答案】4【解析】试题分析:根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG 是△ABD的中位线,即可求得EG的长,则FG即可求得.解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.讲解用时:3分钟解题思路:本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.教学建议:熟练掌握梯形的中位线、三角形的中位线知识并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】边长为8的正方形ABCD中,E、F是边AD、AB的中点,连接CE,取CE中点G,那么FG= .【答案】6【解析】试题分析:根据题意,正方形ABCD的边长为8,E边AD的中点,可得出AE、BC的长;又由点F、G分别是AB、CE的中点,根据梯形的中位线定理,可得出FG的长;解:如图,∵正方形ABCD的边长为8,E、F是边AD、AB的中点,∴AE=4,BC=8,又∵点G是CE的中点,∴FG为梯形ABCE的中位线,∴EF==×(4+8)=6.故答案为:6.讲解用时:3分钟解题思路:本题主要考查了梯形的中位线定理,熟练掌握梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.教学建议:学会应用梯形的中位线定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】在梯形ABCD中.AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是.【答案】1:4【解析】试题分析:过A作AG⊥BC于G,交EF于H,再根据梯形的中位线定理及面积公式解答即可.解:过A作AG⊥BC于G,交EF于H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF?AH=xcm2,∴EF?AH=2xcm2,∴S梯形ABCD=(AD+BC)?AG=×2EF×2AH=2EF?AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.故答案为:1:4.讲解用时:3分钟解题思路:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.教学建议:学会应用梯形的中位线定理.难度: 3 适应场景:当堂例题例题来源:六安期末年份:2013【练习4.1】在梯形ABCD中,AD∥BC,E、F分别是边AB、CD的中点.如果AD=5,EF=11,那么BC= .【答案】17【解析】试题分析:根据梯形中位线定理“梯形的中位线长是上下底和的一半”,进行计算.解:根据梯形中位线定理,得EF=(AD+BC),则BC=2EF﹣AD=2×11﹣5=17.讲解用时:2分钟解题思路:考查了梯形的中位线定理.教学建议:熟练掌握并应用梯形的中位线定理.难度: 2 适应场景:当堂练习例题来源:无年份:2018【例题5】已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC,∠A=60°.求:梯形ABCD的周长.【答案】10【解析】试题分析:由等腰梯形的性质得出∴∠ABC=∠A=60°.周长∠ABD=∠CBD=30°,∠ADB=90°,由直角三角形的性质得出AD=AB.AB=2AD=4.证出∠CDB=∠CBD.得出CD=BC=2.即可求出梯形ABCD的周长.解:在梯形ABCD中,∵DC∥AB,AD=BC=2,∠A=60°.∴∠ABC=∠A=60°.∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∴∠ADB=90°,∴AD=AB.∴AB=2AD=4.又 DC∥AB,∴∠CDB=∠ABD,又∠ABD=∠CBD,∴∠CDB=∠CBD.∴CD=BC=2..∴梯形ABCD的周长=AB+BC+CD+AD=4+2+2+2=10讲解用时:3分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:掌握等腰梯形的性质和判定并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.【答案】(1)2√3;(2)3√3【解析】试题分析:(1)根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解;(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH和AH的长,则AB即可求得,然后利用梯形的面积公式求解.解:(1)∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在RT△ADH和RT△BCG中,,∴RT△ADH≌RT△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴.讲解用时:3分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:掌握等腰梯形的性质并灵活应用.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求对角线BD的长和梯形ABCD的面积.【答案】3√3【解析】根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解,过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH和AH的长,则AB即可求得,然后利用梯形的面积公式求解.解:∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在Rt△ADH和Rt△BCG中,,∴Rt△ADH≌Rt△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴梯形ABCD的面积=.讲解用时:4分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:熟练地运用等腰梯形、平行线、等腰三角形的性质进行解题.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】已知:如图,等腰梯形ABCD的中位线EF的长为6cm,对角线BD平分∠ADC,下底BC的长比等腰梯形的周长小20cm,求上底AD的长.【答案】4cm【解析】试题分析:由等腰梯形的性质得出AB=DC,AD∥BC,得出∠ADB=∠CBD,,由已知再由已知条件得出BC=DC=AB,由梯形中位线定理得出AD+BC=2EF=12cm条件求出BC,即可得出AD的长.解:∵四边形ABCD是等腰梯形,∴AB=DC,AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC=AB,∵EF是等腰梯形的中位线,,∴AD+BC=2EF=12cm∵下底BC的长比等腰梯形的周长小20cm,﹣20,∴BC=AB+BC+CD+AD即BC=AB+DC﹣8,∴BC=8cm,∴AD=4cm.讲解用时:3分钟解题思路:本题考查了等腰梯形的性质、等腰三角形的判定、梯形中位线定理;熟练掌握等腰梯形的性质,并能进行推理论证与计算是解决问题的关键.教学建议:利用等腰梯形、等腰三角形的判定、梯形中位线等知识点进行解题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.(1)求证:四边形AECD是平行四边形;(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.【答案】(1)四边形AECD是平行四边形;(2)四边形AECD是菱形【解析】试题分析:(1)由等腰梯形的性质(等腰梯形同一底上的角相等),可得∠B=∠DCB,又由等腰三角形的性质(等边对等角)证得∠DCB=∠AEB,即可得AE∥DC,则四边形AECD为平行四边形;(2)根据平行线的性质,易得∠EAC=∠DCA,又由已知,由等量代换即可证得∠EAC=∠ECA,根据等角对等边,即可得AE=CE,则四边形AECD为菱形.证明:(1)∵在等腰梯形ABCD中,AD∥BC,AB=DC,∴∠B=∠DCB,∵AE=DC,∴AE=AB,∴∠B=∠AEB,∴∠DCB=∠AEB,∴AE∥DC,∴四边形AECD为平行四边形;(2)∵AE∥DC,∴∠EAC=∠DCA,∵∠B=2∠DCA,∠B=∠DCB,∴∠DCB=2∠DCA,∴∠ECA=∠DCA,∴∠EAC=∠ECA,∴AE=CE,∵四边形AECD为平行四边形,∴四边形AECD为菱形.讲解用时:3分钟解题思路:此题考查了等腰梯形的性质、平行四边形的判定、菱形的判定以及等腰三角形的判定与性质.解题的关键是仔细识图,应用数形结合思想解答.教学建议:利用等腰梯形、平行四边形的判定、菱形的判定等知识点进行解题.难度: 3 适应场景:当堂例题例题来源:连云港校级模拟年份:2010【练习7.1】如图,在梯形ABCD中,AD∥BC,BA=AD=DC,点E在边CB的延长线上,并且BE=AD,点F在边BC上.(1)求证:AC=AE;(2)如果∠AFB=2∠AEF,求证:四边形AFCD是菱形.【答案】(1)AC=AE;(2)四边形AFCD是菱形【解析】试题分析:(1)由已知条件可判定四边形ABCD是等腰梯形,利用等腰梯形的性质以及给出的条件利用SAS可判定△ABE≌△ADC,从而可证得结论;,所以四边形AFCD是菱形.(2)由(1)和外角和定理可证得AD=DC=AF=CF证明:(1)∵AD∥BC,BA=AD=DC,∴梯形ABCD是等腰梯形,∴∠ABC=∠DCE,∵∠ABE+∠ABC=180°,∠DCE+∠D=180°,∴∠D=∠ABE,又∵BE=AD,∴△ABE≌△ADC,∴AC=AE.(2)∵∠AFB=∠CAF+∠FCA,∠AFB=2∠E,∴2∠E=∠CAF+∠FCA,∵∠E=∠DAC=∠DCA,又∵AD∥BC,∴∠DAC=∠FCA,,∴AD=DC=AF=CF∴四边形AFCD是菱形.讲解用时:3分钟解题思路:此题主要考查等腰梯形的性质及全等三角形的判定方法的综合运用,难度较大,解答此类综合题目还需从基本做起,掌握一些基本性质是解答此类题目必备的.教学建议:利用等腰梯形的性质、全等三角形的判定等知识点进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于.【答案】4【解析】只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.解:根据梯形的中位线定理,得另一底边长=中位线×2﹣一底边长=2×6﹣8=4.故答案为:4难度:2 适应场景:练习题例题来源:金山区二模年份:2018【作业2】如图,等腰梯形ABCD的面积为144,AD∥BC,AB=DC,且AC⊥BD.求等腰梯形ABCD的高.【答案】12【解析】过点D 分别作DE∥AC与BC的延长线交于点E,DF⊥BC,垂足为点F,将等腰梯形的面积转化为△DBE的面积,从而求得三角形的高即可得到等腰梯形的高.解:过点D 分别作DE∥AC与BC的延长线交于点E,DF⊥BC,垂足为点F.∵AD∥BC,∴四边形ACED是平行四边形.∴AD=CE,AC=DE.又∵四边形ABCD是等腰梯形,∴AC=BD.∴BD=DE.∴BF=FE.∵AC⊥BD,∴∠BGC=∠BDE=90°.∴.又∵AB=CD,∴△ADB≌△CED.∴S△BED=S梯形ABCD=144,∵BE?DF=144,∴×2DF2=144∴等腰梯形ABCD的高等于12.难度: 3 适应场景:练习题例题来源:普陀区期末年份:2014【作业3】如图,在等腰梯形ABCD中,AB∥DC,AC、BD是对角线,△ABD≌△ABE.求证:四边形AEBC是平行四边形.【答案】四边形AEBC是平行四边形【解析】根据等腰梯形的对角线相等,易得AC=BD,又由△ABD≌△ABE,易得AD=AE,BD=BE,则可证得AE=BC,AC=BE,根据有两组对边分别相等的四边形是平行四边形,可证得四边形AEBC是平行四边形.证明:∵四边形ABCD是等腰梯形,∴AD=BC,AC=BD,又∵△ABD≌△ABE,∴AD=AE,BD=BE,∴AE=BC,AC=BE,∴四边形AEBC是平行四边形.难度: 3 适应场景:练习题例题来源:香坊区期末年份:2011。
八上第一章 第10课时 等腰梯形的轴对称性(1)
八年级数学(上)第一章轴对称图形第10课时等腰梯形的轴对称性(一)1.下列关于等腰梯形的判断中,正确的是( ) A.两底角相等B.同一底上的两底角互补C.两个角相等D.对角线的交点在对称轴上2.在等腰三角形、直角三角形、直角梯形、等腰梯形中,一定是轴对称图形的有( ) A.1个B.2个C.3个D.4个3.关于等腰梯形,下列判断:①同一底上两底角相等;②对角线的交点是对角线的中点;③对角线的交点在梯形的对称轴上;④对角线互相垂直.其中正确的是( )A.③④B.①②C.①②③④D.①③4.如图,在梯形ABCD中,AD∥BC,AC、BD相交于点O,则图中面积相等的三角形共有( )A.2对B.3对C.4对D.5对5.若等腰梯形的三边长分别为3,4,11,则其周长为( )A.21 B.29C.21或29 D.21或29或226.如图,小方格的边长为1.(1)请你按对称轴l将等腰梯形ABCD补画完整.(2)AD=_________,BC=_________,S梯形ABCD=__________.7.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,BC=BD,则∠A=_____,∠ABC=______.8.如图,在等腰梯形ABCD中,AD∥BC,∠C=60°,则∠1=__________.9.如图,在等腰梯形ABCD中,AB∥CD,点E、F分别在AD、BC上,且DE=CF.试说明AF=BE.10.如图,在梯形ABCD中,AD∥BC,AB=DC,若M为线段AD上任意一点(点M与点A、D不重合).问:当点M在什么位置时,MB=MC?请说明理由.11.如图,在等腰梯形ABCD中,AD∥BC,E为梯形内一点,且EA=ED,则EB与EC 相等吗?为什么?12.如图,在等腰梯形ABCD中,AD∥BC,DE⊥BC于点E,BF⊥AE于点F,请你添加一个条件,使得△ABF≌△CDE,并写出说明过程.13.如图,在等腰梯形ABCD中,E为底边BC的任意一点,EF⊥AB于点F,EG⊥CD于点G.试说明EF与EG的和为定值.14.如图甲,四边形ABCD是等腰梯形,AB∥DC.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.(1)求四边形ABCD四个内角的度数;(2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由;(3)现有图甲中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.参考答案1.D 2.B 3.D 4.B 5.B6.(1)略(2)4 8 307.108°72°8.60°9.∵四边形ABCD是等腰梯形,∴AD=BC,∠DAB=∠CBA.∵DE=CF,∴AE=BF.又∵AB=BA,∴△ABE≌△BAF.∴BE=AF10.M在AD的中点时,MB=MC ∵在梯形ABCD中,AB=DC,∴∠A=∠D.又∵M为AD的中点,∴AM=DM.∴△AM B≌△DMC.∴BM=CM11.EB=EC ∵梯形ABCD是等腰梯形,∴∠BAD=∠ADC,AB=DC.又∵AE=ED,∴∠DAE=∠ADE.∴∠BAE=∠CDE.∴△ABE≌△DCE.则BE=EC12.略13.过点B作BH⊥CD于点H,连接BD、AE、DE.∵AD∥BC,∴S△ABD=S△AED.∴S△BCD =S△ABE+S△DCE.即12CD·BH=12AB·EF=12AB·EF+12CD·EG.又∵AB=CD,∴BH=EF+BG.即EF+EG为定值14.(1)由图乙可知三个全等的等腰梯形的上底的一个顶点的三个角组成一个周角.故每个角应是120°,所以∠C=∠D=120°,∠A=∠B=60°.(2)由图乙可知AD=DC=CB,连接AC.因为∠D=120°,所以∠DAC=∠DCA=30°.又∠B=60°,所以∠ACB=90°.所以AB=2BC.所以四边形ABCD中的四条边的关系是AD=DC=CB=12 AB.(3)如图甲、乙,答案不唯一。
初中数学 等腰梯形的轴对称性3人教版精品公开课件
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
世界上有一种爱很伟大,那就是母爱!世上有一个人最值得我们去回报,那就是母亲。 母亲像什么,母亲像天使一样把一点一滴汗水与祝福慢慢地撒在我们的心里。
母亲是什么,母亲为我们打开成长的大门,母亲是上帝派下来哺育我们的天使。 在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼?
观察与思考
如图,△ABC中,如果过一边上任一点D,作另一边的 平行线DE, 截去一个角后,所得的是什么四边形?
A
D
E
你一能组由对等边B腰平三行角,另形一得组到对等C边腰不梯平形行吗的? 四边形叫做梯形.
初二数学轴对称图形经典题
初二数学增补习题一、选择题1.以下命题中:①两个全等三角形合在一同是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直均分线;④一条线段能够看着是以它的垂直均分线为对称轴的轴对称图形.正确的说法有()个A.1 个B.2 个C.3 个D.4 个2.以下图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.此中是轴对称图形有()个A.1 个B.2 个C.3 个D.4 个3.已知∠ AOB=30°,点 P 在∠ AOB的内部, P1与 P 对于 OA对称, P2与 P 对于 OB对称,则△P OP是()12A.含 30°角的直角三角形;B.顶角是 30 的等腰三角形;A C.等边三角形D.等腰直角三角形 .4.如图:等边三角形ABC中, BD= CE, AD与 BE订交于点 P,则∠ APE的度数是()A.45°B.55°EP C.60°D.75°5. 等腰梯形两底长为4cm 和 10cm,面积为 21cm2,则这个梯形较小B CD 的底角是()度 .A.45°B.30°C.60°D.90°6.已知点 P 在线段 AB的中垂线上,点Q 在线段 AB的中垂线外,则()A . PA+PB> QA+QB B. PA+PB< QA+QBD . PA+PB= QA+QB D.不可以确立7.已知△ ABC与△ A1B1C1对于直线 MN对称,且 BC与 B1C1交与直线 MN上一点 O,则()A.点 O 是 BC 的中点B.点 O是 B C 的中点11C .线段 OA与 OA1对于直线MN对称D.以上都不对8.如图:已知∠AOP=∠BOP=15°, PC∥ OA,B PD⊥ OA,若 PC=4,则 PD=()A.4B. 3CC.2D. 1P9.∠ AOB的均分线上一点P 到 OA的距离为 5, Q 是 OB上任一点,则()O AA .PQ>5B.PQ≥5DC .PQ<5D.PQ≤510 .等腰三角形的周长为15cm,此中一边长为 3cm.则该等腰三角形的底长为()A.3cm 或 5cm B . 3cm 或 7cm C. 3cm D. 5cm 二.填空题11.线段轴是对称图形,它有_______ 条对称轴.12.等腰△ ABC中,若∠ A=30°,则∠ B=________.13.在 Rt △ ABC中,∠C=90°,AD均分∠ BAC交 BC于 D,若 CD=4,则点 D到 AB的距离是__________ .14.等腰△ ABC中, AB=AC=10,∠ A=30°,则腰 AB上的高等于 ___________ .15.如图:等腰梯形ABCD中, AD∥ BC, AB=6, AD=5, BC=8,且 AB∥ DE,则△ DEC的周长是____________ .A D 16.等腰梯形的腰长为2,上、下底之和为10 且有一底角为60°,则它的两底长分别为____________ .17.若 D 为△ ABC的边 BC上一点,且 AD=BD, AB=AC=CD,CBE 则∠ BAC=____________.18.△ ABC中,AB、AC的垂直均分线分别交BC 于点 E、F,若∠ BAC=115°,则∠ EAF=___________.三.解答题19.如图:已知∠ AOB和 C、 D 两点,求作一点 P,使 PC=PD,且 P 到∠ AOB两边的距离相等.②如图:某地有两所大学和两条订交错的公路,(点 M,N表示大学, AO,BO表示公路) .AC·A· DO M现计划修筑O N B 一座物质库房,希望库房到两所大学的B 距离相等,到两条公路的距离也相等。
1.6 等腰梯形的轴对称性2教案
怀文中学2011---2012学年度第一学期教学设计初 二 数 学(1.6等腰梯形的轴对称性2)主备:赵玖红 审校:杨长江 日期:2011-9-19学习目标:1.通过探索研究,使学生进一步了解等腰梯形的轴对称性.2.培养学生的综合思维能力,将等腰梯形的轴对称性灵活的运用到几何证明中. 3.知道一个梯形是等腰梯形的的判定条件.教学重点:等腰梯形的判定.教学难点:等腰梯形的性质和判定的综合运用. 教学过程:一.自主学习(导学部分)1.等腰梯形有哪些性质? (1) . (2) . (3) . 2.等腰梯形有哪些评定方法?二.合作、探究、展示1.等腰梯形的判定:同一底上的两个底角相等的梯形是等腰梯形.在梯形ABCD 中,如果∠B =∠C ,那么AB =DC .2.例1.如图,等腰梯形ABCD 中,点E 、F 分别在两腰AD 、BC 上,且EF ∥DC ,梯形CDEF 是等腰梯形?为什么?例2.梯形ABCD 中,AB ∥CD ,M 是CD 的中点,∠1=∠2,试说明梯形ABCD 是等腰梯形.三.巩固练习1、课本:34页第5题、33页第1、2题.2、在 梯形ABCD 中 ,AB ∥DC ,∠A =130°,∠C =50°,则∠B = ,∠D = ,该 梯形是 .3、一个四边形的四个内角的度数之比是2:2:1:1,则此四边形形状为 .变式:一个四边形的四个内角的度数之比是2:1:2:1,则此四边形形状也为等腰梯形吗?4.如图,等腰梯形ABCD 中,AD ∥BC , AB =CD , E 为梯形外一点,且AE =ED ,求证:EB=EC .5、如图,等腰梯形ABCD 中,AB =DC ,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕为EF ,若AD =2,BC =3,求BE 的长.四.课堂小结 五.布置作业 六.预习指导 教学反思:DC B ABA。
江苏省徐州市王杰中学八年级数学上册《1.6 等腰梯形的轴对称性》学案(1)(无答案) 苏科版
章节与课题 §1.6等腰梯形的轴对称性(1)课时安排1 课时主备人 审核人 使用人使用日期或周次本课时 学习目标 或学习任务1、知道等腰梯形的概念,等腰梯形的轴对称性极其相关性质;2、能利用等腰梯形的性质进行有条理的说理。
本课时 重点难点 或学习建议 教学重点:探索等腰梯形的轴对称性和其他性质; 教学难点:运用等腰梯形的轴对称性进行说理和计算 本课时 教学资源 的使用学习过程教师 二次备课栏 自学准备与知识导学: 什么是梯形? 什么是等腰梯形?概念:一组对边_______,另一组对边不_______的四边形叫做梯形; 梯形中,平行的一组对边称为_____,不平行的一组对边称为_____; _______相等的梯形叫做等腰梯形。
学习交流与问题研讨: 1、思考、交流怎样用一张等腰三角形纸片剪出一个等腰梯形呢?△ABC 中,如果过一边上任一点D ,作另一边的平行线DE , 截去一个角后,所得的是什么四边形? 2、动手试一试把上图中的等腰三角形ABC 沿对称轴折叠,你能发现梯形BCDE 有什么性质?等腰梯形的性质:1.等腰梯形是___________图形,过____________的直线是对称轴。
2.等腰梯形在_______底上的两个_______相等。
如右图,在梯形ABCB 中,AB ∥CD ,AD=BC ,E ,F 分别是BC 、AD 的中 点,那么,______所在的直线是它的对称轴,∠A=_____,∠C=______。
例1 在梯形ABCD 中,AD ∥BC ,AB=DC 。
AC 、BD 相等吗?为什么?DAAB CDEABCEDF等腰梯形的性质3:等腰梯形的_________相等。
例2 如图,梯形ABCD中,若DC∥AB,AD=BC,∠A=600,BD⊥A D,那么∠DBC=___,∠C=.例3 如图,在梯形A BCD中,AD∥BC,AB=DC,点E在BC上,DE∥AB且平分∠ADC. △CDE是什么三角形?请说明理由。
江苏省兴化市大邹高级中学八上1.6等腰梯形的轴对称性(2)
1.6等腰梯形的轴对称性(2)(附答案)练习反馈1.如图,有九个点在平面上形成3×3的方阵,以这些点为顶点的等腰梯形有( )A .0个B .2个C .4个D .8个2.有下列说法:①等腰梯形同一底上的两个内角相等;②等腰梯形的对角线相等;③等腰梯形是轴对称图形,且只有一条对称轴;④有两个内角相等的梯形是等腰梯形.其中正确的有( ).A .1个B .2个C .3个D .4个3.在四边形ABCD 中,AB ≠DC ,给出下列论断:①AB ∥DC ;②AD =BC ;③∠A =∠B 其中两个作为题设,另一个作为结论,用“如果……那么……”的形式,写出一个你认为正确的命题:4.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AD 、BC的中点,且EF ⊥BC ,则梯形ABCD (填“是”或“不是”)等腰梯形. 5.如图,在梯形ABCD 中,BC ∥AD ,延长CB 到E ,使BE =AD ,若同时有∠E =∠ACE ,则梯形ABCD 是等腰梯形吗?为什么?6.如图,在梯形ABCD 中,BC ∥AD ,DE ∥AB ,DE =DC ,∠A=100°,试求其他三个内角的度数.请问此时ABCD 为等腰梯形吗?7.如图,在△ABC 中,AB =AC ,D 、E 分别为AB 、AC 上的两点,且AD =AE ,试说明四边形是等腰梯形.拓展提高8.如图四边形ABCD 是等腰梯形,BC ∥AD ,AB =DC ,BD ⊥CD ,AC ⊥AB ,∠BAD =120°,AD =5.求等腰梯形ABCD 的周长. ··· ··· C B F B C E B E C C9.如图,在四边形ABCD中,AB=DC,AC=BD,AD ≠BC,试说明四边形ABCD是等腰梯形。
10.如图,四边形ABCD是等腰梯形,BC∥AD,AB=DC,BC=2AD=4 cm,BD⊥CD,AC⊥AB,BC边的中点为E.(1)判断△ADE的形状(简述理由),并求其周长.(2)求AB的长.(3)AC与DE是否互相垂直平分?说出你的理由.11.如图,在梯形ABCD中,AB∥DC,AD=BC,AB=10,CD=4,延长BD到E,使DE=DB,作EF⊥AB交BA的延长线于F,求AF.EA BF1.6等腰梯形的轴对称性(2)1.C2.C3.(不唯一)例如:如果①AB∥DC②AD=BC哪么A=∠B4.是5.是等腰梯形(提示:连接BD)6. ∠B=∠C=80°, ∠ADC=100°是等腰梯形7.(略)8.259. (略) 10.(1)等边三角形,周长为6cm (2)2cm (3)互相垂直平分 11.AF=4(提示:连接DF、AC)。
八上 1.6 等腰梯形的轴对称性(2)
B
E
苏州市吴中区木渎实验中学
C
课堂小结:
(l)等腰梯形的判定方法: ①先判定它是梯形; ②再用“两腰相等”“或同一底 上的两个角相等”来判定它是等 腰梯形. (2)梯形的画图:一般先画出有关的三 角形,在此基础上再画出有关的平行四 边形,最后得到所求图形.(三角形奠 基法)
苏州市吴中区木渎实验中学
1.6 等腰梯形的轴对称性(2) 【课件】
复习提问:
1.什么样的四边形叫梯形,什么样的 梯形是直角梯形、等腰梯形? 2.等腰梯形有哪些性质?它的性质定 理是怎样证明的?
3.在研究解决梯形问题时的基本思想和 方法是什么?常用的辅助线有哪几种?
苏州市吴中区木渎实验中学
探索发现:
如图,等腰梯形与等腰三角形有 着紧密的联系.比照等腰三角形的特 征,你对等腰梯形还有什么猜想?
A 州市吴中区木渎实验中学
例题示范:
例1.已知:如图,在梯形ABCD 中, AD∥ BC,∠B=∠C ,求证:AB=DC .
A B
C
D
苏州市吴中区木渎实验中学
例2. 如图,在梯形ABCD中,BC∥AD, DE∥AB, DE=DC, ∠A=100°,试求 梯形ABCD的其他三个内角的度数.请问 此时ABCD为等腰梯形吗?说说你的理由.
苏州市吴中区木渎实验中学
【八上数学】《轴对称》最全知识点汇总
5、垂直平分线(中垂线)定义垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平⾏(或在同⼀条直线上).(3)对应线段相等,对应⾓相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平⾏).如图:(1)AA′,BB′,CC′,DD′,被l垂直平分.(2)AA′∥BB′∥CC′,CC′、DD′在同⼀直线上.(3)AB=A′B′,BC=B′C′,CD=C′D′,AD=A′D′,∠BAD=∠B′A′D′,∠ABC=∠A′B′C′,∠BCD=∠B′C′D′,∠CDA=∠C′D′A′.(4)BA、B′A′,BC、B′C′,CD、C′D′的延长线交点在l上.DA、D′A′的延长线平⾏.7、对称轴的作法法1:作⼀条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定⼀条直线.法3:分别延长两对对应线段,确定两个交点,两点确定⼀条直线.8、给出⼀个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂⾜的距离为半径,截取相等,将所作对应点分别相连.⼆、实战演练例1:请在下列三个2×2的⽅格中,各画出⼀个三⾓形,要求所画三⾓形与图中三⾓形成轴对称,且所画的三⾓形顶点与⽅格中的⼩正⽅形顶点重合,并将所画三⾓形涂上阴影.分析:我们应该利⽤轴对称图形的性质,先选择不同的直线当对称轴,再作对称图形.显然⼤⽅格作为正⽅形,有4条对称轴,⽽还有⼀条⽐较难想,对称轴可以经过斜边和直⾓边的中点.解答:例2:如图,桌⾯上有A、B两球,若要将B球射向桌⾯任意⼀边,使⼀次反弹后击中A球,则可以瞄准的点有哪些?分析:本题中,对于桌⾯反弹的问题,其实属于物理中的光路问题,⼊射⾓等于反射⾓,⽽将⼊射⾓作对称后,恰好与反射⾓是对顶⾓,光线在同⼀直线上,因此我们考虑作对称.解答:变式:如图是⼀个台球桌⾯的⽰意图,图中四个⾓上的阴影部分分别表⽰四个⼊球孔.若⼀个球按图中所⽰的⽅向被击出(球可以经过多次反弹),则该球最后落⼊的球袋是______袋.分析:本题与例2类似,但如果每次都作对称,未免太过⿇烦,我们不难发现⼊射线与桌边的夹⾓为45°,则反射后的夹⾓也为45°,问题得解.解答:例3:如图,已知∠AOB=60°,点P为∠AOB内⼀点,分别作点P关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点M.(1)连接OP1,OP2,求∠P1OP2的度数.(2)若P1P2=8,求△PMN周长.分析:(1)要求∠P1OP2的度数,直接求显然很困难,我们不妨从对应线段考虑,则想到连接OP.(2)同样的,将组成三⾓形的三条线段中,能找到对应相等的线段找出,进⾏转化.解答:变式:如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐⾓α的数量关系.分析:(1)问不难,只需⽤3种⽅法中的任意⼀种即可.(2)问与例3类似,准确依据题意,画出图形后,根据对称性,连接对应线段就能有所突破.解答:(1)如图,连接B′B′′,C′C′′,各取中点,连接后,直线EF即为所求.(2)连接OB′,∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM,同理可得∠B′OE=∠B′′OE,∴∠BOB′′=∠BOB′+∠B′OB′′=2∠B′OM+2∠B′OE=2∠MOE=2α.。
苏科版八年级数学上册知识要点
苏科版八年级数学上册知识要点GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-初二数学(上)期末复习各章知识点第一章轴对称图形(知识点)一、轴对称与轴对称图形1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、线段、角的轴对称性1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合。
2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
苏教版八年级上数学期中复习知识点
八年级上册期中知识点第一章轴对称图形1.1轴对称与轴对称图形1.轴对称:把一个图形沿着某一条直线折叠;如果它能够与另外一个图形重合;称这两个图形关于这条直线对称..这条直线叫做对称轴;两个图形中的对应点叫做对称点..对称轴是直线;所在的直线等2.轴对称图形:把一个图形沿着某一条直线折叠;如果直线两旁的部分能够互相重合..3.二者的区别和联系轴对称是2个分开图形整体叫做轴对称图形;轴对称图形是1个图形看成对称轴左右两个图形..4.正多边形:1.有几条边就有几条对称轴..偶数边的正多边形既是轴对称又是中心对称图形2.成轴对称的两个图形的任何对应部分也成轴对称..1.2轴对称的性质1.垂直平分线:垂直并且平分一条线段的直线..高线;中线;角平分线都是线段2.成轴对称的两个图形全等;且其中一个图形沿某条直线翻折后能与另一个图形重合..如果两个图形成轴对称;那么对称轴是对称点连线的垂直平分线..1.4线段、角的轴对称线段的轴对称性:1.线段是轴对称图形;对称轴是线段垂直平分线所在的直线;2.线段的垂直平分线上的点到线段两端的距离相等;3.到线段两端距离相等的点;在这条线段的垂直平分线上..结论:线段的垂直平分线是到线段两端距离相等的点的集合角的轴对称性:1.角是轴对称图形;对称轴是角平分线所在的直线..2.角平分线上的点到角的两边距离相等..3.到角的两边距离相等的点;在这个角的平分线上..结论:角的平分线是到角的两边距离相等的点的集合1.51.1.等腰三角形为轴对称图形;对称轴为顶角平分线所在的直线2.两个底角相等等边对等角3.三线合一顶角平分线;底边中线;底边的高判定:1.如果一个三角形两角相等那么两角所对的边也相等2.两边相等的三角形是等腰三角形2.等边三角形性质和判定:性质:1.等边三角形是轴对称图形;有三条对称轴2.三个边相等3.每个角都是60度判定:1.三个边相等的三角形是等边三角形2.三个角都相等的三角形3.有一个角等于60度的等腰三角形1.6等腰梯形的轴对称等腰梯形的定义:1.梯形的定义:一组对边平行;另一组对边不平行的四边形为梯形..梯形中;平行的一组对边称为底;不平行的一组对边称为腰..2.等腰梯形的定义:两腰相等的梯形叫做等腰梯形..等腰梯形的性质: 1.等腰梯形是轴对称图形;2.等腰梯形同一底上两底角相等..3.等腰梯形的对角线相等..等腰梯形的判定:1.在同一底上的2个底角相等的梯形是等腰梯形..补充:对角线相等的梯形是等腰梯形..第二章 勾股定理与平方根2.1勾股定理1.勾股定理直角三角形两直角边a;b 的平方和等于斜边c 的平方;即222c b a =+2.勾股定理的逆定理如果三角形的三边长a;b;c 有关系222c b a =+;那么这个三角形是直角CB2.2神秘的数组勾股数:满足222c b a =+的三个正整数;称为勾股数..2.3平方根1.平方根1.平方根:一般地;如果一个数x 的平方等于a;即x 2=a;那么这个数x 就叫做a 的平方根或二次方根..表示方法:正数a 的平方根记做“a ±”;读作“正、负根号a ”..性质:一个正数有两个平方根;它们互为相反数;零的平方根是零;负数没有平方根..开平方:求一个数a 的平方根的运算;叫做开平方.. 注意a 的双重非负性:a ≥02.算术平方根:一般地;如果一个正数x 的平方等于a;即x 2=a;那么这个正数x 就叫做a 的算术平方根..特别地;0的算术平方根是0.. 表示方法:记作“a ”;读作根号a..性质:正数和零的算术平方根都只有一个;零的算术平方根是零..2.4平方根立方根:一般地;如果一个数x 的立方等于a;即x 3=a 那么这个数x 就叫做a 的立方根或三次方根.. 表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立注意:33a a -=-;这说明三次根号内的负号可以移到根号外面..2.5实数1.实数的概念及分类 正有理数有理数 零 有限小数和无限循环小数1实数 负有理数正无理数无理数 无限不循环小数负无理数2⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数 3⎪⎩⎪⎨⎧负数正数实数0 每一个实数都可以用数轴上的一个点来表示;反之;数轴上的每一个点都表示一个实数;实数与数轴上的点一一对应..2.无理数:无限不循环小数叫做无理数..在理解无理数时;要抓住“无限不循环”这一时之;归纳起来有四类: 1开方开不尽的数;如32,7等;2有特定意义的数;如圆周率π;或化简后含有π的数;如3π+8等; …等;3.实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数零的相反数是零;从数轴上看;互为相反数的两个数所对应的点关于原点对称;如果a与b互为相反数;则有a+b=0;a=—b;反之亦成立..2、绝对值在数轴上;一个数所对应的点与原点的距离;叫做该数的绝对值..|a|≥0..零的绝对值是它本身;也可看成它的相反数;若|a|=a;则a≥0;若|a|=-a;则a≤0..3、倒数如果a与b互为倒数;则有ab=1;反之亦成立..倒数等于本身的数是1和-1..零没有倒数..4、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时;要注意上述规定的三要素缺一不可..解题时要真正掌握数形结合的思想;理解实数与数轴的点是一一对应的;并能灵活运用..5、估算4.实数大小的比较1、实数比较大小:正数大于零;负数小于零;正数大于一切负数;数轴上的两个点所表示的数;右边的总比左边的大;两个负数;绝对值大的反而小..2、实数大小比较的几种常用方法1数轴比较:在数轴上表示的两个数;右边的数总比左边的数大..2求差比较:设a、b是实数;3求商比较法:设a 、b 是两正实数;;1;1;1b a ba b a b a b a b a <⇔<=⇔=>⇔> 4绝对值比较法:设a 、b 是两负实数;则b a b a <⇔>..5平方法:设a 、b 是两负实数;则b a b a <⇔>22..5.实数的运算1六种运算:加、减、乘、除、乘方 、开方2实数的运算顺序先算乘方和开方;再算乘除;最后算加减;如果有括号;就先算括号里面的..3运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++乘法交换律 ba ab =乘法结合律 )()(bc a c ab =乘法对加法的分配律 ac ab c b a +=+)(2.6近似数与有效数字近似数:测量结果都是包含误差的近似数有效数字:对一个近似数;从左边第一个不是0的数字起;到末尾数字止;所有数字称为这个近似数的有效数字..注:当保留n 位有效数字;若第n+1位数字≤4就舍掉;若第n+1位数字≥5时;则第n 位数字进1..科学记数法一般地;一个大于10的数可以表示成n⨯的形式;其中10a10≤a;n是1<正整数;这种记数方法叫做科学记数法..第三章中心对称图形一3.1图形的旋转1.旋转定义在平面内;将一个图形绕某一定点沿某个方向转动一个角度;这样的图形运动称为旋转;这个定点称为旋转中心;转动的角叫做旋转角..性质旋转前后两个图形是全等图形;对应点到旋转中心的距离相等;对应点与旋转中心的连线所成的角等于旋转角..3.2.中心对称与中心对称图形1.中心对称:定义:在平面内;一个图形绕某个点旋转180°;如果旋转前后的图形互相重合;那么这个图形叫做中心对称图形;这个点叫做它的对称中心..性质:1关于中心对称的两个图形是全等形..2关于中心对称的两个图形;对称点连线都经过对称中心;并且被对称中心平分..3关于中心对称的两个图形;对应线段平行或在同一直线上且相等..判定:如果两个图形的对应点连线都经过某一点;并且被这一点平分;那么这两个图形关于这一点对称..2.中心对称图形:把一个平面图形绕着某一个点旋转180°;如果旋转后的图形能够与原来的图形互相重合;那么这个图形叫做中心对称图形..这个点叫做它的对称中心..3.3平行四边形1.四边形的相关概念1、四边形在同一平面内;由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形..2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°..四边形的外角和定理:四边形的外角和等于360°..推论:多边形的内角和定理:n边形的内角和等于•(n180°;-)2多边形的外角和定理:任意多边形的外角和等于360°..2.平行四边形定义:两组对边分别平行的四边形性质:1. 两组对边分别相等 2.两组对角分别相等 3.对角线互相平分判定 1.两组对边分别平行的四边形是平行四边形 2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形 4.一组对边平行且相等的四边形是平行四边形3.两条平行线的距离两条平行线中;一条直线上的任意一点到另一条直线的距离;叫做这两条平行线的距离..平行线间的距离处处相等..4.平行四边形的面积=底边长×高=ahS平行四边形3.4矩形、菱形、正方形1.矩形定义:有一个角是直角的平行四边形性质:1..对角线相等对角线把矩形分为四个等腰三角形2.四个角都是直角判定:1.有一个角是直角的平行四边形是矩形 2.三个角都是直角的四边形是矩形3.对角线相等的平行四边形是矩形形矩形的面积S=长×宽=ab矩形2. 菱形:定义:有一组邻边相等的平行四边形性质:1.四条边都相等 2.对角线互相垂直平分且每一条对角线平分一组对角对角线把菱形分为四个全等的直角三角形面积公式S=1/2ab判定:1.有一组邻边相等的平行四边形是菱形 2.对角线互相垂直的平行四边形是菱形3.四条边都相等的四边形是菱形面积:S菱形=底边长×高=两条对角线乘积的一半3.正方形:定义:有一组邻边相等且有一个角是直角的平行四边形性质:1.四边相等;邻边垂直;对边平行 2.四个角都是直角3.两对角线相等;互相垂直平分; 每条对角线平分一组对角判定:1.一组邻边相等的矩形是正方形 2.一个角是直角的菱形是正方形3.对角线互相垂直的矩形是正方形4.对角线相等的菱形是正方形3菱形的对角线互相垂直平分;并且每一条对角线平分一组对角面积:设正方形边长为a;对角线长为bS正方形=222b a3.5三角形、梯形的中位线1.三角形的中位线定义:连接三角形两边中点的线段性质:三角形的中位线平行于三角形的第三边;且等于第三边的一半2.梯形的中位线定义:连接梯形两腰中点的线段性质:梯形中位线平行于两底并且等于两底和的一半。
八上数学评价手册答案
初二数学(八上)创新教育实验手册参考答案(苏科版)第一章轴对称图形1. 1 轴对称与轴对称图形【实践与探索】例1 请观察26个大写英文字母,写出其中成轴对称的字母.解:成轴对称的字母有:A、B、C、D、E、H、I、K、M、O、T、U、V、W、X、Y.注意:字母“N、S、Z”也具有对称的特点,但它们不是轴对称图形.例2 国旗是一个国家的象征,观察图1.1.1中的国旗,说说哪些是轴对称图形,并找出它们的对称轴.(略)【训练与提高】一、选择题:1.A2.D3.B4.A5.A二、填空题:6.(1)(2)(5)(6)7.2,3,1,4 8.10∶21三、解答题:9.如图:10.长方形、正方形、正五边形【拓展与延伸】1.(3)比较独特,有无数条对称轴ABCD 1D 2B 1CBAC 1A 1图1.2.12.1.2 轴对称的性质(1)【实践与探索】例1 已知△ABC 和△A 1B 1C 1是轴对称图形,画出它们的对称轴.解: 连接AA 1,画出AA 1的垂直平分线L ,直线L 就是△ABC 和△A 1B 1C 1的对称轴.回顾与反思 连接轴对称图形的任一组对称点,再画对称点所连接线段的垂直平分线,就得该图形的对称轴.例2 如图1.2.2,用针扎重叠的纸得到关于L 对称的两个图案,并从中找出两对对称点、两条对称线段.解:可标注不同的对称点.例如:A 与A '是对称点,B 与B '是对称点. 对称线段有AB 与A 'B ',CD 与C 'D '等.回顾与反思 研究对称点是研究对称图形的基础,一般先研究对称点,再研究对称线段,这能更清楚地了解轴对称的性质. 【训练与提高】 一、选择题:1.B 2.D 3.B 4.A 二、填空题:5.轴对称,3条 6.略 7.810076 8.AB =CD BE =DE ∠B =∠D 三、解答题:9.2,4,5 10.略 11.不是,不是 12.略 13.在对称轴上 【拓展与延伸】 1.如图:图1.2.2图1.2.3(1) (2)图1.2.4 图1.2.52.如图:1.2轴对称的性质(2)【实践与探索】例1 画出图1.2.3中△ABC 关于直线L 的对称图形.解: 在图1.2.3(1)和图1.2.3(2)中,先分别画出点A 、B 、C 关于直线L 的对称点1A 、1B 和1C ,然后连接11B A 、11C B 、11A C ,则△111C B A 就是△ABC 关于直线L 对称的图形.回顾与反思 (1)如果图形是由直线、线段或射线组成时,那么在画出它关于某一条直线对称的图形时,只要画出图形中的特殊点(如线段的端点、角的顶点等)的对称点,然后连接对称点,就可以画出关于这条直线的对称图形; (2)对称轴上的点(如图1.2.3(1)中的点B ),其对称点就是它本身.例2 问题1:如图1.2.4,在一条笔直的河两岸各有一个居民点A 和B ,为方便往来,必须在河上架桥,在河的什么位置架桥,才能使A 和B 两地的居民走的路最短?问题2:如图1.2.5,在一条河的同岸有两个居民点A 和B ,现拟在岸上修建一个码头,问码头修在何处,才能使码头到A 和B 两地的总长最短?①②③④图1.2.4 问题1和问题2之间有联系吗?能从前一个问题受到启发来解决这个问题吗? 探索:对问题1,显然只要连接AB ,AB 与a 的交点就是所要找的点. 对问题2,即要在直线a 上找一点C ,使AC +BC 最小. 分析: 我们用“翻折”———轴对称的方法.画点C :(1)作点A 关于直线a 的对称点A ';(2)连结A 'B 交a 于点C ,点C 就是所求作的点.理由:如图1.2.4,如果C '是直线a 上异于点C 的任意一点,连A C '、B C '、A ' C ',则由于A 、A '关于直线a 对称,所以有'''',C A AC C A AC ==.所以 '''''BC C A BC AC +=+>BC AC BC C A B A +=+=''. 这说明,只有C 点能使AC +BC 最小.【训练与提高】 一、选择题:1.C 2.C 3.B 4.A 二、填空题:5.(1)等腰三角形 (2)矩形 (3)等边三角形 (4)正方形 (5)五角星 (6)圆 6.不对称、不对称 7.5个 三、解答题: 8.略 9.略10.画图略 11.如图:12.画出点A 关于直线L 的对称点A ',连结A 'B 与直线L 的交点即为所求停靠点.【拓展与延伸】图1.3.11.图略2.图略1.3设计轴对称图形【实践与探索】例1 剪纸,千百年来在民间时代流传,给我们的生活带来无限的美丽!动手学一学:观察一下,图1.3.1中最后的展开图是一个轴对称图形吗?它有几条对称轴?例2 如图1.3.2,以直线L为对称轴,画出图形的另一半.图1.4.1【训练与提高】 一、选择题: 1.B 2.B 二、填空题: 3.M 、P 、N 、Q 三、解答题: 4.如图:5.略 6.如日本、韩国 、等 7.略 8.图略 【拓展与延伸】 1.图略2.图略,答案不唯一1.4 线段、角的轴对称性(1)【实践与探索】例1 如图1.4.1,在△ABC 中,已知边AB 、BC 的垂直平分线相交于点P . (1)你知道点P 与△ABC 的三顶点有什么关系? (2)当你再作出AC 的垂直平分线时,你发现了什么?解:(1)点P 与△ABC 的三顶点距离相等,即P A =PB =PC . (2)如图,AC 的垂直平分线也经过P 点.即三角形的三条中垂线交于一点. 例2 如图1.4.2,在△ABC 中,已知AB =AC ,D 是AB 的中点,且DE ⊥AB ,交AC 于E .已知△BCE 周长为8,且AB -BC =2,求AB 、BC 的长.分析:由题意可知,DE垂直平分AB,则有AE=BE,因此△BCE的周长就转化为AC+BC,问题即可解决.解:因为D是AB的中点,且DE上AB,所以AE=BE,则△BCE的周长=BE+CE+BC-AE+CE+BC=AC+BC=8.又因为AB-BC=2,AB=AC,所以AC-BC=2.由上可解得AC=5,BC=3.回顾与反思(1)本题中利用“E是线段AB的垂直平分线上的点”得到“AE=BE”,从而实现了“线段BE"的转移,这是我们常用的方法;(2)利用“线段的中垂线的性质”可以说明两条线段相等.【训练与提高】一、选择题:1.C2.D3.D4.A二、填空题:5.无数个6.6,2 7.10,8 cm 8.9 cm三、解答题:9.24010.连结AB,作AB的中垂线交直线L于P,点P即为所求作的点11.24 cm 12.(1) 35 0(2)55 0【拓展与延伸】1.图略(1)只要任意找一个以A为顶点的格点正方形,过点A的对角线或其延长线与BC的交点就是点P(2)找与A为顶点的正方形中与A相对的顶点.2.9 cm1.4 线段、角的轴对称性(2)【实践与探索】例1 如图1.4.3,在△ABC中,已知∠ABC和∠ACB的角平分线相交于O.请问:(1)你知道点O与△ABC的三边之间有什么关系吗?图1.4.3(2)当你再作出∠A的平分线时,你发现了什么?解:(1)点O到△ABC的三边的距离相等;(2)如图1.4.3,∠A的平分线也经过点D,即三角形的三条角平分线交于一点.例2 已知:如图1.4.4,AD∥BC,DC⊥BC,AE平分∠BAD,且点E是DC的中点.问:AD、BC与AB之间有何关系?试说明之.分析:此题结论不确定,从已知中收集有效信息,并大胆尝试(包括用刻度尺测量)是探索、猜想结论的方法.图1.4.4 (1)将“AE平分∠BAD"与“DE⊥AD"结合在一起考虑,可以联想到,若作EF⊥AB于F,就构成角平分线性质定理的基本图形,可得AF=AD.(2)再结合“点E是DC的中点”,可得:ED=EF=EC.于是连接BE,可证BF=BC.这样,AD+BC=AF+BF=AB.解:AD、BC与AB之间关系:AD+BC=AB.证明思路简记如下:作EF⊥AB,连接BE,易证△ADE≌△AFE( AAS),∴AD=AF.再由EF=ED,EF=EC,可得△BFE≌△BCE( HL),∴BF=BC,AD+BC=AB.回顾与反思(1)根据例1的结论,我们可以在三角形内找到一点,使它到三角形三边距离都相等;(2)利用角平分线的性质,可以说明两条线段相等,这也是我们常用的办法.【训练与提高】一、选择题:1.A2.B3.A4.C二、填空题:5.线段的垂直平分线、角平分线6.3 7.900三、解答题:8.略9.过P点分别作垂线10.作图略11.作MN的中垂线,∠AOB 的平分线交点即是12.6 cm【拓展与延伸】图1.5.1BE D CFA1.600 2.略1.5 等腰三角形的轴对称性(1)【实践与探索】例1 (1)已知等腰三角形的一个角是1000,求它的另外两个内角的度数; (2)已知等腰三角形的一个角是800,求它的另外两个角的度数.分析: (1)由于等腰三角形两底角相等,且三角形的内角和为1800,所以1000的角一定是这个三角形的顶角;(2)等腰三角形的一个角是800,要分底角为800或顶角为800两种情况. 解:(1)由于等腰三角形两底角相等,且三角形的内角和等于1800,这个三角形的顶角等于1000,所以这个三角形的另两个内角应为21(1800 - 1000)=400. (2)①底角为800时,另外两角分别为800和200;②顶角为800时,另外两角分别为500和500.回顾与反思 :(1)当不知道已知的角是等腰三角形的顶角还是底角,此时须进行讨论;(2)若把已知角改为α,则这个等腰三角形另外两个角的度数是怎样的呢?例2 如图1.5.1,在△ABC 中,AB =AC ,D 为BC 的中点, DE ⊥AB ,垂足为E , DF ⊥AC ,垂足为F .试说明DE =DF 的道理. 分析:本题可以根据“角平分线上的点到角的两边的距离相等”来说明 DE =DF .也可以利用△ADB 和△ACD 面积相等来说明DE =DF , 或用全等来说明.【训练与提高】 一、选择题:1.A 2.C 3.C 4.C 5.A 二、填空题:图1.5.2图1.5.36.5 cm 7.6 cm ,2 cm ,或4 cm ,4 cm8.(1)12.5 (2)3>a ,120<<b 9.3,3,4或4,4,2 三、解答题:10.(1)700、400 或 550,550 (2) 300,300 11.750,750,300 12.33 cm 13.1080 14.BD =CE . 理由:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED .∴∠ADB =∠AEC .∴ΔABD ≌ΔACE .∴BD =CE【拓展与延伸】 1.1000 2.略1.5 等腰三角形的轴对称性(2)【实践与探索】例1 如图1.5.2,在△ABC 中,已知∠A =360,∠C =720, BD 平分∠ABC ,问图中共有几个等腰三角形?为什么? 解:图中共有3个等腰三角形. ∵∠A =360,∠C =720,∴∠ABC =1800一(∠A +∠C )=1800- (360+720) =720=∠C , ∴△ABC 是等腰三角形.又∵BD 平分∠ABC ,∴∠ABD =∠CBD =21∠ABC =360, ∠BDC =∠A +∠ABD =360+360=720, 即有∠A =∠ABD ,∠BDC =∠C .∴△ABD 和△BCD 都是等腰三角形. ∴图1.5.2中共有3个等腰三角形.例2 如图1.5.3所示,在四边形ABCD 中,∠ABC =∠ADC = 900.,M 、N 分别是AC . BD 的中点,试说明: (1)DM =BM ; (2)MN ⊥BD .图1.5.4解: (1) ∵点M 是Rt △ABC 斜边的中点,∴BM =21AC , 同理DM =21AC ,∴BM =BM ; (2) ∵N 是BD 的中点,又BM =DM ,∴MN ⊥BD . 回顾与反思 (1)“等边对等角”和“等角对等边”是证明角相等或边相等的又一手段,要能够将这两条定理结合在一起灵活运用,要分清区别和联系;(2)看见直角三角形斜边的中点时,要联想“直角三角形斜边上的中线等于斜边的一半”,这是我们常用的思维方式之一. 【训练与提高】 一、选择题:1.D 2.B 3.D 4.C 二、填空题:5.等腰 6.8 7.350 , 218.(1)ΔBDE 或ΔADE (2)ΔBCE(3)ΔAGF 三、解答题:9.等腰三角形 10.ΔABC ,ΔAEF ,ΔEBO ,ΔFCO ,ΔOBC BE =CF =21EF 11.平行 12.10 cm 【拓展与延伸】1.延长AE 交BC 延长线于F 2.略1.5 等腰三角形的轴对称性(3)【实践与探索】例1 如图1.5.4,在△ABC 中,AB =AC ,∠BAC = 1200,点D 、E 在BC 上,且BD =AD ,CE =AE .判断△ADE 的形 状,并说明理由.解: △ADE 是等边三角形.理由:∵AB=AC,∠BAC=120.,∴∠B=∠C=300.∵BD=AD,AE=CE,∴∠B=∠BAD=300,∠C=∠CAE=300,∴∠ADE=∠DAE=∠AED =600.∴△ADE是等边三角形.例2 等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分为两部分之差为3 cm,则腰长为( ) A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对分析可以先画出草图,题中所给条件实质是腰长与底边长之差的绝对值为3 cm.因为底边长为5 cm,所以腰长可能为8 cm或2 cm,但由于2 cm +2 cm <5 cm,故腰长不能为2 cm,只能为8 cm.解:选B.回顾与反思涉及求等腰三角形边或角时,常会出现“两解”的情况.这样的“解”需要检验它是否满足三角形的三边或三角之间的关系.【训练与提高】一、选择题:1.D2.D3.C4.A5.C二、填空题:6.等边、等边7.150 8.1200三、解答题:9.cm1010、略11.(1)EC=BD(2)添加条件:AB=AC,是轴对称图形,此时,∠BOC=1200,12.过D点作AC平行线【拓展与延伸】1.添辅助线,通过ΔACD≌ΔBCE来说明2.略1.6 等腰梯形的轴对称性(1)图1.6.1图1.6.2【实践与探索】例1 如图1.6.1,在梯形ABCD 中,AD ∥BC , AB =CD , 点E 在BC 上,DE ∥AB 且平分∠ADC ,△CDE 是什么三角形? 请说明理由.解: △CDE 是等边三角形.因为AD ∥BC , AB =CD ,所以∠B =∠C .理由:“等腰梯形在同一底上的两个角相等”又因为AD ∥BC ,所以∠ADE =∠CED .由DE 平分∠ADC ,可得∠ADE =∠CDE , 于是∠CED =∠CDE .又因为AB ∥DE ,所以∠B =∠CED ,从而有∠C =∠CED =∠CDE ,所以△CDE 是等边三角形.回顾与反思 等腰梯形与等腰三角形有着紧密的联系.在研究等腰梯形时,要联想到等腰三角形中的知识.例2 如图1.6.2,在梯形纸片ABCD 中,AD ∥BC , ∠B =600, AB =2,BC =6.将纸片折叠,使得点B 与点D 恰好重合,折痕为AE ,求AE 和CE 的长. 解 ∵点B 与点D 沿折痕AE 折叠后重合,∴△ABE ≌△ADE , ∴ ∠1 = ∠B =600, ∠3 =∠4. ∵AD ∥BC , ∴∠1 = ∠2=600.而∠2 + ∠3 + ∠4= 1800, ∴ ∠3 + ∠4 =1200, ∴ ∠3 =∠4=600,而∠B =600,∴∠5 =600,因此,△ABE 是等边三角形. ∴AE - BE =AB =2, ∴CE =BC - BE =4.回顾与反思 解题过程中要把等腰梯形和一般梯形的特征区分开,不可误用. 【训练与提高】 一、选择题: 1.B 2.C 3.B图1.6.3BCFADE二、填空题:4.1080,1080,720 5.27 6.①②③④ 7.1 cm 8.150 三、解答题:9.∠A =∠E 10.72 0 、72 0 、108 0、108 0,11.成立 【拓展与延伸】 1.CE =21(AB +BC ) 过点C 作CF ∥DB ,交AB 的延长线于点F ,先证:ΔDCB ≌ΔFBC ,则CF =DB ,又四边形ABCD 是等腰梯形,则AC =DB ,故AC =CF , 易证:∠AOB =∠ACF ,所以ΔACF 为等腰直角三角形. 又因为CE ⊥AB ,易证:CE =AE =EF =2BCAB . 2.4,61.6等腰梯形的轴对称性(2)【实践与探索】例1 如图1.6.3,△ABC 中,∠ACB =900,D 是AB 的中点,DE ∥AC ,且DE =AC 21,点F 在AC 延长线上,且CF =AC 21,请说明四边形AFED 是等腰梯形.略证:先说明四边形CFED 是平行四边形.由CD ∥EF ,∠F =∠ACD ,且CD 是RT △ABC 斜边上的中线 得∠A =∠F ,证得四边形AFED 是等腰梯形回顾与反思 要证明梯形是等腰梯形时,只要证明同一底上的两个角相等.例2 阅读下面的分析过程,并按要求回答问题.已知在四边形ABCD 中,AB =CD ,AC =BD ,AD ≠BC .则四边形ABCD 是等腰梯形.你能说明理由吗?分析:要证明四边形ABCD 是等腰梯形,因为AB =DC ,所以只需证四边形ABCD(1)(2)(3)(4)图1.6.4是梯形即可;又因为AD ≠BC ,故只需证AD ∥BC .现有如图1.6.4所示的几种添辅助线的方法,可以任意选择其中一种图形,对原题进行证明.友情提示:充分利用全等三角形与等腰三角形来完成.回顾与反思 在研究等腰梯形时,常常通过辅助线,使等腰梯形与等腰三角形、平行四边形联系起来. 【训练与提高】 一、选择题:1.C 2.C 3.B 4.B 5.C 二、填空题:6.24 7.50 0 、50 0 、130 0、130 0, 8.是 9.80 0 、80 0 、100 0, 等腰 三、解答题:10.略 11.ΔABC ≌ΔDCB12.是,理由:∵∠E =∠ACE ,∴AE =AC ∵AD ∥BC ,∴∠DAC =∠ACE ∴∠E =∠DAC ∵AD =BE ,∴ΔABE ≌ΔCDA ∴AB =CD ∴梯形ABCD 是等腰梯形.13.∵AB =AC ,∴∠ABC =∠ACB .∵BD ⊥AC ,CE ⊥AB ,∴∠BEC =∠CDB =900,BC =BC ∴ΔBEC ≌ΔCDB .∴BE =CD ∴AE =AD .∴AED =∠ADE =21800A ∠-.∵∠ABC =∠ACB =21800A∠-,∴∠AED =∠ABC .∴ED ∥BC .∵BE 与CD 相交于点A ,∴BE 与CD 不平行.∴四边形BCDE 是梯形.∵∠EBC =∠DCB ,∴梯形BCDE 是等腰梯形.M NF DCBA E 【拓展与延伸】 1.26,322.解:设经过x 秒后梯形MBND 是等腰梯形, ∵作ME ⊥BC 于点E ,DF ⊥BC 于点F .∴BE =FN =AM =x .∴EF =MD =21-x ,CN =2x ,BN =24-2x . ∴BN =2AM +MD .即24-2x =2x +21-x ,∴x =1.第一章复习题A 组:1.A 2.C 3.B 4.D 5.C 6.、18或21,22 7.35 0 、35 0 ;40 0、100 0或700、700 8.3 cm 或7 cm 9.7,10或8.5, 8.5 10.(1)300, (2)19 11.1000 12.(1)400,(2)350,(3)360 13.450 1350 等腰 14.等腰梯形 15.3 B 组:16.略 17.略 18.27 300 19.提示:先证:ΔADE ≌ΔADC ,则DE =DC ,所以∠DEC =∠DCE ,又EF ∥BC ,所以∠DCE =∠FEC ,则∠FEC =∠DEC 20.51221.略 22.提示:连结CR 、BP ,利用直角三角形斜边上的中线等于斜边的一半.第二章 勾股定理与平方根答案2.1 平方根⑴例1解: ⑴∵(±10)2=100,∴100的平方根是±10,即10100±=±;⑵∵(±1.3)2=1.69,∴1.69的平方根是±1.3,即3.169.1±=±; ⑶∵49412= ,(±23)2=49,∴49的平方根是±23,即23412±=±;⑷∵02=0,∴0的平方根是0,即00=.回顾与反思:⑴正数的平方根有两个,它们互为相反数,要防止出现100的平方根是10的错误;⑵当被开方数是带分数时.应先将它化成假分数后再求平方根; ⑶ 0的平方根只有一个,就是0,负数没有平方根. 例2解: ⑴∵-64<0,∴-64没有平方根;⑵∵(-4)2=16>0; ∴(-4)2有两个平方根,即416)4(2±=±=-±; ⑶∵-52=-25<0, ∴-52没有平方根;⑷∵81表示81的正的平方根是9,∵9>0, ∴81的平方根有两个是±3.回顾与反思:象(-4)2、81这样的数求平方根时,应先将这些数化简,再求化简后的数的平方根.例3解:⑴ ∵1962=x ,∴x 是196的平方根,即14196±=±=x ;⑵ ∵01052=-x ,∴22=x ,x 是2的平方根,即2±=x ;⑶ ∵()0253362=--x , ∴()362532=-x , ∴()3-x 是3625的平方根,即653±=-x ; ∴6231=x ,6132=x【训练与提高】1. B ; 2D ; 3B . 4.3; 5.±17;±4; 6.±15;54-; 7.-1; 49; 8.9;81; 9.0. 10.⑴-8;⑵±1.3;⑶35-;⑷-9;11.⑴±5;⑵±9;⑶21±;⑷3,-1;12.25; 13.±4.【拓展与延伸】1. ±9;2.±3. 2.1 平方根⑵例1分析:10000表示10000的_________根; 225121-表示225121的算术平方根的相反数; 8149±表示8149的__________根.解 ⑴100100100002==; ⑵ 1511)1511(2251212-=-=-; ⑶ 97)97(81492±=±=±. 回顾与反思:10000表示10000的算术平方根,要防止出现10000=±100的错误.探索:⑴发现: 当0≥a 时,a a =2)(.⑵发现:当0>a 时,a a =2, 当0<a 时, a a -=2;当0=a 时, 02=a .即⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||2a a a a a a a .例2解: ⑴ 2)3(-=3; ⑵2)3(-=3;⑶ 当x >0时,x x =2)(; ⑷当0<a 时,03<a ,a a a a 3|3|)3(922-===.回顾与反思:等式)0(2≥=a a a 和⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||2a a a a a a a ,是算术平方根的两个重要性质.以后经常会用到它们. 【训练与提高】1.B ;2.A ;3.B4.D ;5.D ;6.C .7.⑴±15,15;⑵127± , 127;⑶±0.1,0.1;⑷17,17±.⑸±2,2;8.169;3± 9.0≥a ,2;10.9=x ;11.-1; 12.-3,互为相反数. 13.⑴ 1;⑵65-; ⑶136±;⑷0.17;⑸.5;⑹.-0.3;⑺954.⑻152.【拓展与延伸】1. ±5,±1 ;12. 5. 2.2立方根例1分析 因为立方与开方互为逆运算,因此我们可以用立方运算来求一个数的立方根,也可以通过立方运算来验证一个数是否为另一个数的立方根.例1解 ⑴∵278)32(3=,∴322783=; ⑵∵278)32(3-=-,∴322783-=-;⑶、⑷、⑸略.例2解 ⑴34)34(2764271023333-==-=--; ⑵52)52(125812583333===--. ⑶略.回顾与反思:⑴当被开方数带“-”号时,可把“-”提取到根号外后再计算; ⑵当被开方数是带分数时,应先化成假分数; ⑶当被开方数没化简时,应先化简后再求值.例3解 ⑴28,8,16233-=-=-=-=3x x x ;⑵略回顾与反思:平方根与立方根的区别如下:⑴表示的意义不同;⑵a 与3a 中的被开方数a 的取值范围不同,a 中的a 应满足a ≥0,3a 中的a 可为任何数;⑶一个数的平方根与立方根的个数也不同,一个数的平方根最多有两个,也可能是一个或者不存在,而它的立方根总有且只有一个;⑷负数没有平方根,但负数有立方根. 【训练与提高】1. B ;2.C ;3.D ;4.B ;5.±8,4,8;6.-1,5,65-,23. 7. 100;±8; 8.7,-3; 9.⑴-10; ⑵45-;⑶72;⑷23;⑸34-;⑹3. ⑺0.3;⑻6. 10.⑴56-.⑵8;⑶-16;⑷-4. 11.⑴5;⑵39;⑶-4;⑷-2. 【拓展与延伸】 1.39; 2. 37.5㎝2.2.3实数⑴例1如图将两个边长为1的正方形分别沿它的对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形,容易知道,这个大正方形的面积是2,所以大正方形的边长是2.这就是说,边长为1的正方形的对角线长是2,利用这个事实,我们容易在数轴上画出表示2的点,如图2.3.2所示.图2.3.1例2分析 无理数有两个特征:一是无限小数,二是不循环.因此,要判定一个数是不是无理数,应从它的定义去判断,而不是从表面上去判断.如带根号的数不一定是无理数,而我们熟悉的圆周率π就是无理数.解 有理数有-3.1415926,113335, •31.0 ,3625.无理数有π-,39 ,22, 0.1010010001…. 回顾与反思:有理数与无理数的区别是:前者是有限小数或无限循环小数,而后者一定是无限不循环小数.例3解 ⑴ 不正确.如••53.2是无限小数,但它不是无理数; ⑵ 不正确. 如••53.2是有理数,但它是无限小数;⑶ 正确.因为无理数是无限不循环小数,当然是无限小数; ⑷ 不正确.如4是有理数. 【训练与提高】1.B ;2. C ;3.C .4.实数;5.25 ,722,0,252252225 ,•64.3; 5.121121121…,2π,18-,32. 6.6;7.±5. 【拓展与延伸】 1. C ; 2. 8. 2.3实数⑵例1分析 在实数范围内,相反数、绝对值、倒数的意义与有理数范围内的意义完全相同.所以我们可以用在有理数范围内的同样方法来求一个实数的相反数、绝对值.解 ⑴ ∵4646433-=-=-,∴364-的相反数是4,绝对值是4;π-3的相反数是3-π,∵π-3<0,∴3|3|-=-ππ.⑵ ∵3|3|=,3|3|=-,∴这个数是±3解 由图可知,,0<a ∴a a -=.∵c b <,∴0>-b c ,∴b c b c -=- ∵0,0<<b a ,∴b a b a --=+,∴c b a b c a b a b c a b a b c a =++-+-=----+-=+--+)()(回顾与反思:⑴根据实数在数轴上的位置可以确定各数的符号以及这些数的大小关系; ⑵在求一个数的绝对值时,首先要确定这个数的符号,然后根据“正数和零的绝对值是本身,负数和零的绝对值是它的相反数”来求出它的绝对值.⑶每个有理数都可以用数轴上的点来,但数轴上的点并不都表示有理数,数轴上的点与实数是一一对应的,即每个实数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都表示一个实数.例3解: (1)∵5)5(2= ,425)25(2=,又4255<, ∴ 255<. (2)∵255<,∴2315<-, ∴43215<- 回顾与反思:比较两个无理数的大小,通常可以用计算器求它们的近似值再进行比较.估算一个无理数的大小 ,还可以用与它相近的有理数逐步逼近的方法来实现.【训练与提高】1. D ;2.B ;3.⑴2,2;⑵ 312,312;⑶-3,3;⑷25-, 25-. 4. <, <,<; 5.-1,0,1; 6.37-; 7.⑴2.02;⑵-10.95;⑶-0.98 ;⑷1.29; 8.⑴-5;⑵-4;⑶535--;⑷-9. 9.b -2 a -2c . 10<; <; <; >. 【拓展与延伸】1. 2a -b .2. 4-2. 2.3近似数与有效数字例1分析 生活中形形色色的数, 哪些是近似数?哪些是准确数?需要我们仔细去辨别.脱离了现实背景的数,有时则无法区分.解 略.例2解 ⑴ 43.8精确到十分位(即精确到0.1),有3个有效数字, 分别为4、3、8. ⑵ 0.03086精确到十万分位,有4个有效数字,分别为3、0、8、6. ⑶ 2.40万精确到百位,有3个有效数字,分别为2、4、0.回顾与反思:由于2.40万的单位是万,所以不能看成精确到百分位,另外2.4万和2.40万作为近似数,它们是不一样的.例3解 ⑴3.4802≈3.48 ; ⑵ 3.4802≈3.480; ⑶3.1415926≈3.14; ⑷ 26802≈2.7×104. 回顾与反思:(1)本题⑴、⑵小题,由于精确度要求不同,同一个数的近似结果是不一样的,所以第⑵题中3.480后面的0不能省略不写;反之同一个近似结果所对应的原数也不一定相同,你能举例说明吗?(2)第⑷小题中若把结果写成27000,就看不出哪些是保留的有效数字,所以此时要用科学计数法,把结果写成2.7×104. 【训练与提高】1. D ;2.C ;3.A ;4.略;5. ⑴ 百分位,4个; ⑵ 个位,2个; ⑶ 千分位,3个; ⑷ 个位,5个;⑸ 万分位,3个; ⑹万位,3个; ⑺ 百分位,3个; ⑻百万位,3个.【拓展与延伸】 ⑴1×102;⑵-0.54;⑶-3.64×103;;⑷3.5. 2.4 勾股定理(1)例1解:⑴在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵a =6,c =10,∴b 2=c 2-a 2=64,∴b =8.(b =-8舍去) ⑵在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵a =40, b =9,∴c 2=a 2+b 2=1681,∴c =41. .(c =-41舍去) ⑶在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵b =15,c =25, ∴a 2=c 2-b 2=400, ,∴a =20. .(a =-20舍去) ⑷在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵3a =4b ,∴a ︰b =4︰3, ∴设a =4k ,b =3k ,则c =5k .∵c =2.5,∴k =0.5,∴a =2,,b =1.5. 回顾与反思:勾股定理反映直角三角形.....中三边的关系,运用勾股定理在直角三角形的三边中已知任意两边就可以求出第三边.例2解 ①∵△ABC 中, ∠ACB =90°,AC =BC =1, ∴AB =2112222=+=+BC AC ,②∵△ABC 中, ∠ACB =90°, BC =1,AB =2,∴AC =3122222=-=-BC AB回顾与反思:运用勾股定理的前提是三角形必须是直角三角形.若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理. 【训练与提高】1.D ;2.A ;3. 13,60;4. 225,39, 225;5. 5,76.5;7. 49;8.13;9. a 3【拓展与延伸】4. 2.4 勾股定理(2)例1略例2解:由题意得∠AOB =90°,AO =30,BO =40.5040302222=+=+=BO AO AB (海里)答:1小时后两舰相距50海里例3分析 此题首先要解决△ABC 的面积,为此,可考虑作AD ⊥BC 于D .解 过A 作AD ⊥BC 于D ,则AD 2=AB 2-BD 2=AC 2-CD 2. 设BD =x ,则CD =14-x ,∴132―x 2=152―(14-x )2, ∴x =5即BD =5,∴AD 2=144.∴AD =12,S △ABC =21BC ·AD =84m 2. ∴费用84×50=4200元. 回顾与反思:(1)勾股定理揭示了直角三角形的三边之间的关系,已知直角三角形中任意两边就可以依据勾股定理求出第三边.在实际问题中若存在现成的直角三角形,就可以直接运用勾股定理解决问题.(2)涉及面积计算往往需要添加辅助线(高)来构造直角三角形,从而运用勾股定理求得相应的线段,进而求出所需面积. 【训练与提高】1. D . 2.D . 3.4,6 ,2. 4. 7 ,1.8 ; 5. 3㎝; 6. 略. 【拓展与延伸】 1.图略; 2. 图略. 2.5 神秘的数组(例1解 ⑴∵22222225625247c b a ===+=+.根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形是直角三角形,且∠C =90°.⑵∵2222225.225.65.12a c b ===+=+.根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形是直角三角形,且∠A =90°.⑶∵c > a , c > b , 16411452222=+⎪⎭⎫ ⎝⎛=+b a ,而9253522=⎪⎭⎫ ⎝⎛=c ,∴222c b a ≠+,根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形不是直角三角形.回顾与反思:要判定一个三角形是否为直角三角形,只要计算两条较短边的平方和,以及最长边的平方,然后看它们是否相等即可.例2解 ∵在△ABD 中,AB 2+AD 2=9+16=25=BD 2,∴△ABD 是直角三角形,∠A 是直角.∵在△BCD 中,BD 2+BC 2=25+144=169=CD 2, ∴△BCD 是直角三角形,∠DBC 是直角. ∴这个零件符合要求.回顾与反思:像(3,4,5)、(6,8,10)、(5,12,13)等满足a 2+b 2=c 2的一组正整数,通常称为勾股数.利用勾股数可以构造直角三角形.例3解 ∵12412)2()1(2422422222++=++-=+-=+n n n n n n n b a .222)1(c n =+=根据直角三角形的判定条件,得∠C =90°.【训练与提高】1. B ;2.B ;3.C ;4. C ;5.C ;6. 直角三角,B ;7. 12,13,5;直角三角形;8. 直角三角形,略9. ∵AB ⊥BC ,∴∠B =90°,∴AC 2=AB 2+BC 2=5,又∵AC 2+CD 2=5+4=9=AD 2.∴∠ACD =90°,∴AC ⊥CD . 10.是,略; 11.连接AC ,∵∠ADC =90°,AD =4,CD =3,∴AC 2=AD 2+CD 2=25,∴AC =5,∵AB =13,BC =12,∴AC 2+BC 2=25+144=169=AB 2,∠ACB =90°,S =30-6=24. 【拓展与延伸】1. 连结EC ,∵D 是BC 的中点,DE ⊥BC 于D ,交AB 于E ,∴BE =CE ∵BE 2-EA 2=AC 2,∴CE 2-EA 2=AC 2,∴CE 2=EA 2+AC 2∴∠A =90°.2.略 2.6 勾股定理的应用(1)例1分析 ⑴根据勾股定理,直角三角形中若两直角边长分别为1个单位和3个单位,则斜边长为10个单位,因此,以原点为圆心,10个单位长为半径画圆与数轴的交点表示的数即分别为±10.解:⑴如图图2.6.1①; ⑵如图图2.6.1②例2分析:几何应用问题重在将实际问题转化为数学问题,此题若设AE =x km ,由△DAE 、△EBC 均为直角三角形,且它们的斜边相等,运用勾股定理可建立方程.解:设AE =x km ,则BE =(25-x )km. ∵CE =DE ,∴CE 2=DE 2 .由勾股定理得 152+x 2=(25-x ) 2+102解得 x =10 . 答:E 站应建在距A 站10km 处.回顾与反思:(1)运用勾股定理的前提是三角形必须是直角三角形.若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理.(2)勾股定理是直角三角形中三边数量之间的一个关系式,也常被用作列方程的等量关系;【训练与提高】1. B .2.C ;3.34;4. 5,13;5. 24,4.8.6. 2.7. 能,略8. 能,略;9. 略; 10.10;11. 4; 12. 25 . 【拓展与延伸】1. 19.5m ;2. 作AD ⊥BC 于D ,设BD =x ,由题意10―x 2=172―(x +9)2,解得x =6.由勾股定理得AD =8.2.6 勾股定理的应用⑵例1分析:设EC =x ,则DE =8-x ,由于折叠长方形的边AD ,且D 落在点F 处,故△AFE 和△ADE 全等,则EF =8-x ,AF =AD =10,在Rt △EFC 中,运用勾股定理得到关于x 的方程,可以求出x 的值.解:设EC =x cm ,则DE =(8-x )cm ,∵D 、F 关于AE 对称∴△AFE ≌△ADE , ∴AF =AD =BC =10,EF = DE =8-x .在Rt △ABF 中,6222=-=AB AF BF∴FC =BC -BF =4.在Rt △EFC 中,由勾股定理得:222)8(4x x -=+ ,解得 x =3.答:EC 长为3cm.. 回顾与反思:(1)折叠问题和轴对称密切相关,要注意翻折图形的特征;(2)从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a 2+b 2=c 2”,看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把实际问题的条件转化为解方程.例2分析 求证的结论中出现平方的形式,我们常可联想勾股定理.要运用勾股定理,首先要找到与结论中的线段有关的直角三角形,若题中没有现成的直角三角形,则需要构造直图2.6.1A FECDB图2.6.3角三角形.解 作AE ⊥BC 于E ,则在△ADE 中,AD 2=DE 2+AE 2; 又∵∠BAC =90°,AB =AC ,∴AE =BE =CE . ∵BD 2+CD 2=(BE -DE )2+(CE +DE )2=BE 2+CE 2+2DE 2=2AE 2+2DE 2=2AD 2,∴BD 2+CD 2=2AD 2. 回顾与反思:(1)在三角形中若要说明某个角是直角,常常想到勾股定理的逆定理. (2)说明含某些线段的平方形式的问题,常通过作垂线构造直角三角形,运用勾股定理来解决.【训练与提高】1. 1.5. 2.直角三角形;2.5. 3.不一定,也可能只是a =b ; 4.略; 5⑴3,⑵设CD =x ,由题意62+x 2= (8- x )2,解得x =47∴CD =47. 【拓展与延伸】 1. 2a 2; 2.略.第二章复习题1. ±8;8;4;±5. 2.π,93- . 3.-1,0,1. 4.<,>. 5. 32-,32-. 6. ±4. 7. ±1,±2. 8. 12. 9. 2,3. 10. 233+. 11. 0≥x . 任何实数.12. ⑴52. ⑵32,⑶10,24. 13.41. 14. 30. 15. B . 16.C . 17.B . 18.B . 19.C . 20.C .21.⑴2±.⑵-3.⑶3,-1; 22.直角三角形. 23. 5㎝. 24. 43.4. 25. ±1. 26. 2. 27. 2010.28. x =6. 29. 2,74. 30. 3. 31. 132. 32. 2,5,10,17,21n +. 33. 12.34. 102,106. 35. 2n. 36. 6(提示:设CD =x ,由勾股定理得x 2+92+x 2+42=132). 37. 327. 38. <,>.第三章 中心对称图形(一)参考答案3.1 图形的旋转例1 如图3.1.1,△ABC 是等边三角形,D 是BC 上的一点,△ABD 经过旋转后达到△ACE 的位置.⑴旋转中心是哪一点? ⑵旋转了多少度? ⑶如果M 是AB 的中点,那么经过上述旋转后点M 转到了什么位置? ⑷图中相等的线段有哪些?相等的角有哪些?分析 解决本题只需利用旋转的定义及其特征. 解 ⑴旋转中心是点A ; ⑵旋转了60°;⑶点M 转到了AC 的中点位置上;⑷相等的线段有:AB=BC=AC ,AD=AE ,BD=CE ;相等的角有:∠B=∠BCA=∠CAB=∠DAE=60°,∠BAD=∠CAE ,∠BDA=∠CEA .回顾与反思:本题应用了旋转的定义及特征,知道旋转图形哪些变,哪些不变.本题的难点在于旋转角度,注意图中∠DAC 不是旋转角度.另外,注意到对应线段AB 、AC 所在直线的夹角是60°(旋转角度),那么对应线段BD 、CE 所在直线的夹角呢?由此你想到什么?例2 已知,如图3.1.2,△ABC 中,∠BAC=120°,⑴以点A 为旋转中心,将△BAC 逆时针旋转60°得△ADE ,画出△ADE ;⑵设题⑴中AD 、BC 交于F ,AC 、DE 交于点G ,请你猜想旋转后△ABF 能否与△ADG 重合?为什么?解 ⑴△ADE 如图所示(画法略);⑵△ABF 能与△ADG 重合,理由如下:∵∠BAC=120°,∠BAD=60°,∴∠DAG=60°=∠BAF ;又由旋转知∠B=∠D ,BA=DA ,∴△ABF ≌△ADG (ASA ).回顾与反思:观察一下△AFC 与△AGE 是否也具备这样的关系?本题中△ABF 与△ADG 能够重合是由∠BAC 及旋转角的特殊性导致的,如果,将△ADE 再绕点A 逆时针旋转过1°,则∠BAD=59°,∠DAG=61°,结论就不成立.【训练与提高】1.D 2.点A ,逆时针旋转45° 3.⑴点A ,⑵△AEF 是等腰直角三角形,⑶略 4.⑴110°或290°,⑵180° 5.以A 为中心逆时针旋转120°得△AEF ,以C 为中心顺时针旋转120°得△CED ,以AC 中点为中心旋转180°得△ACE 6.417.图略8.图略,用SAS 证△EAC ≌△BAD ,再证BD ⊥EC【拓展与延伸】1.图略.△A′′B′′C′′可由△ABC 绕点P 旋转2∠P 得到 2.图略3.2 中心对称与中心对称图形⑴例1 如图3.2.1,已知△ABC 和点O ,试画出△DEF ,使△DEF 和△ABC 关于点O 成中心对称.解 ①连接AO 并延长AO 到D ,使OD =OA ,得到点A 的对称点D ;②同样方法画出点B 、C 的对称点E 、F ; ③顺次连接DE 、EF 、FD . 所以,△DEF 即为所求的三角形.回顾与反思:画出一个别图形关于某一点成中心对称图形,关键在图3.1.2GF EDCBA 图3.2.1EB。
【数学课件】等腰梯形的对称性(2)
D
C
E
F
A
B
1、代号为①②③④的4张三角形纸
片都有一角为500如果他们另有一角为
500,7 00 ,800, 900,那么其中代号
为
。的纸片能沿直线剪一刀得
到等腰梯形。
2、 把一张长方形的纸按如图所示折叠。
(1)∠1=
。∠2 。
(2)所得梯形EFBC是等腰梯形吗?为什么?
(A)
FE
(D)
1
2
B
AD
C
3、画等腰梯形ABCD,使两底AD、 BC分别在图中得l1 和l2上,∠BAD=1200, 且AD=AB。
l1
l2
4 、 如 图 , 梯 形 ABCD 中 , AD∥BC,AC=BD;
请说明:梯形ABCD是等腰梯形.
A
D
B
C
如图,等腰梯形与等腰三角形有着精 密的联系.比照等腰三角形的特性,你 对等腰梯形还有什么猜想?试吧你的 猜想写在下表的空格中:
1.等腰梯形是轴对称图形,过两底中点 的直线是它的对称轴
A
B
C
在 ABC中
如果AB=AC 如果B=C 那么B=C 那么AB=AC
A
D
B
C
在梯形ABCD中
AD∥BC
如果AB=DC 那么B=C
梯形ABCD中,AD//BC. B = C 它是等
腰梯形吗?
E
A
பைடு நூலகம்
D
B G HC
等腰梯形的判定方法: 在同一底上的2个角相等的梯形
心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
1.6等腰梯形轴对称性(2)
A D
B
E
C
等腰梯形的一个判别方法
同一底上的两个内角相等的梯形是等腰梯形.
应 用
如图,在梯形ABCD中, AD∥BC, ∠ A与 ∠ C互补, 梯形ABCD是等腰梯形吗?
A D
C
B
∠A+∠C=180
o
对角互补 o ( ∠A+∠C=180 )的梯 形是等腰梯形.
知识回顾
一、梯形定义
二、等腰梯形、直角梯形
三、等腰梯形的性质
下一步
去看看
去看看
去看看
在上面的三个三角形中各画一条线段. (1)怎样画才能得到一个梯形?
(2)在哪些三角形中,能够得到一个等腰梯形?
返回
返回Байду номын сангаас等腰梯形
等腰梯形
返回
议一议
如图,在梯形ABCD中, AD∥BC, ∠B=∠C, 且交 BC 于点E. DE∥ AB
B 等腰梯形的判别方法:
A
D
C
1、两腰相等的梯形叫做等腰梯形. 2、同一底上的两个内角相等的梯形 是等腰梯形.
3、对角互补的梯形是等腰梯形.
课堂练习
1、有两个内角是70 的梯形一定是 分析 等腰梯形吗?为什么?
O
达标训练: 2、判断正误: (1)有两个角相等的梯形一定是等腰梯形. (2)两条对角线相等的梯形一定是等腰梯 形. (3)如果一个梯形是轴对称图形,则它一 定是等腰梯形. (4) 一组对边平行,另一组对边相等的四 边形一定是等腰梯形. (5)对角互补的梯形一定是等腰梯形.
达标训练: A D
B
C
八上 1.6 等腰梯形的轴对称性(2)
1.6等腰梯形的轴对称性(2)--- ( 教案)班级姓名学号教学目标:1. 掌握等腰梯形的判定方法.2. 能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.3. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想;教学重点:等腰梯形判定;教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线);教学过程:一、复习提问:1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?2.等腰梯形有哪些性质?它的性质定理是怎样证明的?3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?二、探索发现:如图,等腰梯形与等腰三角形有着紧密的联系.比照等腰三角形的特征,你对等腰梯形还有什么猜想?三、例题示范:例1.已知:如图,在梯形中,,,求证:.分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.在同一底上的两个角相等的梯形是等腰梯形例2. 如图,在梯形ABCD中,BC∥AD, DE∥AB, DE=DC,∠A=100°,试求梯形ABCD的其他三个内角的度数.请问此时ABCD为等腰梯形吗?说说你的理由.四、课堂小结:(l)等腰梯形的判定方法:①先判定它是梯形;②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)五、课后作业:P34六、教学后记:。
八上 1.6 等腰梯形的轴对称性(1)
1.6等腰梯形的轴对称性--- [ 教案]班级姓名学号教学目标:1、知道等腰梯形的概念,等腰梯形的轴对称性极其相关性质2、能利用等腰梯形的性质进行有条理的说理.教学重点:熟练的掌握“等角对等边”及直角三角的重要性质;教学重点:等腰梯形的轴对称性极其相关性质;教学难点:能利用等腰梯形的性质进行有条理的说理;教学过程:一、复习提问:1、如图、在梯形ABCD中,如果AD∥BC,AB=CD,∠B=60°,AC⊥AB,那么∠ACD=____,∠D=____.2、在梯形ABCD中,BC∥AD,DE∥AB,DE=DC,∠A=100°则∠B=____,∠C=____,∠ADC=____,∠EDC=____.二、情境创设:1、在日常生活中可以说随处可见.梯子水渠截面图概念:梯形中,平行的一组边称为底,不平行的一组边叫做腰,两腰相等的梯形叫做等腰梯形,有一角是90度的梯形叫做直角梯形2、怎样用一张等腰三角形纸片剪出一个等腰梯形呢?请同学们拿出事先准备好的等腰三角形,从中剪出等腰梯形来,并与同学交流由学生讨论后得出结论:作等腰三角形底边的平行线就可得到等腰梯形小组讨论下面的问题:①折叠后图形怎么样.②你发现等腰梯形是一个什么图形.讨论后得出结论:等腰梯形是一个轴对称图形.③对称轴是什么?等腰梯形的对称轴是过两底中点的直线④∠A和∠B ,∠c 和∠D是什么关系?等腰梯形的同一底边上的两底角相等三、例题示范:例1.在梯形ABCD中,AD∥BC,AB=DC.AC、BD相等吗?为什么?等腰梯形的对角线相等四、课堂小结:本堂课我们学习了等腰梯形的性质,分别是那些内容?在进行说理的时候应该注意什么五、课后作业:P34 1,2,3,4六、教学后记:。
八上第一章 第11课时 等腰梯形的轴对称性(2)
八年级数学(上)第一章轴对称图形第11课时等腰梯形的轴对称性(二)1.下列说法中错误的是( ) A.等腰梯形的对角线相等B.对角线相等的四边形是等腰梯形C.等腰梯形在同一底上的两个角相等D.同一底上的两个角相等的梯形是等腰梯形2.在四边形ABCD中,∠A:∠B:∠C:∠D有下列几组比值.其中能满足四边形ABCD 是等腰梯形的是( ) A.1:2:3:4 B.1:3:3:2 C.1:2:2:1 D.1:2:1:2 3.下列说法:(1)等腰梯形是轴对称图形;(2)梯形的对角线相等;(3)等腰梯形的底角相等;(4)等腰梯形的两组对角互补.其中正确的个数为( ) A.4个B.3个C.2个D.1个4.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的对称图形是( )5.把一张等腰三角形的纸,按如图所示的力式折叠,折痕DE∥BC,则四边形DECB是________形.6.如图,在梯形ABCD中,AD∥BC,A E⊥BC,DF⊥BC,垂足分别为E、F,且BE=AE,CF=DF,则∠B=_________,∠ADC=________,该梯形为__________梯形.7.在梯形ABCD中,AB∥CD.根据添加的一个条件________(或_______)可以判定梯形ABCD是等腰梯形.8.在四边形ABCD中,∠A=80°.当∠B=________,∠C=________或∠B=_________,∠C=_________时,四边形ABCD是等腰梯形.9.如图,顺次连接等边三角形各边的中点,则图中共有________个等腰梯形.10.如图,在梯形ABCD中.AB∥CD,若AC与BD相交于点O,且AO=BO,CO=DO.试说明梯形ABOD是等腰梯形.11.如图,在△ABC中,若AB=AC,BD、CE分别是∠ABC、∠ACB的平分线,则四边形EBCD为等腰梯形.试说明理由.12.如图,在等腰△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D、E,连接DE.试说明四边形BCDE是等腰梯形.13.如图,在梯形ABCD中,AD∥BC,CA平分∠BCD,DE∥AC,交BC的延长线于点E,∠B=2∠E.试说明AB=CD.14.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,AC⊥BD于点F,过点F作EF∥AB,交AD于点E,CF=4.试说明四边形ABFE是等腰梯形.15.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14 cm,AD=18 cm,BC=21 cm,点P从点A开始沿AD边向点D以l cm/s的速度移动,点Q从点C开始沿CB边向点B以2 cm/s的速度移动.若点P、Q分别从点A、C同时出发,设移动的时间为t,则t为何值时,梯形PQCD是等腰梯形?参考答案1.B 2.C 3.C 4.C5.等腰梯6.45°135°等腰7.∠A=∠D AC=BD8.100°100°80°100°9.310.∵AO=BO,CO=DO,∴AO+CO=BO+DO.∴AC=BD.又∵四边形ABCD是梯形,∴梯形ABCD为等腰梯形11.∵AB=AC,∴∠ABC=∠ACB=12(180°-∠A).又∵BD、CE是角平分线,∴∠ABD=∠ACE.∴△AB D≌△ACE.∴AE=AD.∴∠AED=∠ADE=12(180°-∠A).∴∠AED=∠ABC.∴ED∥BC.又∵BE不平行于DC,∴四边形EDCB为梯形.又∵∠ABC=∠ACB,∴梯形EDCB为等腰梯形12.在等腰△ABC中,AB=AC,∴∠ABC=∠ACB.∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB=90°.又BC=CB,∴△BE C≌△CDB.∴BE=CD.∴AE=AD.∴∠AED =∠ADE.∴∠AED=∠ABC.∴DE∥BC.又∵BE、CD不平行,∴四边形BCDE是梯形.∵BE=CD,∴四边形BCDE是等腰梯形13.∵DE∥AC,∴∠BCA=∠E.∵CA平分∠BCD.∠BCD=2∠BCA=2∠E又∵∠B=2∠E,∴∠B=∠BCD.∴梯形ABCD是等腰梯形.∴AB=CD14.作DG⊥AB于点G.∵EF∥AB,AE、BF相交于点D,∴四边形ABFE是梯形.∵AB∥DC,∠ABC=90°,∴∠DCB=∠ABC=∠DGB=90°.∠CDB=∠ABD.∵BD=DB,∴△BCD≌△DGB.∴CD=BG.∵AB=2DC,∴AG=BG=CD.∴DA=DB.∴∠DAB=∠DBA.∴梯形ABFE是等腰梯形15.作DM⊥BC于点M,PN⊥BC于点N.∵AD∥BC,∠B=90°,∴AB∥DM.∴MC=BC -BM=BC-AD=3 cm.当∠PQN=∠C时,梯形PQCD是等腰梯形,△PQN≌△DCM.∴QN=MC.又∵QN=BN-BQ=AP-BQ=t-(21-2t)=3t-21,∴3t-21=3,t=8.即t=8 s时,梯形PQCD是等腰梯形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6等腰梯形的轴对称性(2)--- [ 教案]
班级姓名学号
教学目标:
1. 掌握等腰梯形的判定方法.
2. 能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能
力和计算能力.
3. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换
的方法和转化的思想;
教学重点:等腰梯形判定;
教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线);教学过程:
一、复习提问:
1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性质?它的性质定理是怎样证明的?
3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?
二、探索发现:
如图,等腰梯形与等腰三角形有着紧密的联系.比照等腰三角形的特征,你对等腰梯形还有什么猜想?
三、例题示范:
例1.已知:如图,在梯形中,,,求证:.
分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.
在同一底上的两个角相等的梯形是等腰梯形
例2. 如图,在梯形ABCD中,BC∥AD, DE∥AB, DE=DC,∠A=100°,试求梯形ABCD的其他三个内角的度数.请问此时ABCD为等腰梯形吗?说说你的理由.
四、课堂小结:
(l)等腰梯形的判定方法:
①先判定它是梯形;
②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.
(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)
五、课后作业:P34
六、教学后记:。