九年级上数学第二次月考试卷

合集下载

2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷

2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷

2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 打开电视,它正在播天气预报是不可能事件B. 要考察一个班级中学生的视力情况适合用抽样调查C. 在抽样调查过程中,样本容量越大,对总体的估计就越准确D. 甲、乙两人射中环数的方差分别为SS甲2=2,SS乙2=1,说明甲的射击成绩比乙稳定2.下列函数中,yy是xx的反比例函数的是( )A. yy=1xx2B. xxyy=4C. yy=1xx+1D. yy=5xx+13.在一个不透明的袋子里装有红球.黄球共20个,其中红球有2个.这些球除颜色外其他都相同,随机摸出1个球.摸出的是红球的概率是( )A. 12B. 15C. 110D. 1204.已知点(−2,1)在反比例函数yy=kk xx(kk≠0)的图象上,则kk的值为( )A. 2B. −2C. 12D. −125.已知点AA(xx1,yy1),BB(xx2,yy2)是反比例函数yy=−kk xx(kk≠0)的图象上的两点,且当xx1<xx2<0时,yy1< yy2,则一次函数yy=kkxx+kk(kk≠0)与反比例函数yy=−kk xx在同一平面直角坐标系中的图象可能是( )A. B.C. D.6.已知圆锥的底面半径为4cccc,母线长为6cccc,则圆锥的侧面积是( )A. 24cccc2B. 24ππcccc2C. 48cccc2D. 48ππcccc27.如图,在平面直角坐标系xxxxyy中,点AA,CC分别在坐标轴上,且四边形xxAABBCC是边长为3的正方形,反比例函数yy=kk xx(xx>0)的图象与BBCC,AABB 边分别交于EE,DD两点,△DDxxEE的面积为4,点PP为yy轴上一点,则PPDD+ PPEE的最小值为( )A. 3B. 2√ 5C. 3√ 2D. 58.如图,在平面直角坐标系xxxxyy中,矩形AABBCCDD的BBCC边在xx轴上,点AA、DD分别在反比例函数yy=cc xx(xx<0).、yy=nn xx(xx>0)的图象上,那么矩形AABBCCDD的面积可用cc、nn表示为( )A. cc+nnB. cc−nnC. nn−ccD. −ccnn9.如图,直线yy=xx+2与双曲线yy=cc−3xx在第二象限有两个交点,那么cc的取值范围在数轴上表示为( )A.B.C.D.10.如图,量角器外沿上有三点AA,PP,QQ,它们所表示的读数分别是0∘,110∘,150∘,则∠PPAAQQ的大小是( )A. 40∘B. 30∘C. 20∘D. 10∘11.如图,AA、BB、CC是⊙xx上的三点,若∠CC=40∘,则∠AAxxBB的度数是 ( )A. 40∘B. 50∘C. 55∘D. 80∘12.已知AABB是圆锥(如图1)底面的直径,PP是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从AA点出发,沿着圆锥侧面经过PPBB上一点,最后回到AA点.若此蚂蚁所走的路线最短,那么MM,NN,SS,TT(MM,NN,SS,TT均在PPBB上)四个点中,它最有可能经过的点是( )A. MMB. NNC. SSD. TT第II卷(非选择题)二、填空题:本题共6小题,每小题4分,共24分。

河北省沧州市青县第二中学2024-2025学年九年级上学期第二次月考数学试卷

河北省沧州市青县第二中学2024-2025学年九年级上学期第二次月考数学试卷

河北省沧州市青县第二中学2024-2025学年九年级上学期第二次月考数学试卷一、单选题1.抛物线23(1)5y x =--+的顶点坐标是()A .(1,5)B .()1,5-C .(1,5)-D .(1,5)--2.下列关于x 的方程是一元二次方程的是()A .240x x -=B .30x y +-=C .212x x +=D .380x +=3.下列各式:①2235y x xz =-+;②2325y x x =-+;③2123y x x=+-;④=B 2+B +;⑤()()223326y x x x =---;⑥()22134y m x x =++-(m 为常数);⑦2243y m x x =+-(m为常数).是二次函数的有()A .1个B .2个C .3个D .4个4.下列A 、B 、C 、D 四幅图案中,能通过平移图案得到的是()A .B.C.D.5.若关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值是()A .0B .1C .2D .36.若a 满足不等式组211312a a -≤⎧⎪⎨->⎪⎩,且关于x 的一元二次方程()()2221120a x a x a ---++=有实数根,则满足条件的实数a 的所有整数和为()A .-2B .-1C .-3D .07.已知m ,n 是一元二次方程260x x +-=的两个实数根,则代数式22m m n ++的值等于()A .4B .5C .6D .78.已知二次函数24y ax ax =-(a 是常数,0a <)的图象上有()1,A m y 和()22,B m y 两点.若点A ,B 都在直线3y a =-的上方,且12y y >,则m 的取值范围是()A .312m <<B .423m <<C .4332m <<D .m>29.关于x 的方程2224x mx m -+=的两个根1x ,2x 满足1223,=+x x 且12x x >,则m 的值为()A .3-B .1C .3D .910.已知抛物线y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)经过不同两点A (1﹣b ,m ),B (2b +c ,m ),那么该抛物线的顶点一定不可能在下列函数中()的图象上.A .y =x +2B .y =﹣x +2C .y =﹣2x +1D .y =2x +111.a 、b 、c 为△ABC 三边,b >a ,a 是c +b ,c ﹣b 的比例中项,抛物线y =x 2﹣(sin A +sin B )x ﹣(a +b +c )的对称轴是x =1726,交y 轴于(0,﹣30),则方程ax 2﹣cx +b =0的根的情况是()A .有两不等实根B .有两相等实根C .无实根D .以上都不对12.对于二次函数2y ax bx c =++,规定函数()()2200ax bx c x y ax bx c x ⎧++>⎪=⎨---<⎪⎩是它的相关函数.已知点M ,N 的坐标分别为1,12⎛⎫- ⎪⎝⎭,9,12⎛⎫⎪⎝⎭,连接MN ,若线段MN 与二次函数24y x x n=-++的相关函数的图象有两个公共点,则n 的取值范围为()A .31n -<≤-或514n ≤≤B .31n -<<-或514n ≤≤C .1n ≤-或514n <≤D .31n -<<-或1n ≥二、填空题13.设a ,b 是方程2x +x -2013=0的两个不相等的实数根,a 2+2a +b 的值.14.如图,在用配方法解一元二次方程2640x x +=时,配方的过程可以用拼图直观地表示,即看成将一个长是()6x +、宽是x 、面积是40的矩形割补成一个正方形,则m 的值是.15.随着国民经济和城市化建设的不断发展,城市道路的功能得到不断完善,复杂的城市道路网要求设置越来越多的下沉式立交桥.下沉式立交桥将相交道路设置在地面层或地上半层,主路设置在地下层或地下半层,下沉武立交桥也因此具有比高架立交景观条件好、比隧道立交造价低的特点.某下沉式立交桥的主路桥截面是抛物线形,如图以主路桥面最低点O 为原点,以原点所在的水平直线为x 轴建立平面直角坐标系.已知主路桥面跨径100m AB =,主路桥面的最低点O 到AB 的距离为10m .由于下沉式立交桥的主路桥面低于周边地面且纵坡较大,所以容易出现桥面积水现象,在一次暴雨后,桥面有积水且积水跨径为CD ,已知普通轿车的安全涉水深度大于30cm ,若一位普通轿车驾驶员能驾车从这个下沉式立交桥安全通过,则积水跨径CD 的长度不能超过米.16.如图,点A 的坐标是()2,0-,点C 是以OA 为直径的B 上的一动点,点A 关于点C 的对称点为点s ,则34x y +的最小值为.三、解答题17.请你用配方法将221217y x x =-+-化成顶点式,并指出顶点坐标.18.观察图中五个“五角星”组成的图案,它们可以看作是由自身的一部分平移得到的吗?试说明理由.19.(1)如图,利用一面墙(墙的长度不限),用20m 长的篱笆,怎样围成一个面积为250m 的矩形场地?能围成一个面积为260m 的矩形场地吗?(2)如图,要设计一个长为15cm ,宽为10cm 的矩形图案,其中有两横两竖彩条,横竖彩条的宽度之比为54:,若使所有彩条所占面积是原来矩形图案面积的三分之一,应如何设计每个彩条的宽度?(只列方程不计算)20.如图,矩形ABCD 中,15cm AB =,10cm BC =,动点P 从点A 出发,沿AB 边以2cm/s 的速度向点B 匀速移动,动点Q 从点D 出发,沿DA 边以1cm/s 的速度向点A 匀速移动,一个动点到达端点时,另一个动点也停止运动,点P ,Q 同时出发,设运动时间为s t .(1)当t 为何值时,APQ △的面积为216cm ?(2)t 为何值时,以A ,P ,Q 为顶点的三角形与ABC V 相似.21.如图,抛物线2y x mx =-+与直线y x b =-+相交于点−2,0和点B .(1)求抛物线的解析式及顶点坐标;(2)求点B 的坐标,并结合图象写出不等式2x mx x b -+<-+的解集;(3)若关于x 的方程2x mx n -+=在21x -≤≤的范围内只有一个实数根或两个相等的实数根,直接写出n 的取值范围.22.根据下列条件,选取你认为合适的方法求出二次函数的解析式:(1)已知二次函数2y ax bx c =++的图象过(2,3),(2,5)--两点,并且以1x =为对称轴;(2)已知二次函数2y ax bx c =++的图象经过一次函数332y x =+的图象与x 轴、y 轴的交点,且过(1,1).23.解方程:2(x ﹣2)2=338.24.如图,已知圆O 的圆心为O ,半径为3,点M 为圆O 内的一个定点,OM =AB CD 、是圆O 的两条相互垂直的弦,垂足为M .(1)当4AB =时,求四边形ADBC 的面积;(2)当AB 变化时,求四边形ADBC 的面积的最大值.。

九年级上学期第二次月考数学试卷 (解析版)

九年级上学期第二次月考数学试卷 (解析版)

九年级上学期第二次月考数学试卷 (解析版)一、选择题1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 2.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内3.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°4.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤5.sin30°的值是( ) A .12B .22C 3D .16.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.27.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.58.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .349.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223310.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 11.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .112.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7213.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A.20°B.40°C.70°D.80°14.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.315.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)二、填空题16.O的半径为4,圆心O到直线l的距离为2,则直线l与O的位置关系是______. 17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.18.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽为________cm.(结果保留根号)19.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)20.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线kyx的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=_____.21.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.22.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.23.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.24.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.25.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).26.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.27.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.28.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.29.如图,已知矩形ABCD 的顶点A 、D 分别落在x 轴、y 轴,OD =2OA =6,AD :AB =3:1.则点B 的坐标是_____.30.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题31.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.32.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?33.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米的测角仪测得古树顶端点H的仰角HDE∠为45︒,此时教学楼顶端点G恰好在视线DH 上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEF∠为60︒,点A、B、C点在同一水平线上.(1)计算古树BH 的高度;(2)计算教学楼CG 的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈). 34.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.35.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点 ①求ADE ∆面积最大值并写出此时点D 的坐标; ②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)四、压轴题36.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.37.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.38.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.39.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.40.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质 ∴点C 在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.3.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.4.A解析:A【解析】【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线1x∴b=-2a>0∵抛物线与y轴的交点在x轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.5.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12. 故选:A .【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.7.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..8.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.9.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=3∴PC+PE的最小值为23∴点H的纵坐标a=23∵BC∥AD,∴AD PDBE PB==2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.12.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.14.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题16.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.17.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴3222-≤-≤-,∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.18.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得1:202x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 19.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 20.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.21.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.22.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.23.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.24.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.25.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.26.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC =CD =DE ,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,∴∠BAE =15(n ﹣2)×180°=15(5﹣2)×180°=108°,BC =CD =DE , ∴BC =CD =DE ,∴∠CAD =13×108°=36°; 故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.27.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.28.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.29.(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.解析:(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.30.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分,则两个正方形的边长分别是cm,cm,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm和(200﹣解析:1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题31.(1)DE 与⊙O 相切;理由见解析;(2)4.【解析】【分析】(1)连接OD ,由D 为AC 的中点,得到AD CD =,进而得到AD=CD ,根据平行线的性质得到∠DOA =∠ODE =90°,求得OD ⊥DE ,于是得到结论;(2)连接BD ,根据四边形对角互补得到∠DAB =∠DCE ,由AD CD =得到∠DAC =∠DCA =45°,求得△ABD ∽△CDE ,根据相似三角形的性质即可得到结论.【详解】(1)解:DE 与⊙O 相切证:连接OD ,在⊙O 中∵D 为AC 的中点∴AD CD =∴AD =DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=2, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=2,∴AC=22=8AD DC∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.32.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.33.(1)8.5米;(2)18.0米 【解析】【分析】(1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,可求出HE 的长度,进而可计算古树BH 的高度;(2)作HJ ⊥CG 于G ,设HJ=GJ=BC=x ,在Rt △EFG 中,利用特殊角的三角函数值求出x 的值,进而求出GF ,最后利用 CG=CF+FG 即可得出答案.【详解】解:(1)由题意:四边形ABED 是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米.(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=73GF x EF x +== ∴7(31)2x =, ∴3x ≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG 的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键.34.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标;。

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

2024—2025学年第一学期第二次月考试卷九年级数学一、选择题(每小题3分,共30分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.2.关于的方程是一元二次方程,则值是( )A. B. C.或 D.为任意实数3.已知二次函数的图象与轴一个交点的坐标为,则与轴的另一个交点的坐标是( )A. B. C. D.4.已知正六边形的半径为4,则这个正六边形的边心距为( )A.2B.D.45.凉州区某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月率为,则由题意列方程应为( )A. B.C. D.6.如图,四边形内接于,是直径,,则的度数为( )A.90°B.100°C.110°D.120°7.在同一平面直角坐标系内,二次函数与一次函数的图象可能是( )A. B. C. D.x 22(1)20a x x ---=a 1a ≠1a ≠-1a ≠1-26y x x c =++x (1,0)-(3,0)-(3,0)(5,0)-(5,0)x 3200(1)1000x +=20020021000x +=⨯20020031000x +=⨯2200200(1)200(1)1000x x ++++=ABCD O e AB O e 20ABD ∠=︒C ∠2(0)y ax bx b a +≠=+y ax b =+8.已知点,,在抛物线上,则、、的大小关系是( )A. B. C. D.9.如图,是等边的内切圆,分别切,,于点,,,是弧上一点(不与点重合),则的度数是( )A.65°B.60°C.58°D.50°10.如图1,中,,为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )图1图2A.3 B.4 C.5 D.6二、填空题(每小题3分,共18分)11.已知圆锥的底面的半径为,高为,则它的侧面积是________.12.在实数范围内定义运算“★”,其法则为:,则方程的解为________.13.如图,过点且平行于轴的直线与二次函数图象的交点坐标为,,则不等式的解集为________.14.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大1(3,)A y -2(2,)B y 3(3,)C y 224y x x c =-+1y 2y 3y 123y y y >>132y y y >>321y y y >>231y y y >>O e ABC △AB BC AC E F D P DF F EPF ∠Rt ABC △90B ∠=︒E BC P BC B C B P x PA PE y -=P y x BC 3cm 4cm 22a b b a =-★(43)24x =★★(0,1)x 2(0)y ax bx c a =++>(1,1)(3,1)210ax bx c ++->小,以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深寸,锯道长尺(1尺寸).问这根圆形木材的直径是________寸.15.如图,已知抛物线与轴交于、两点,顶点的纵坐标为,现将抛物线向右平移2个单位,得到抛物线,则下列结论正确的是________(写出所有正确结论的序号)①;②;③阴影部分的面积为4;④若,则.16.如图,在平面直角坐标系中,点的坐标为,将线段绕点按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、…,(为正整数),则点的坐标是________.三、解答题(一)(本大题共6小题,共33分,解答应写出必要的文字说明,证明过程或演算步骤)17.解方程(6分)(1);(2).18.(4分)通过配方变形,将二次函数化为的形式,并指出顶点坐标1ED =1AB =10=2y ax bx c =++x A B C 2-2111y a x b x c =++240b ac ->0a b c -+<1c =-24b a =1P 1OPO 1OP 2OP 2OP O 2OP 3OP 4OP 5OP n OP n 2024P 2610x x --=2(21)4(21)30x x ++++=241y x x =-+-2()y a x h k =-+及取何值时,随的增大而减小.19.(5分)关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是2,求的值及方程的另一个根.20.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上.(1)以为原点建立直角坐标系,点的坐标为,则点的坐标为________;(2)画出绕点顺时针旋转90°后的,并求点旋转到所经过的路线的长.21.(6分)如图:要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成三个大小相同的矩形羊圈.(1)若设米,矩形的面积为平方米,写出与的函数关系式及自变量的取值范围;(2)若矩形的面积为400平方米,求羊圈的边长的长.22.(6分)小慧爷爷家的的房前有一块矩形的空地,空地上有三棵树、、.为了响应“建设美丽乡村,共建美好家园”的号召,小慧爷爷想要修建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小慧爷爷把花坛的位置画出来;(尺规作图,不写作法,保留作图痕迹)(2)若中米,米,,试求这个圆形花坛的面积.四、解答题(一)(本大题共5小题,共39分,解答应写出必要的文字说明,证明过程或演算步骤)x y x x 2(1)60x k x -+-=k k ABO △O B (3,1)-A ABO △O 11OA B △B 1B AB x =ABCD y y x ABCD BC A B C ABC △16AB =12AC =90BAC ∠=︒23.(6分)某商品进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)为了让利给顾客,并同时获得840元利润,应涨价多少元?(2)当售价定为多少时,获得利润最大,最大利润是多少?24.(7分)某游乐场的圆形喷水池中心有一雕塑,从点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立直角坐标系,点在轴上,轴上的点,为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高;(2分)(2)求落水点,之间的距离;(2分)(3)若需要在上的点处竖立雕塑,,,.问:顶部是否会碰到水柱?请通过计算说明.(3分)25.(共8分)如图,是的外接圆,是直径,过点作直线,过点作直线,两直线交于点,如果,的半径是.(1)求证:是的切线.(2)求图中阴影部分的面积(结果用表示).26.(8分)【问题情境】数学活动课上,老师和同学们一起玩旋转,如图1,四边形是正方形,绕点顺时针旋转后与重合.图1图2【解决问题】O OA A x O A y x C D 21(5)66y x =--+OA C D OD E EF 10m OE = 1.8m EF =EF OD ⊥F O e ACD △AB D //DE AB B //BE AD E 45ACD ∠=︒O e 2cm DE O e πABCD ADE △A ABF △(1)连接,若,求的长;【类比迁移】(2)用上述思想或其他方法证明:如图2,在正方形中,点、分别在、上,且.求证:.27.(10分)如图,抛物线交轴于点和点,交轴于点.图1 图2(1)求抛物线的函数解析式;(3分)(2)如图1,若点是抛物线上一动点(不与点重合),且,求点的坐标;(3分)(3)如图2,设点是线段上的一动点,作轴,交抛物线于点,求线段长度的最大值及此时点的坐标.(4分)EF BC =2BF =EF ABCD E F DC BC 45EAF ∠=︒EF BE DF =+2y x bx c =-++x (3,0)A -B y (0,3)C P C ABP ABC S S =△△P Q AC DQ x ⊥D DQ D。

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷一、单选题1.下列关于x 的方程有实数根的是()A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=02.下列运动属于旋转的是()A .滚动过程中的篮球的滚动B .钟摆的摆动C .一个图形沿某直线对折过程D .气球升空的运动3.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB △位置,则点B 坐标为()A .(2,4)B .(4,2)C .(4,2)--D .(2,4)-4.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A .B .C .D .5.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A .50°B .60°C .70°D .80°6.如图,已知抛物线2y ax c =+与直线y kx m =+交于()()123,,1,A y B y -,则关于x 的不等式2ax c kx m +≥+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤7.若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=()A .2016B .2015C .2014D .20128.如图是一个在建隧道的横截面,它的形状是以点O 为圆心的圆的一部分,O M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,且8=CD m ,8m EM =,则O 的半径为()m .A .5B .6.5C .7.5D .89.如图,AD 是半圆O 的直径,点B 、C 在半圆上,且 AB BC CD==,点P 在 CD 上,若130PCB ∠=︒,则PBC ∠等于()A .25︒B .20︒C .30︒D .35︒10.如图,AB 是O 的直径,点C 为圆上一点,AC =D 是弧AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则BC 的长为()A .5B .4C .3D .2二、填空题11.已知点(,2)A m 与点(3,)B n -关于原点对称,则m n -的值为.12.已知1x =是方程²30x mx -+=的一个解,则另一个解为.x =13.如图,四边形ACBD 内接于O ,连接AB ,CD ,AB 是O 的直径,若28ADC ∠=︒,则BAC ∠的度数为.14.定义:关于x 的函数2y ax bx =+与2y bx ax =+(其中a b ≠)叫做互为交换函数,如225y x x =-与252y x x =-+是互为交换函数,如果函数22y mx x =+与它的交换函数图象顶点关于x 轴对称,那么m =.15.如图,在矩形ABCD 中,8AB =,5BC =,点M 是AB 边的中点,点N 是AD 边上任意一点,将线段MN 绕点M 顺时针旋转90︒,点N 旋转到点N ',则MBN '△周长的最小值为.三、解答题16.解方程:(1)用配方法解方程:2650x x ++=(2)用因式分解法解方程:()3224x x x -=-17.利用你所学的平移与旋转知识作答.(1)如图1,是某产品的标志图案,要在所给的图形图2中,把A ,B ,C 三个菱形通过一种或几种变换,均可以变为与图1一样的图案.你所用的变换方法是______.①将菱形B 绕点O 旋转60︒;②将菱形B 绕点O 旋转120︒;③将菱形B 绕点O 旋转180︒.(在以上的变换方法中,选择一种正确的填到横线上.).(2)如图,在平面直角坐标系中,已知点()0,2A 、()2,2B 、()1,1C .①若将ABC V 先向左平移3个单位长度,再向下平移1个单位长度,得到111A B C △,请画出111A B C △,并写出点1C 的坐标为______;②若将ABC V 绕点O 按顺时针方向旋转180︒后得到222A B C △,直接写出点2C 的坐标为______;③若将ABC V 绕点P 按顺时针方向旋转90︒后得到333A B C △,则点P 的坐标是______.18.如图,在O 中,4OA =, CDBD =,直径AB CD ⊥于点E ,连接OC ,OD .(1)求COD ∠的度数;(2)求CD 的长度.19.某公司电商平台,在2022年十一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.x407090y1809030W 360045002100(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价为a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润.20.如图,AB 是O 的直径,点C 、M 在O 上,且OM BC ∥,连接AC 分别与OM ,BM 相交于点E ,F .(1)求证:点M 为弧AC 的中点;(2)若2ME =,4AE =,求BC 的长.21.等边ABC V 的边长为4,D 为BC 的中点,ABD △绕点B 顺时针旋转得到FBE ,点A 的对应点为F ,点D 的对应点为E ,连接EC ,EC BF ∥.(1)求BEC ∠的度数;(2)求EC 的长度.22.综合与实践已知:90MBN ∠=︒,在BM 和BN 上截取BA BC =,将线段AB 边绕点A 逆时针旋转α()0180α︒<<︒得到线段AD ,点E 在射线BD 上,连接CE ,45BEC ∠=︒.【特例感知】(1)如图1,若旋转角90α=︒,则BD 与CE 的数量关系是______;【类比迁移】(2)如图2,试探究在旋转的过程中BD 与CE 的数量关系是否发生改变?若不变,请求BD 与CE 的数量关系;若改变,请说明理由;【拓展应用】(3)如图3,在四边形ABCD 中,5AD AB BC ===,90ABC ∠=︒,点E 在直线BD 上,45BEC ∠=︒,CE =,请直接写出CDE 的面积.23.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线(即直线y c =)称为这条抛物线的横向分割线.(1)抛物线243y x x =++的横向分割线与这条抛物线的交点坐标为______.(2)抛物线21142y x mx n =-++与x 轴交于点−2,0和()(),02B x x >-,与y 轴交于点C .它的横向分割线与该抛物线另一个交点为D ,请用含m 的式子表示点C 和点D 的坐标.(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分线段OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②是否存在点P ,使2PF OE =?若存在,直接写出m 的值;若不存在,请说明理由.。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。

九年级上学期第二次月考数学试卷 (解析版)

九年级上学期第二次月考数学试卷 (解析版)

九年级上学期第二次月考数学试卷 (解析版)一、选择题1.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y <<2.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°3.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°4.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 5.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A .2020B .﹣2020C .2021D .﹣20216.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++7.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--8.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 9.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .1:2D .2:110.sin60°的值是( ) A . B . C . D .11.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1212.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个13.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1214.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( )A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣115.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____. 17.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.18.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.19.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.20.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.21.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________22.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.23.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.24.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m . 25.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.26.已知3a =4b ≠0,那么ab=_____. 27.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若43AB =,8AD =,求DG 的长.32.如图,AB 是⊙O 的弦,AB =4,点P 在AmB 上运动(点P 不与点A 、B 重合),且∠APB =30°,设图中阴影部分的面积为y . (1)⊙O 的半径为 ;(2)若点P 到直线AB 的距离为x ,求y 关于x 的函数表达式,并直接写出自变量x 的取值范围.33.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.34.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.35.如图,在一块长8m 、宽6m 的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.四、压轴题36.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.37.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 38.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.39.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.2.C解析:C 【解析】 【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可. 【详解】由题意得,sinA-12=0,2-cosB=0,即sinA=12, 解得,∠A=30°,∠B=45°, ∴∠C=180°-∠A-∠B=105°, 故选C . 【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.3.D解析:D 【解析】 【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可. 【详解】∵BC 是⊙O 的切线, ∴∠ABC=90°, ∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°, 故选D . 【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.4.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.5.A解析:A 【解析】 【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可. 【详解】解:根据题意,得 a 2+3a ﹣1=0, 解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020. 故选:A. 【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键6.B解析:B 【解析】 【分析】根据题意直接利用二次函数平移规律进而判断得出选项. 【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-. 故选:B . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).8.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴41642t x ±-= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B .【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键. 11.A解析:A【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.12.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即BC AC BC AC BC -=解得AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边,因为AB =AC ,∠A =36°,所以∠ABC =∠C =72°,又因为BD 平分∠ABC 交AC 于点D ,∴∠ABD =∠CBD =12∠ABC =36°=∠A , ∴AD =BD ,∠BDC =∠ABD +∠A =72°=∠C ,∴BC =BD ,∴BC =BD =AD ,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=51-AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 13.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.14.C解析:C【解析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.15.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题16.3【解析】把m 代入方程2x2﹣3x =1,得到2m2-3m=1,再把6m2-9m 变形为3(2m2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x2﹣3x =1的一个根,解析:3【解析】【分析】把m 代入方程2x 2﹣3x =1,得到2m 2-3m=1,再把6m 2-9m 变形为3(2m 2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x 2﹣3x =1的一个根,∴2m 2﹣3m =1,∴6m 2﹣9m =3(2m 2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 18.、 、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D 的直线与△ABC 的另一个交点为E ,∵AC =4,BC =解析:83、103、 54 【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D 的直线与△ABC 的另一个交点为E ,∵AC =4,BC =3,∴AB=2234+=5设AD=x ,BD=5-x ,∵DE 平分△ABC 周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED ∽△BCA ,如图1,BE=1+x∴BE BD BC AB =,即:5153x x -+=, 解得x=54,②△BDE ∽△BCA ,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.19.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 20.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.21.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 解析:2【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=1∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,,Rt △GMC 中,勾股可得222GC GM CM =+,即:2222)(1m m ++=+,解得:m =,∴边长为2m =.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.22.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.23.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键. 24.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.25.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.26..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.27.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.29.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.30.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 三、解答题31.(1)见解析;(2 【解析】【分析】(1)根据平行四边形的性质得AB ∥CD,AB=CD ,通过两角对应相等证明△FCG ∽△FBA ,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE 的长,再由折叠性质求出BF 长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG ∽△FBA, ∴CG CF AB BF = , ∴CG CF CD BF∴CG BF CD CF ⋅=⋅.(2)∵AE BC ⊥,∴∠AEB=90°,∵∠B=30°, AB =∴AE=1232AB , 由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF ⋅=⋅,∴124CG =,∴ ,∴. 【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.32.(1)4;(2)y=2x +83π-<4) 【解析】【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB ,∴△AOB是等边三角形,∴⊙O的半径是4;(2)解:过点O作OH⊥AB,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH=22AO AH=23∴y=16×16 π-12×4×23+12×4×x=2x+83π-43 (0<x≤23+4).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.33.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD =DC =12BC =5, ∴AD 12==,在Rt △ABD 中,∴tan B 125AD BD ==. 【点睛】 本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.34.(1)见解析;(2)145 【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE =∠C ,根据等角的补角相等可得出∠ADE =∠AFB ,根据AB ∥CD 可得出∠BAF =∠AED ,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB ,AE ,AD ,BF 的比例关系,有了AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,这样就能求出BF 的长了.【详解】(1)证明:在平行四边形ABCD 中,∵∠D +∠C =180°,AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .(2)解:∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB .∴∠ABE =90°.∴5AE ===.∵△ABF ∽△EAD ,BF AB AD EA∴=, 4752BF ∴=.145BF ∴=. 【点睛】。

九年级上第二次月考数学试卷(有答案)

九年级上第二次月考数学试卷(有答案)

九年级上第二次月考数学试卷(有答案)一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对3.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣1)2+3 C.y=2(x+1)2﹣3 D.y=2(x+1)2+34.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.5.图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3 C.3 D.47.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题9.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则a=,b=.10.已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m=.11.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是.12.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为;若∠P=40°,则∠DOE=.13.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.14.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为.15.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.16.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.三、解答题(共72分)17.用适当的方法解下列方程:(1)x2﹣4x﹣21=0(2)(2x+1)(x﹣3)=(4x﹣1)(3﹣x)18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于原点O逆时针旋转90°得到△A1B1C1;②△A1B1C1关于原点中心对称的△A2B2C2.(2)写出A2、B2C2坐标,并求△A2B2C2的周长.19.已知关于x的方程.(1)求证:无论m取什么实数,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.20.如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若∠C=30°,求证:BE是△DEC外接圆的切线;(2)若BE=,BD=1,求△DEC外接圆的直径.21.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=﹣8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.22.一只不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4.小林先从布袋中随机抽取一个乒乓球(不放回),再从剩下的3个球中随机抽取第二个乒乓球.记两次取得乒乓球上的数字依次为a、b(1)求a、b之积为奇数的概率.(2)若c=5,求长为a、b、c的三条线段能围成三角形的概率.23.下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).24.某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.2.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.【解答】解:由一元二次方程的定义可知,解得m=﹣3.故选C.3.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣1)2+3 C.y=2(x+1)2﹣3 D.y=2(x+1)2+3【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2(x+1)2+3,故选D.4.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.【考点】垂径定理;勾股定理.【分析】首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.【解答】解:过点O作OD⊥AB于点D,∵弦AB=2,∴AD=BD=AB=,AC=AB=,∴CD=AD﹣AC=,∵⊙O的半径为2,即OB=2,∴在Rt△OBD中,OD==1,在Rt△OCD中,OC==.故选D.5.图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm【考点】弧长的计算.【分析】游泳池的周长即两段弧的弧长,每条弧所在的圆都经过另一个圆的圆心,则可知短弧所对的圆心角是120度,所以根据弧长公式就可得.【解答】解:.故选:D.6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3 C.3 D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.7.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b>0,故本选项错误.故选:B.8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,∴9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选:C.二、填空题9.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则a=﹣2,b=﹣1.【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:点A(2,4)与点B(b﹣1,2a)关于原点对称,得b﹣1=﹣2,2a=﹣4.解得a=﹣2,b=﹣1,故答案为;﹣2,﹣1.10.已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m=2.【考点】一元二次方程的解;一元二次方程的定义.【分析】根据条件,把x=0代入原方程可求m的值,注意二次项系数m+2≠0.【解答】解:依题意,当x=0时,原方程为m2﹣4=0,解得m1=﹣2,m2=2,∵二次项系数m+2≠0,即m≠﹣2,∴m=2.故本题答案为:2.11.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是13.【考点】一元二次方程的应用.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=78,整理得:x2﹣x﹣156=0解得x1=13,x2=﹣12,(舍去).答:参加这次会议的有13人,故答案为13.12.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为16cm;若∠P=40°,则∠DOE=70°.【考点】切线长定理.【分析】根据切线长定理,可得DC=DA,EC=EB,继而可将△PCD的周长转化为PA+PB,连接OA、OB、OD、OE、OC,则可求出∠AOB的度数,从而可得∠DOE的度数.【解答】解:∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.连接OA、OB、OD、OE、OC,则∠AOB=180°﹣∠P=140°,∴∠DOE=∠COD+∠COE=(∠BOC+∠AOC)=∠AOB=70°.故答案为:16cm、70°.13.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.14.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为2cm.【考点】圆锥的计算.【分析】作OC⊥AB于C,如图,根据折叠的性质得OC等于半径的一半,即OA=2OC,再根据含30度的直角三角形三边的关系得∠OAC=30°,则∠AOC=60°,所以∠AOB=120°,则利用弧长公式可计算出弧AB的长=2π,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到圆锥的底面圆的半径为1,然后根据勾股定理计算这个圆锥的高.【解答】解:作OC⊥AB于C,如图,∵将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴OC等于半径的一半,即OA=2OC,∴∠OAC=30°,∴∠AOC=60°,∴∠AOB=120°,弧AB的长==2π,设圆锥的底面圆的半径为r,∴2πr=2π,解得r=1,∴这个圆锥的高==2(cm).故答案为:2cm.15.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.【考点】列表法与树状图法.【分析】至少两辆车向左转,则要将两辆车向左转和三辆车向向左转的概率相加.或用1减去一辆车或没车向左转的概率.【解答】解:三辆车经过十字路口的情况有27种,至少有两辆车向左转的情况数为7种,所以概率为:.16.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5米.【考点】二次函数的应用.【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【解答】解:以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A、B、C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解之得a=2,b=﹣4,c=2.5.∴y=2x2﹣4x+2.5=2(x﹣1)2+0.5.∵2>0∴当x=1时,y=0.5米.∴故答案为:0.5米.三、解答题(共72分)17.用适当的方法解下列方程:(1)x2﹣4x﹣21=0(2)(2x+1)(x﹣3)=(4x﹣1)(3﹣x)【考点】解一元二次方程-因式分解法.【分析】(1)利用因式分解法解方程;(2)先移项得(2x+1)(x﹣3)+(4x﹣1)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)(x﹣7)(x+3)=0,所以x1=7,x2=﹣3;(2)(2x+1)(x﹣3)+(4x﹣1)(x﹣3)=0,(x﹣3)(2x+1+4x﹣1)=0,所以x1=3,x2=0.18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于原点O逆时针旋转90°得到△A1B1C1;②△A1B1C1关于原点中心对称的△A2B2C2.(2)写出A2、B2C2坐标,并求△A2B2C2的周长.【考点】作图-旋转变换.【分析】(1)①利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;②利用关于原点对称的点的坐标特征写出点A2、B2、C2,然后描点即可得到△A2B2C2;(2)先利用勾股定理分别计算出B2C2、A2C2、,A2B2,然后计算△A2B2C2的周长.【解答】解:(1)①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;(2)A2、B2、C2的坐标分别为(3,1),(1,6),(1,3)B2C2=3,A2C2==2,A2B2==,所以△A2B2C2的周长=3+2+.19.已知关于x的方程.(1)求证:无论m取什么实数,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.【考点】根的判别式;根与系数的关系.【分析】(1)先计算判别式得到△=(m﹣2)2﹣4×(﹣),再配方得到△=2(m﹣1)2+2,再根据非负数的性质得△>0,然后根据判别式的意义即可得到结论;(2)根据根与系数的关系得到x1+x2=m﹣2,x1•x2=﹣≥0,再去绝对值得到x2=﹣x1+2或﹣x2=x1+2,然后分类解方程.【解答】(1)证明:△=(m﹣2)2﹣4×(﹣)=2m2﹣4m+4=2(m﹣1)2+2,∵2(m﹣1)2≥0,∴2(m﹣1)2+2>0,即△>0,∴无论m取什么实数,这个方程总有两个相异实数根;(2)解:根据题意得x1+x2=m﹣2,x1•x2=﹣≤0,∵|x2|=|x1|+2,∴x2=﹣x1+2或﹣x2=x1+2,当x2=﹣x1+2时,而x1+x2=m﹣2=2,解得m=4,原方程变形为x2﹣2x﹣4=0,解得x1=1+,x2=1﹣;当﹣x2=x1+2时,而x1+x2=m﹣2=﹣2,解得m=0,原方程变形为x2+2x=0,解得x1=0,x2=﹣2.20.如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若∠C=30°,求证:BE是△DEC外接圆的切线;(2)若BE=,BD=1,求△DEC外接圆的直径.【考点】切线的判定.【分析】(1)根据线段垂直平分线的性质由DE垂直平分AC得∠DEC=90°,AE=CE,利用圆周角定理得到DC为△DEC外接圆的直径;取DC的中点O,连结OE,根据直角三角形斜边上的中线性质得EB=EC,得∠C=∠EBC=30°,则∠EOD=2∠C=60°,可计算出∠BEO=90°,然后根据切线的判定定理即可得到结论;(2)由BE为Rt△ABC斜边上的中线得到AE=EC=BE=,易证得Rt△CED∽Rt△CBA,则=,然后利用相似比可计算出△DEC外接圆的直径CD.【解答】(1)证明:∵DE垂直平分AC,∴∠DEC=90°,AE=CE,∴DC为△DEC外接圆的直径,取DC的中点O,连结OE,如图,∵∠ABC=90°,∴BE为Rt△ABC斜边上的中线,∴EB=EC,∵∠C=30°,∴∠EBC=30°,∠EOD=2∠C=60°,∴∠BEO=90°,∴OE⊥BE,而OE为⊙O的半径,∴BE是△DEC外接圆的切线;(2)解:∵BE为Rt△ABC斜边上的中线,∴AE=EC=BE=,∴AC=2,∵∠ECD=∠BCA,∴Rt△CED∽Rt△CBA,∴=,而CB=CD+BD=CD+1,∴=,解得CD=2或CD=﹣3(舍去),∴△DEC外接圆的直径为2.21.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=﹣8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.【考点】抛物线与x轴的交点;二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)把(x1+1)(x2+1)=﹣8展开即可得到与根与系数有关的式子,让二次函数的函数值为0,结合求值即可;=×|OC|×P的横坐标的绝(2)可根据顶点式得到平移后的解析式,求得P,C坐标,S△POC对值.【解答】解:(1)由已知x1,x2是x2+(k﹣5)x﹣(k+4)=0的两根,∴又∵(x1+1)(x2+1)=﹣8∴x1x2+(x1+x2)+9=0∴﹣(k+4)﹣(k﹣5)+9=0∴k=5∴y=x2﹣9为所求;(2)由已知平移后的函数解析式为:y=(x﹣2)2﹣9,且x=0时y=﹣5∴C(0,﹣5),P(2,﹣9)=×5×2=5.∴S△POC22.一只不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4.小林先从布袋中随机抽取一个乒乓球(不放回),再从剩下的3个球中随机抽取第二个乒乓球.记两次取得乒乓球上的数字依次为a、b(1)求a、b之积为奇数的概率.(2)若c=5,求长为a、b、c的三条线段能围成三角形的概率.【考点】列表法与树状图法;三角形三边关系.【分析】(1)画树状图展示所有12种等可能的结果数,再找出a、b之积为奇数的结果数,然后根据概率公式求解;(2)根据三角形三边的关系,找出长为a、b、c的三条线段能围成三角形的结果数,然后根据概率公式求解.【解答】解:(1)画树状图:共有12种等可能的结果数,其中a、b之积为奇数的结果数为2,所以a、b之积为奇数的概率==;(2)长为a、b、c的三条线段能围成三角形的结果数为4,所以长为a、b、c的三条线段能围成三角形的概率==.23.下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).【考点】圆锥的计算;弧长的计算.【分析】(1)设∠AOB=n°,AO=R,则CO=R﹣8,利用圆锥的侧面展开图扇形的弧长等于圆锥底面周长作为相等关系列方程,并联立成方程组求解即可;(2)求纸杯的侧面积即为扇环的面积,需要用大扇形的面积减去小扇形的面积.纸杯表面积=S纸杯侧面积+S纸杯底面积.【解答】解:由题意可知:=6π,=4π,设∠AOB=n,AO=R,则CO=R﹣8,由弧长公式得:=4π,∴,解得:n=45,R=24,故扇形OAB的圆心角是45度.∵R=24,R﹣8=16,=×4π×16=32π(cm2),∴S扇形OCDS 扇形OAB =×6π×24=72π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =72π﹣32π=40π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=40π+4π=44π(cm 2).24.某公司营销A 、B 两种产品,根据市场调研,发现如下信息:信息1:销售A 种产品所获利润y (万元)与销售产品x (吨)之间存在二次函数关系y=ax 2+bx .在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B 种产品所获利润y (万元)与销售产品x (吨)之间存在正比例函数关系y=0.3x .根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A 、B 两种产品共10吨,请设计一个营销方案,使销售A 、B 两种产品获得的利润之和最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A 产品m 吨,购进B 产品(10﹣m )吨,销售A 、B 两种产品获得的利润之和为W 元,根据总利润等于两种产品的利润的和列式整理得到W 与m 的函数关系式,再根据二次函数的最值问题解答.【解答】解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x 2+1.5x ;(2)设购进A 产品m 吨,购进B 产品(10﹣m )吨,销售A 、B 两种产品获得的利润之和为W 元,则W=﹣0.1m 2+1.5m +0.3(10﹣m )=﹣0.1m 2+1.2m +3=﹣0.1(m ﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W 有最大值6.6,∴购进A 产品6吨,购进B 产品4吨,销售A 、B 两种产品获得的利润之和最大,最大利润是6.6万元.25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.【考点】二次函数综合题.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y 轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B 点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形PO P′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∵C(0,﹣3),∴CO=3,又∵OE=EC,∴OE=EC=∴y=;∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去),∴P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),设直线BC的解析式为:y=kx+d,则,解得:∴直线BC的解析式为y=x﹣3,则Q点的坐标为(x,x﹣3);当0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,∴AO=1,AB=4,S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF==当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.2017年1月29日。

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.4 3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 4.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( ) A .5 B .2C .5或2D .2或7-1 5.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d < B .5d >C .5d =D .5d ≤ 6.函数y=(x+1)2-2的最小值是( ) A .1 B .-1C .2D .-2 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 9.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 11.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .100 12.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°14.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2) 15.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.18.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;19.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.20.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).21.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.22.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.23.方程290x的解为________.24.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .25.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)26.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.27.如图,点G为△ABC的重心,GE∥AC,若DE=2,则DC=_____.28.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.29.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.30.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.33.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.34.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒). ①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.35.解方程:2670x x --=四、压轴题36.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.37.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.38.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ;②如图3,弦AB 与弦CD 不相交:③如图4,点B 与点C 重合.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA =5,tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF 是直角三角形时,求EF 的长;(3)是否存在点F ,使得S △CEF =4S △BOF ,若存在,请求EF 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .2.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a ∥b ∥c , ∴AB DE BC EF=, ∵AB =1.5,BC =2,DE =1.8, ∴1.5 1.82EF= , ∴EF=2.4 故选:D .【点睛】 本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3.B解析:B【解析】【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71- .故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.5.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O与直线l的距离d满足:5d>.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交. 6.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.7.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.D解析:D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意;故选D.9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个, 所以,取出红球的概率为2163P ==, 故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键. 10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.12.C解析:C【解析】【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟13.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∵BD 是⊙O 的直径,∴点B 、D 、O 在同一直线上,∴∠ADB=12∠AOB=30° 故选A . 14.B解析:B【解析】试题分析:△ABC 中,∠ABC=90°,AB=6,BC=3,AB :BC=2.A 、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB :BC=CD :DE ,△CDE ∽△ABC ,故本选项不符合题意;B 、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB :BC≠CD :DE ,△CDE 与△ABC 不相似,故本选项符合题意;C 、当点E 的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB :BC=DE :CD ,△EDC ∽△ABC ,故本选项不符合题意;D 、当点E 的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB :BC=CD :CE ,△DCE ∽△ABC ,故本选项不符合题意.故选B .15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠m解析:2【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴2222AB AC BC,6810∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.19.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】 解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.20.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.21.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°22.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.23.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.24.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.25.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.26.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.27.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.28.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.32.173cm【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键.33.(1)12;(2)23. 【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a 、b 异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12, 故答案为:12(2)画树状图为:共有12种等可能的结果数,其中a 、b 异号有8种结果,∴这个二次函数的图象的对称轴在y 轴右侧的概率为812=23. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a 、b 异号时,对称轴在y 轴右侧是解题关键.34.(1)233384y x x =-++;(2)① 32t =;②123453172417,3,,,26176t t t t t ===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32.② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,517145t -=.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.35.x 1=7,x 2=1-【解析】【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程.四、压轴题36.(1)作图见解析;(2)49π.。

上海市松江民乐学校2023-2024学年九年级上学期第二次月考数学试题

上海市松江民乐学校2023-2024学年九年级上学期第二次月考数学试题

上海市松江民乐学校2023-2024学年九年级上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________A .::AD AB DE =A .0a <,b >C .0a >,b >二、填空题11.已知△ABC ∽△A 是它们对应边上的角平分线,且12.计算:43(a a + 13.在一个斜坡上前进17.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的四个全等的直角三角形与中间的小正方形拼成的一个大正方形,直角三角形中较小锐角三、计算题19.计算:cot 21cos30tan60 -︒+︒四、作图题五、问答题操作方法如下:如图,先在D 处测得点A 的仰角为20°,再往水城门的方向前进13米至C 处,测得点A 的仰角为31°(点D 、C 、B 在一直线上),求该水城门AB 的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)六、证明题23.已知:如图,△ABC 中,AD 平分∠BAC .过点B 作AD 的垂线,垂足为E .过点C 作AD 的垂线交AD 的延长线于F .联结CE 交FB 的延长线于点P ,联结AP .(1)求证:AB •AF =AC •AE ;(2)求证:CF ∥AP .七、问答题24.在平面直角坐标系xOy (如图)中,抛物线22y ax bx =++经过点()40A -,、()22B -,,与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,连接MB ,BC ,求tan MBC ∠;(3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且45DOE ∠=︒,求点E 的坐标.八、证明题(1)求证:AB BGCE CF=;(2)设BE x =,CF y =,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)当AEF 是以AE 为腰的等腰三角形时,求BE 的长.。

2024-2025学年福建省泉州五中九年级(上)第二次月考数学试卷+答案解析

2024-2025学年福建省泉州五中九年级(上)第二次月考数学试卷+答案解析

2024-2025学年福建省泉州五中九年级(上)第二次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列事件中,属于必然事件的是()A.旭日东升B.守株待兔C.大海捞针D.水中捞月2.如图,小张想估测被池塘隔开的A,B两处景观之间的距离,他先在AB外取一点C,然后步测出AC,BC的中点D,E,并步测出DE的长约为18m,由此估测A,B之间的距离约为()A.18mB.24mC.36mD.54m3.在中,,现把这个三角形的三边都扩大为原来的3倍,则的正弦值()A.扩大为原来的3倍B.缩小为原来的3倍C.不变D.不能确定4.已知两个三角形相似,它们的对应高之比为4:9,则它们的周长比为()A.2:3B.4:9C.16:81D.9:45.如图,在中,,,,则()A.B.C.D.6.放在正方形网格纸的位置如图,则的值为()A. B. C. D.7.如图,一个小球由地面沿着坡度:2的坡面向上前进了10m,此时小球距离地面的高度为()A. B.5m C. D.8.一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.9.如图,中,,,点B的坐标为,将绕点A逆时针旋转得到,当点O的对应点C落在OB上时,点D的坐标为()A. B. C. D.10.如图,二次函数的图象过点和,有以下结论:①;②;③;④;⑤其中正确的是()A.①③⑤B.①②③④⑤C.①③④D.①②③⑤二、填空题:本题共6小题,每小题3分,共18分。

11.若线段a、b、c、d是成比例线段,且,,,则______.12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和2个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是______.13.已知,,三点都在二次函数的图象上,则,,的大小关系为______.14.如图,的顶点在抛物线上,将绕点O顺时针旋转,得到,边CD与该抛物线交于点P,则点P的坐标为______.15.如图,是等边三角形,D是BC延长线上一点,于点E,于点若,,则AC的长为______.16.如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则的面积是______.三、解答题:本题共9小题,共72分。

人教版数学九年级上册第二次月考期中考试卷含答案解析

人教版数学九年级上册第二次月考期中考试卷含答案解析

人教版数学九年级上册第二次月考期中考试题一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.63.下列计算正确的是()A.B.C.D.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>15.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=66.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张二、填空题:(本大题共5小题,每小题4分,共20分)11.当x时,二次根式在实数范围内有意义.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=.13.方程x2=x的解是.14.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“”交通标志(不画图案,只填含义)15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF 交AD于点H,那么DH的长是.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)18.先化简,再求值:,其中a=.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:①=;②=.③已知,,比较a与b的大小关系.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm221.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式,故此选项正确;B、=,故不是最简二次根式,故此选项错误;C、=2,故不是最简二次根式,故此选项错误;D、=a(a>0),故不是最简二次根式,故此选项错误.故选:A.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出xy的值.【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.3.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加法、乘法、除法法则即可判断.【解答】解:A、2和4不是同类二次根式,不能合并,选项错误;B、和不是同类二次根式,不能合并,选项错误;C、÷==3,选项正确;D、==3,选项错误.故选C.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m+1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m+1≠0,即m≠﹣1,故选C.5.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.6.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>【考点】根的判别式;二次根式有意义的条件.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.还要根据二次根式的意义可知k≥0,然后确定最后k的取值范围.【解答】解:∵关于x的方程有实数根,∴△=b2﹣4ac=(﹣3)2+4=9k+4≥0,解得:k≥,又∵方程中含有∴k≥0,故本题选A.7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%【考点】一元二次方程的应用.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是(1﹣x),那么第二次后的价格是(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.【考点】利用旋转设计图案.【分析】根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,找到关键点,分析选项可得答案.【解答】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化-旋转.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.二、填空题:(本大题共5小题,每小题4分,共20分)11.当x≥3时,二次根式在实数范围内有意义.【考点】二次根式有意义的条件.【分析】因为式为二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣3≥0,解得:x≥3.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=10.【考点】换元法解一元二次方程.【分析】设x2+y2=t,原方程可化为t2﹣3t﹣70=0,求得t的值,再得出答案即可.【解答】解:设x2+y2=t,原方程可化为t2﹣3t﹣70=0,解得t1=10,t2=﹣7,∵x2+y2≥0,∴x2+y2=10,故答案为10.13.方程x2=x的解是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=114.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“靠左侧通道行驶”交通标志(不画图案,只填含义)【考点】生活中的旋转现象.【分析】根据旋转的定义,可得旋转后的图形,根据题意中所给的含义,易得答案.【解答】解:根据旋转的意义,可得旋转后的图形是,结合题意中所给图形的含义,可得答案为靠左侧通道行驶.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,∵,∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中,CD=3,∴DH=tan∠DCH×CD=.故答案为:.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,然后合并同类二次根式即可;(2)首先利用完全平方公式计算第一个式子,然后利用平方差公式即可求解.【解答】解:(1)原式=4﹣2+12=14;(2)原式=(3+2)(2﹣3)=(2)2﹣9=8﹣9=﹣1.17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)【考点】解一元二次方程-因式分解法.【分析】(1)利用公式法求出x的值即可;(2)把方程左边化为两个因式积的形式,再求出x的值即可.【解答】解:(1)∵△=9+8=17,∴x=,∴x1=,x2=;(2)方程左边可化为3(x﹣1)2﹣x(x﹣1)=0,因式分解得,(x﹣1)(2x﹣3)=0,故x﹣1=0或2x﹣3=0,解得x1=1,x2=.18.先化简,再求值:,其中a=.【考点】分式的化简求值.【分析】本题需先根据分式的运算顺序和法则分别进行计算,再把a=的值代入即可求出答案.【解答】解:,=×,=,把a=代入上式得:=,=4﹣7.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是﹣2.(2)将下列式子进行分母有理化:①=;②=3﹣.③已知,,比较a与b的大小关系.【考点】分母有理化.【分析】(1)的有理化因式是它本身,+2的有理化因式符合平方差公式的特点的式子.据此作答;(2)①分子、分母同乘以最简公分母即可;②分子、分母同乘以最简公分母3﹣,再化简即可;③把a的值通过分母有理化化简,再比较.【解答】解:(1)根据与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,的有理化因式是:,的有理化因式是:﹣2,故答案为:,﹣2;(2)①==,②==3﹣;③∵a===2﹣,b=2﹣,∴a=b.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm2【考点】矩形的性质;一元二次方程的应用;三角形的面积.【分析】设出发秒x时△DPQ的面积等于31平方厘米,根据三角形的面积公式列出方程可求出解.【解答】解:设出发秒x时△DPQ的面积等于31cm2.∵S矩形ABCD ﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ…∴…化简整理得x2﹣6x+5=0…解这得x1=1,x2=5…均符合题意.答:出发1秒或5秒钟时△DPQ的面积等于31cm2.…21.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.【考点】作图-旋转变换.【分析】将△ABC的A,C点绕B点逆时针旋转90°,找到对应点,顺次连接得到△A′B′C′.【解答】解:A′(0,﹣3)、B′(0,0)、C′(﹣4,﹣3).22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.【考点】根的判别式.【分析】根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可.【解答】解:△ABC是直角三角形,理由是:∵关于x的方程(a+c)x2+bx+=0有两个相等的实数根,∴△=0,即b2﹣4(a+c)()=0,∴a2=b2+c2,∴△ABC是直角三角形.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【分析】(1)猜想BG⊥BD,且BG=DE,证明:延长BG与DE交于H点,则根据∠DGH+∠GDH=90°可以证明∠DHG=90°,即BG⊥DE;(2)存在,△BCG和△DCE可以通过旋转重合.求证△BCG≌△DCE即可.【解答】证明:(1)猜想:BG⊥BD,且BG=DE.延长BG与DE交于H点,在直角△BCG中,BG=,在直角△DCE中,DE=,∵BC=DC,CG=CE,∴BG=DE.在△BCG和△DCE中,,∴△BCG≌△DCE,∴∠BGC=∠DEC,BG=DE,又∵∠BGC=∠DGH,∠DEC+∠CDE=90°,∴∠DGH+∠GDH=90°,∴∠DHG=90°,故BG⊥DE,且BG=DE.(2)存在,△BCG≌△DCE,(1)中已证明,且△BCG和△DCE有共同顶点C,则△DCE沿C点旋转向左90°与△BCG重合.。

2023-2024学年福建省龙岩市北大附属实验学校九年级(上)第二次月考数学试卷+答案解析

2023-2024学年福建省龙岩市北大附属实验学校九年级(上)第二次月考数学试卷+答案解析

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程中,是一元二次方程的是( )A. B.C.D.2.抛物线与x 轴的交点的个数有2023-2024学年福建省龙岩市北大附属实验学校九年级(上)第二次月考数学试卷( )A. 0个B. 1个C. 2个D. 3个3.某配件厂一月份生产配件60万个,已知第一季度共生产配件218万个,若设该厂平均每月生产配件的增长率为x ,可以列出方程为( )A. B. C.D.4.将抛物线向左平移2个单位,再向下平移1个单位,得到抛物线,那么此抛物线是( )A. B. C.D.5.关于x 的一元二次方程有实数根,则k 的取值范围是( )A.B.C.且D.且6.苏州市“东方之门”是由两栋超高层建筑组成的双塔连体建筑,“门”的造型是东方之门的立意基础,“门”的内侧曲线呈抛物线型,如图1,两栋建筑第八层由一条长60m 的连桥连接,在该抛物线两侧距连桥150m处各有一窗户,两窗户的水平距离为30m,如图2,则此抛物线顶端O到连桥AB距离为( )A. 180mB. 200mC. 220mD. 240m7.某校初二年级开展了一班一特色活动,2001班以“地”为特色在学校的试验园地进行种植蔬菜活动.试验园的形状是长15米、宽8米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为110平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )A. B.C. D.8.若方程中,a,b,c满足和,则方程的根是( )A., B. ,C., D. 无法确定9.下列各数是方程的根的是( )A. B. C. D.10.直线经过第二、三、四象限,那么下列结论正确的是( )A.B. 反比例函数,当时的函数值y随x增大而减小C. 一元二次方程的两根之和大于零D. 抛物线的对称轴过第一、四象限二、填空题:本题共6小题,每小题3分,共18分。

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)

九年级(上)第二次月考数学试卷(含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135° 2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒ 3.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .10 4.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内 5.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④6.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45° 7.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 8.已知反比例函数k y x =的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限 9.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-11.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣212.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°14.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .215.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=二、填空题16.二次函数23(1)2y x =-+图象的顶点坐标为________.17.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .18.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.19.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)20.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.21.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.22.方程290x 的解为________.23.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.24.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.25.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.28.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.29.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB 的面积最大值是;(问题探究)如图2所示,AB、AC、BC是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在BC、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为 km;(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在AB 上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.请问:在AB上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.33.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?34.如图,在矩形 ABCD 中,CE ⊥BD ,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P ,⊙P 交 CE 、BD 、BC 交于 F 、G 、H (任意两点不重合),(1)半径 BP 的长度范围为 ;(2)连接 BF 并延长交 CD 于 K ,若 tan ∠KFC = 3 ,求 BP ;(3)连接 GH ,将劣弧 HG 沿着 HG 翻折交 BD 于点 M ,试探究PM BP是否为定值,若是求出该值,若不是,请说明理由.35.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.四、压轴题36.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 37.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB .(1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

九年级上学期第二次月考(数学)试题含答案

九年级上学期第二次月考(数学)试题含答案

九年级上学期第二次月考(数学)(考试总分:120 分)一、 单选题 (本题共计6小题,总分18分)1.(3分)下列物体中心对称的是哪个?A 课桌B 书本C 秋千D 手机2.(3分)下列哪个方程是一元二次方程( )A .2x+y=1B .x 2+1=2xyC .x 2+1x =3D .x 2=2x ﹣33.(3分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .12第3题4.(3分)如图,已知:在⊙O 中,OA ⊥BC ,∠AOB=70°,则∠ADC 的度数为( )A .70°B .45°C .35°D .30°5.(3分)为了让江西的山更绿、水更清,2020年省委、省政府提出了确保到2022年实现全省森林覆盖率达到63%的目标,已知2020年我省森林覆盖率为60.05%,设从2020年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.51263%x +=B .()60.51263x +=C .()260.5163%x +=D .()260.5163x +=6.(3分)二次函数()20y ax bx c a =++≠图象如图,下列结论正确的是()A .0abc >B .若221122ax bx ax bx +=+且12x x ≠,则121x x =+C .0a b c -+>D .当1m ≠时,2a b am bm +>+二、 填空题 (本题共计6小题,总分18分)7.(3分)若二次函数2y ax bx =+的图象开口向下,则a _____0(填“=”或“>”或“<”).8.(3分)如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC 的度数为____.第8题9.(3分)一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ .10.(3分)已知A(﹣2,y 1),B(﹣1,y 2),C(1,y 3)两点都在二次函数y =(x+1)2+m 的图象上,则y 1,y 2,y 3的大小关系为______.11.(3分)如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为______.12.(3分)如图,已知AM 为⊙O 的直径,直线BC 经过点M ,且AB=AC ,∠BAM=∠CAM ,线段AB 和AC 分别交⊙O 于点D 、E ,∠BMD=40°,则∠EOM=________.三、解答题(本题共计11小题,总分84分)13.(6分)解方程:(1)2x2-4x-6=0;(2)x2+6x-3=0.14.(6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?15.(6分)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l//BC.16.(6分)已知关于的一元二次方程:.(1)求证:对于任意实数,方程都有实数根;(2)当为何值时,方程的两个根互为相反数?请说明理由.17.(8分)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?18.(6分)如图,△ABC的顶点都在方格线的交点(格点)上.(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.19.(8分)一个不透明的口袋中装有红、黄、绿三种颜色的小球(它们除颜色不同外其余都相同),其中红球2个,黄球1个,从中任意摸出1球是红球的概率是12.(1) 求口袋中绿球的个数;(2) 第一次从袋中任意摸出1球(不放回),第二次再任意摸出1球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸到红球的概率.20.(8分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?21.(9分)将两块全等的含30°角的直角三角板按如图1所示的方式放置,已知∠BAC=∠B1A1C=30°.固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针旋转(旋转角小于90°)至如图2所示的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.(1)当旋转角等于20°时,∠BCB1=°;(2)当旋转角等于多少度时,AB与A1B1垂直?请说明理由.22.(9分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若,AC=5,求圆的直径AD的长.23.(12分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.答案一、单选题(本题共计6小题,总分18分)1.(3分)B【分析】根据中心对称图形的概念逐一进行分析即可得.【详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【点睛】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.2.(3分)D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【详解】A. 2x+y=1是二元一次方程,故不正确;B. x2+1=2xy是二元二次方程,故不正确;C. x2+1x=3是分式方程,故不正确;D. x2=2x-3是一元二次方程,故正确;故选:D3.(3分)D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=31 62 .故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.(3分)C【分析】先根据垂径定理得出AB=AC,再由圆周角定理即可得出结论.【详解】解:∵OA⊥BC,∠AOB=70°,∴AB=AC,∴∠ADC=12∠AOB=35°.故选C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.5.(3分)D【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x ,依题意得60.05%(1+x )2=63%.即60.05(1+x )2=63.故选D .6.(3分)D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,12b a-=,∴abc<0,故A 选项错误; 若221122ax bx ax bx +=+且12x x ≠,∴对称轴为1212x x x ==+,故B 选项错误; ∵二次函数的图象的对称轴为直线x=1,与x 轴的一个交点的横坐标小于3, ∴与x 轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C 选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c ,∴2(1)a b c am bm c m ++>++≠,∴2a b am bm +>+,故D 选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.二、 填空题 (本题共计6小题,总分18分)7.(3分)<【解析】【分析】由二次函数2y ax bx =+图象的开口向下,可得0a <.【详解】解:∵二次函数2y ax bx =+的图象开口向下,∴0a <.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.8.(3分)17°【详解】解:∵∠BAC=33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB′C′, ∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC 的度数=50°−33°=17°.故答案为17°.9.(3分)2【解析】【分析】根据一元二次方程根的意义可得2114x x -+2=0,根据一元二次方程根与系数的关系可得12x x =2,把相关数值代入所求的代数式即可得.【详解】由题意得:2114x x -+2=0,12x x =2,∴2114x x -=-2,122x x =4,∴2111242x x x x -+=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.213y y y <<10.(3分)【分析】先根据二次函数的性质得到抛物线的对称轴为直线x=-1,然后比较三个点离直线x=2的远近得到y 1、y 2、y 3的大小关系.【详解】解:对于二次函数()21y x m =++,开口向上,对称轴为直线x=-1,∴B (﹣1,y 2)为此抛物线的顶点,∴y 2最小,∵A (﹣2,y 1)在对称轴的左侧,y 随x 的增大而减小,C (1,y 3)在对称轴的右侧,y 随x 的增大而增大,-2离对称轴的距离小于1离对称轴的距离,故213y y y <<,故答案是:213y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性. 11.(3分)(6,0)【详解】解:过点P作PM⊥AB于M,则M的坐标是(4,0)∴MB=MA=4-2=2,∴点B的坐标为(6,0)12.(3分)80°【解析】【详解】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为80°.【点睛】本题考查圆周角定理.三、解答题(本题共计11小题,总分84分)13.(6分)(1)x1=-1,x2=3. (2)x1=-3+x2=-3-【分析】(1)先整体除以2,然后利用因式分解法解方程;(2)利用配方法求解即可.【详解】解:(1)原方程整理得x 2-2x-3=0∴()()310x x -+=30,10x x ∴-=+=∴x 1=-1,x 2=3;(2)原方程整理得x 2+6x+9=12∴()2312x +=3x ∴+=±∴x 1=-3+x 2=-3-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的方法,学会选择最简便的方法求解是关键.14.(6分)小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.>,∵169x=不符合题意,舍去,∴16x=.∴1答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.15.(6分)【解析】试题分析:(1)过点C作直径CD,由于AC=BC,弧AC=弧BC,根据垂径定理的推理得CD垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE 将△ABC分成面积相等的两部分.试题解析:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.16.(6分)(1)见解析;(2)1,理由见解析.【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.试题解析:(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.∴当t=1时,方程的两个根互为相反数.考点:根与系数的关系;根的判别式.17.(8分)18.(6分)(1)答案见解析;(2)答案见解析;(3)(2,﹣3).【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用关于原点对称点的性质直接得出答案.【详解】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:△A″B″C″,即为所求;(3)将△ABC绕原点O旋转180°,A的对应点A1的坐标是(2,﹣3).【点睛】考点:1.-旋转变换;2.-平移变换.(1)作图见试题解析;(2)作图见试题解析.19.(8分)(1)1个;(2)1 6 .【分析】(1)根据摸出1球是红球的概率求出总球数,然后可求出口袋中绿球的个数;(2)画出树状图,然后根据概率公式计算即可.【详解】(1)口袋中小球的总数=2÷12=4(个),∴口袋中绿球的个数=4-2-1=1(个).(2)画树状图如下:由树状图可知,共有12种等可能的结果,其中两次都摸到红球的有2种,∴P(两次都摸到红球)=21 126.【点睛】本题主要考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(1)如果商场里这批衬衫的库存只有4件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)如果商场销售这批衬衫要保证每天盈利不少于120元,那么衬衫的单价应降不少于10元且不超过20元.【解析】【分析】(1)根据题意列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解.【详解】(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于120元,那么衬衫的单价应降不少于10元且不超过20元.【点睛】本题考查一次函数和二次函数的性质;能够从情境中列出函数关系式,借助函数的性质解决实际问题.21.(9分)(1)160;(2)当旋转角等于30度时,AB与A1B1垂直,理由见解析;【分析】(1)旋转角∠A1CA=20°,所以∠BCB1=90°+90°−20°=160°;(2)当AB与A1B1垂直时,∠A1ED=90°,则可求∠A1DE度数,根据三角形外角性质可知∠DCA度数,即旋转角度数.【详解】解:(1)当旋转角等于20°时,则∠A1CA=20°,∴∠BCB1=90°+90°﹣20°=160°.故答案为160;(2)当旋转角等于30度时,AB与A1B1垂直,理由如下:当AB与A1B1垂直时,∠A1ED=90°∴∠A1DE=90°﹣∠A1=90°﹣30°=60°.∵∠A1DE=∠A+∠DCA,∴∠DCA=60°﹣30°=30°.即当旋转角等于30度时,AB与A1B1垂直.故答案为160.【点睛】本题主要考查了旋转的性质,找准旋转角是解题的关键.22.(9分)(1)详见解析;(2)6【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD =90°,又∠EBD=∠CAB, ∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵OB∥AC, OA=OD,AC=5,.∴OM=2.5 ,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt △OMD 中:MD 2=r 2-2.52;在Rt △BMD 中:MD 2=BD 2-(r-2.5)2∴r 1=3 ,r 2=-0.5(舍).∴圆的直径AD 的长是6.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线.23.(12分)(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(,2﹣.【分析】(1)根据待定系数法,可得答案; (2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3;(2)设BC 的解析式为y=kx+b ,将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩,BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣32)2+94,当n=32时,PM最大=94;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2(不符合题意,舍),n3,n2﹣2n﹣,P(,);综上所述:P(2,﹣3)或(2﹣).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.。

河南省洛阳市伊滨区2024届九年级上学期12月月考数学试卷(含解析)

河南省洛阳市伊滨区2024届九年级上学期12月月考数学试卷(含解析)

洛阳市伊滨区12月2023-2024 学年第一学期九年级第二次质量监测数学试卷满分:120 分考试时间:100分钟一、选择题(每小题3 分,共30 分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.下列事件中,是必然事件的是()A.从一副扑克牌中到红桃B.打开电视,正在播放新闻C.两个无理数的积是无理D.三角形的内角和为3.设方程的两个根为m,n,那么的值等于()A.15B.13C.D.94.已知点与点关于原点对称,则的值为()A.6B.5C.4D.35.在平面直角坐标系中,是以点为圆心,为半径的圆.则下列说法正确的是()A.原点在外B.原点在内C.原点在上D.无法确定6.已知点,,在二次函数的图象上,,,的大小关系是()A.B.C.D.7.以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形B.这个三角形是等腰三角形C.这个三角形是直角三角形D.这个三角形是钝角三角形8.已知二次函数,当时,y随的增大而增大,当时,y随的增大而减小,则当时,y的值为()A.B.C.D.9.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )A.B.C.D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的实数),其中正确结论的个数为( )A.0B.1C.2D.3二、填空题(每小题3 分,共15 分)11.若是关x的方程的解,则的值为.12.一个扇形的弧长是,其圆心角是,此扇形的面积为13.若二次函数的图象上有且只有三个点到x轴的距离等于m,则m的值为.14.如图,四边形ABCD内接于⊙O,若∠DCE=55°,则∠BOD=°.15.如图,在中,,,,是内部的一个动点,满足.则线段长的最小值为.三.解答题(共75分)16.解方程(1)(2)17.如图所示的正方形网格中,的顶点均在格点上,请在所给直角坐标系中按要求画图:(1)作出关于坐标原点成中心对称的;(2)作出以点为旋转中心,将绕点顺时针旋转得到的.(3)求在(2)的旋转过程中,点旋转到所经过的路程长.(结果保留)18.已知关于x的一元二次方程.求证:方程总有两个实数根;若方程有一个根是负数,求m的取值范围.19.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,绘制了如图所示的两幅尚不完整的统计图.(其中A表示“”;B表示“”;C表示“”;D表示“”).请你根据统计图中所提供的信息解答下列问题:(1)本次调查一共随机抽取了______名学生的成绩,扇形统计图中______.(2)请补全条形统计图.(3)在一次交流活动中,老师决定从成绩为B的4名学生中随机选取2名学生来进行采访,已知这4名学生中只有1名男同学,请用画树状图或列表的方法求选取到2名同学中刚好有这位男同学的概率.20.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系:,且规定商品的单价不能低于成本价,但不高于50元.(1)销售单价为多少元时,每天能获得800元的利润;(2)若使销售该商品每天获得的利润最大,销售单价应定为多少元?最大利润为多少元?21.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P 在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.22.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“杠杆”,推动“杠杆”带动磨盘转动,将粮食磨碎.如图,AB为圆O的直径,AC是的一条弦,D为弧BC的中点,作于点E,交AB的延长线于点F,连接DA.(1)若,则圆心O到“杠杆EF”的距离是多少?说明你的理由;(2)若,求阴影部分的面积.(结果保留)23.综合与实践课上,老师让同学们以“图形的变换”为主题开展数学活动.(1)操作判断如图1,将矩形纸片折叠,使落在边上,点与点重合,折痕为,即可得到正方形,沿剪开,将正方形折叠使边,都落在正方形的对角线上,折痕为,,连接,如图2.根据以上操作,则____________.(2)迁移探究将图2中的绕点按顺时针旋转,使它的两边分别交边,于点,,连接,如图3.探究线段,,之间的数量关系,并说明理由.(3)拓展应用连接正方形对角线,若图3中的的边,分别交对角线于点,,将正方形纸片沿对角线剪开,如图4,若,,请直接写出的长.参考答案与解析1.B解析:∵平行四边形是中心对称图形,不是轴对称图形,∴圆与平行四边形组合图形是中心对称图形,∴选项A错误;∵正方形,圆是中心对称图形,也是轴对称图形,∴圆与正方形的组合图形是中心对称图形,也是轴对称图形,∴选项B正确;∵等边三角形不是中心对称图形,是轴对称图形,∴圆与等边三角形的组合图形是轴对称图形,∴选项C错误;两个三角形组成的图形是中心对称图形,∴选项D错误.故选B.2.D解析:解:A.从一副扑克牌中到红桃是随机事件,不符合题意;B.打开电视,正在播放新闻是随机事件,不符合题意;C.两个无理数的积是无理是随机事件,不符合题意;D.三角形的内角和为是必然事件,故符合题意;故选:D.3.A解析:解:方程的两个根为m,n,,,∴.故选:A.4.B解析:根据中心对称的性质,,,解得,∴故选:B.5.C解析:解:∵点P的坐标是,∴,而的半径为,∴等于圆的半径,∴点在上.故选:C.6.B解析:解:由题意得,抛物线的对称轴为直线,,,,,,,;故选:B.7.C解析:由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形解答.解:(1)因为OC=1,所以OD=1×sin30°=;(2)因为OB=1,所以OE=1×sin45°=;(3)因为OA=1,所以OD=1×cos30°=.因为,所以这个三角形是直角三角形.故选:C.8.A解析:解:∵当时,y随x的增大而增大,当时,y随x的增大而减小,∴抛物线的对称轴为直线,∴,∴当时,,故选:A.9.A解析:解:当y=0,则,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),=,∴M点坐标为:(2,﹣1).∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:=.故选A.10.C解析:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=-=1,∴b>0;∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①错误;当x=-1时,y<0,即a-b+c<0,∴b>a+c,故②不正确;当x=2时,y>0,即4a+2b+c>0,故③正确;∵抛物线的对称轴为直线x=1,∴x=1时,y有最大值a+b+c,∴a+b+c>am2+bm+c(m≠1),∴a+b>m(am+b),故④正确.故选C.11.2019解析:解:∵是关x的方程的解,∴,即:,∴;故答案为:2019.12.解析:解:设扇形的半径为r,则解得:∴扇形的面积故答案为:.13.4解析:解:∵,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,-4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.14.110°解析:解:∵∠DCE=55°,∴∠BCD=125°,∵四边形ABCD内接于⊙O,∴∠A=55°,∴∠BOD=2∠A=110°,故答案为:110°.15.解析:解:,,,,,,如图,取的中点为,连接,,是内部的一个动点,的运动轨迹为以为圆心,为半径的劣;当、、三点共线时,最小,此时最小,如图,,;故答案:.16.(1),(2),解析:(1)解:,,或,解得:,;(2)解:,或,解得:,.17.(1)见详解(2)见详解(3)解析:(1)解:如图,为所求作;(2)解:如图为所求作;(3)解:如图,点旋转到所经过路程为的长,,,,故点旋转到所经过路程为.18.(1)详见解析;(2) m<3.解析:证明:关于x的一元二次方程,,方程总有两个实数根;解:由求根公式可求得或,若方程有一个根为负数,则,解得,综上可知若方程有一个根是负数,m的取值范围为.19.(1)60;25(2)详见解析(3)解析:(1)解:一共随机抽取的学生人数:(名);(2)解:(名),补全条形统计图如下.(3)解:设成绩为B的四名学生分别用女1、女2、女3、男表示,画出的树状图如下:共有12种等可能结果,其中刚好有这位男同学的结果数为6,∴选取到两名同学中,刚好有这位男同学的概率为.20.(1)销售单价为40元时,每天能获得800元的利润;(2)若使销售该商品每天获得的利润最大,销售单价应定为50元,此时最大利润为1200元.解析:(1)解:由题意得,整理得,解得,由题意得,∴不合题意,舍去,∴,答:销售单价为40元时,每天能获得800元的利润;(2)解:设商品的利润为w元,由题意得(),∵-2<0,∴当时,w随x的增大而增大,∴当x=50时,w有最大值,此时w=1200,答:若使销售该商品每天获得的利润最大,销售单价应定为50元,此时最大利润为1200元.21.(1),,(2)选择吊球,使球的落地点到C点的距离更近解析:(1)解:在一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.22.(1)45cm;(2).解析:(1)解:连接AD,∵D为弧BC的中点,∴,∵,∴,∴,∵,∴,即圆心O到EF的距离为OD,∵,∴;(2)解:设,则,∵,∴,∴,∵,∴,即,∴,作交AB于点H,∴,∵,∴,∴S阴影.23.(1)45(2)(3)解析:(1)解:由折叠的性质得:,,,即,,,故答案为:;(2)解:.理由:如图,将顺时针旋转得到,由旋转的性质可得,,,.四边形为正方形,.,,即、、三点在同一直线上.由(1)中结论可得,,,.在和中,,,,,.,.(3)解:.如图,将绕点顺时针旋转得到,连接,根据旋转的性质可得,,.,,,,,,,.,,.在中,,,(负值舍去).。

四川省隆昌市第一中学2023届九年级上学期第二次月考数学试卷(含答案)

四川省隆昌市第一中学2023届九年级上学期第二次月考数学试卷(含答案)

数学试题本试卷三个大题23个小题,全卷满分120分,120分钟完卷。

注意事项:1、所有试题的答案必须按题号填写在答题卡相应的位置上,在试卷上、草稿纸上答无效;2、书写潦草或用改正液(纸)涂改的题视为无效或记为0分!一、选择题(每个小题4分,共48分,每小题都有四个选项,其中有且只有一个选项是正确,将答案填写在第二卷上的答题卡上)1、下列根式中,不是最简二次根式的是()A、B、、D、2、下列运算正确的是()A、B、、D、3、要使有意义,则x应满足的条件是()A、B、且C、D、4、下列方程是一元二次方程的是()A、、C、D、5、下列各组的四条线段a,b,c,d是成比例线段的是()A、B、C、、6、已知是一元二次方程的一个根,则m的值为()A、或2B、C、2D、07、如果,那么的值为()A、、C、D、8、某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A、B、C、D、9、若,是方程的两个实数根,则的值为()A、2021B、2019C、D、404210、如果是两个不相等的实数,且满足,,那么等于()A、2B、C、1D、11、已知,则k的值为()A、2B、、2或D、2或12、如图,在中,,D、E是斜边BC上两点,且,将绕点A顺时针旋转后,得到,连接EF,下列结论:①;②∽;③;④,其中一定正确的是( )A 、②④B 、①③C 、②③D 、①④二、填空题(本大题共4小题,每小题4分,共16分。

)13、计算的值是;14、已知一元二次方程的两个根式菱形的两条对角线长,则这个菱形的面积为;15、已知:,那么;16、已知,如图,在中,点是斜边AB 的中点,过点作于点,联结交于点;过点作于点,联结交于点;过点作于点,如此继续,可以依次得到点,,……,,分别记,,,…,的面积分别为,,,…,.设的面积为1,则.(用含n 的代数式表示)三、解答题(本大题共7个小题,共56分。

解答题必须写出必要的文字说明、证明过程或推演步骤)17、(本小题4个小题,每个小题4分,满分16分)计算(1)(2)(3) (4)18、(本小题满分6分)已知关于x 的方程有两个不相等的实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上数学第二次月考试卷一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差2.下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .220x x --=C .2320x xy -=D .240y -=3.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:34.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A 10B 310C .13D 105.若将二次函数2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+ 6.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS 3 ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④7.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( )A .②④B .①③C .②③④D .①③④ 8.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x = 9.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A .2x <B .2x >C .0x <D .0x >10.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1611.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 12.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( )A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+313.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm14.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12 B .13 C .1010 D .3101015.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.18.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.19.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.20.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.21.二次函数y=x 2−4x+5的图象的顶点坐标为 .22.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.23.抛物线y=(x ﹣2)2﹣3的顶点坐标是____. 24.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .25.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)26.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EF BF的值为_____.27.关于x 的方程220kx x --=的一个根为2,则k =______.28.如图,在ABC 中,62BC =,45C ∠=︒,2AB AC =,则AC 的长为________.29.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 三、解答题31.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.32.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30.连接EG,若△EFG的面积为43,求FH的长.33.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.34.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.35.小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?四、压轴题 36.阅读理解: 如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于3,请直接写出圆心B 的横坐标B x 的取值范围.37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度;(3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x +=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.3.D解析:D【解析】【分析】根据两角对应相等证明△CAD ∽△CBA ,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B ,∠C=∠C,∴△CAD ∽△CBA, ∴12CD CA CA CB, ∴CA=2CD,CB=2CA, ∴CB=4CD,∴BD=3CD, ∴13CD BD. 故选:D.【点睛】 本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 4.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB=∴sin10BCAAB===.故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 5.C解析:C【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x=+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键. 6.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm==,BC AD bcm==,由函数图像利用△EBF面积列出方程组即可解决问题.③由 2.5BS k=,1.5SD k=,得53BSSD=,设3SD x=,5BS x=,在RT ABS∆中,由222AB AS BS+=列出方程求出x,即可判断.④求出BS即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E运动到点S时用了2.5秒,运动到点D时共用了4秒.故①正确.设AB CD acm==,BC AD bcm==,由题意,1··( 2.5)721·(4)42a ba b⎧-=⎪⎪⎨⎪-=⎪⎩解得46ab=⎧⎨=⎩,所以4AB CD cm==,6BC AD cm==,故②正确,2.5BS k=, 1.5SD k=,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.7.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心,OA =OE =OB ,即O 是△AEB 的外心,OB =OC =OE ,即O 是△BCE 的外心,OB =OA ≠OD ,即O 不是△ABD 的外心,故选:A .本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.8.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.9.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】222(1)1y x x x=-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x1<时,y随着x的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a0a0<时,对称轴左增右减,当>时,对称轴左减右增. 10.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键. 11.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.12.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.13.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm的圆形纸片剪去13圆周的一个扇形,∴剩下的扇形的角度=360°×23=240°,∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】 此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.15.D解析:D【解析】【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C ,∴2(﹣1﹣x )=a+1,解得x =﹣12(a+3), 故选:D .【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC 周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN 的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.18.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.19.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出D E=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.20.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 21.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 22.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x 2﹣2x+1=1,解得:x 1=0,x 2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.23.(2,﹣3)【解析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.24.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.25.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 26..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.27.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.28.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】 本题考查勾股定 解析:2 【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.29..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12. 【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5, ∴朝上的数字为奇数的概率是36=12;故答案为:12. 【点睛】 此题考查的是求概率问题,掌握概率公式是解决此题的关键.30.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1)b =2,c =3;(2)(0,3),(1,4)(3)见解析;(4)-12<y ≤4【解析】【分析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩ ,故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y轴的交点坐标为则(0,3),二次函数解析式为y=y=-x2+2x+3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x<2时,y的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.32.(1)详见解析;(2)详见解析;(3)4【解析】【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出ABD∆∽DBC∆,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出FEH∆∽FHG∆,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:80ABC BD,︒∠=平分ABC∠,40,140ABD DBCA ADB︒︒∴∠=∠=∴∠+∠=。

相关文档
最新文档