专题一-阿基米德三角形的性质

合集下载

阿基米德三角形及其性质

阿基米德三角形及其性质

阿基米德三角形及其性质一、阿基米德三角形的概念过圆锥曲线上任意两点作两条切线交于点Q ,则称△QAB 为阿基米德三角形.二、抛物线的阿基米德三角形的性质:(以抛物线22y px =为例) 性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设112200(,),(,)(,)A x y B x y Q x y ,,弦AB 的中点为(,)M M M x y , 则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+, 联立两切线方程,解得1212,22y y y y x y p +==,所以1202y y y +=, 又122M y y y +=,所以0M y y =,即QM 平行于x 轴. 性质2 底边长为a 的阿基米德三角形的面积的最大值为38a p. 证明:Q 到AB 的距离为2121212()224x x y y y y d QM p p+-≤=-=,设AB 方程为x my n =+, 则23222221211(1)()()428a a AB a m y y y y a d S ad p p ==+-⇒-≤⇒≤⇒=≤. 性质3 若阿基米德三角形底边AB 过抛物线内定点00(,)C x y ,则顶点Q 的轨迹方程为00()y y p x x =+.证明:设(,)Q x y ,则由性质1有1212,22y y y y x y p +==, 由AB AC k k =10122221210222y y y y y y y x p p p--⇒=--,化简得1201202()y y px y y y +=+, 即0000222()px px yy yy p x x +=⇒=+为Q 点的轨迹方程.推论 若阿基米德三角形底边AB 过焦点,则Q 点的轨迹为准线,且QA QB ⊥.性质4 阿基米德三角形底边的中线QM 的中点P 在抛物线上,且O 处的切线与AB 平行.证明:由性质1得12121212,,,2222y y y y x x y y Q M p p ⎛⎫+++⎛⎫ ⎪ ⎪⎝⎭⎝⎭,QM 中点21212(),82y y y y P p ⎛⎫++ ⎪⎝⎭, 显然P 在抛物线上,过P 的斜率为122AB p k y y =+,故P 处的切线与AB 平行.性质5 在阿基米德三角形中,QFA QFB ∠=∠.证明:作','AA BB 垂直于准线,垂足分别为','A B ,如图,对22y px =两边求导得12'2'QA p p yy p y k y y =⇒=⇒=, 又1'FA y k p-=,所以'1'QA FA k k QA FA ⋅=-⇒⊥,又'AA AF =,设'A F 与QA 交于C , 则'''','ACA ACF QAA QAF QAA QAF QA QF QA A QFA ∆≅∆⇒∠=∠⇒∆≅∆⇒=∠=∠, 同理可证'''90''90'QA A QA B QB A QB B QFA QFB ∠=∠+=∠+=∠⇒∠=∠ 性质6 在阿基米德三角形中有2AF BF QF ⋅=.证明:222221212121212()()()()2224244y y y y p p p p p AF BF x x x x x x p +⋅=++=+++=++, 2221212()()222y y y y p QF p p +=-+=22221212()244y y y y p p +++,所以2AF BF QF ⋅=. 三.阿基米德焦点三角形的性质把底边过焦点的阿基米德三角形称之为阿基米德焦点三角形.性质1 AB 过焦点F ,则PA ⊥PB ,PF ⊥AB ,△PAB 面积的最小值为2p .性质2 P 是椭圆22221(0)x y a b a b+=>>过右焦点F 的弦在两端点处切线的交点,则P 在椭圆右准线上,且PF ⊥AB ,△PAB 面积的最小值为4b ac. 性质3 P 是双曲线22221x y a b-=过右焦点F 的弦在两端点处切线的交点,则P 在双曲线右准线上,且PF⊥AB,△PAB面积的最小值为4bac.【拓展】当阿基米德三角形的顶角为直角时,有如下性质:对于圆222x y r+=,其阿基米德三角形顶点Q的轨迹为2222x y r+=对于椭圆22221(0)x ya ba b+=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=+;对于双曲线22221(0)x ya ba b-=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=-.。

阿基米德三角形常用结论及证明

阿基米德三角形常用结论及证明

阿基米德三角形常用结论及证明嘿,伙计们!今天我们要聊聊一个超级有趣的数学问题——阿基米德三角形!你们知道吗?这个名字来源于古希腊的伟大科学家阿基米德,他可是解决了无数难题呢!那么,阿基米德三角形到底是个啥东西呢?别着急,我们一起来揭开它的神秘面纱吧!咱们来简单介绍一下阿基米德三角形。

它是一个特殊的三角形,每条边上的三个顶点都在一个圆上。

这个圆心就是三角形的重心。

你们可能听过一个成语叫做“百折不挠”,其实就是形容阿基米德三角形的特点。

因为无论你怎么旋转这个三角形,它的形状都不会改变,永远都是一个特殊的三角形。

现在,我们来说说阿基米德三角形的一些常用结论。

第一个结论是:阿基米德三角形的内切圆半径等于外接圆半径。

这个结论有点儿难理解,我们来举个例子说明一下。

假设我们有一个阿基米德三角形ABC,其中AB=AC=3,BC=4。

我们可以用勾股定理求出这个三角形的高AD=√(AC^2-CD^2)=√5。

接下来,我们用正弦定理求出外接圆的半径R:R=√(AD^2+BD^2)/2=(√5+2)/2。

然后,我们用面积公式求出内切圆的半径r:S=1/2(BC+AC+AB)*r=1/2*9*r,解得r=(4-√5)/2。

所以,阿基米德三角形的内切圆半径等于外接圆半径,都等于(4-√5)/2。

第二个结论是:阿基米德三角形的周长等于三条边的和。

这个结论很简单,因为周长就是三条边的长度之和嘛!所以,如果我们知道一条边AB的长度,那么另外两条边的长度之和就等于AB。

这就像我们在生活中遇到的一些问题一样,只要知道了一部分信息,就能推导出其他的信息。

接下来,我们来说说阿基米德三角形的一个重要性质:当一个角的对边与另一个角的邻边成比例时,这两个角相等。

这个性质有时候在解决几何问题时非常有用。

比如,我们知道一个角的对边与另一个角的邻边成比例,那么我们就可以用正弦定理求出这两个角的大小。

具体方法是:设这两个角分别为A和B,那么根据正弦定理,有sin(A)/sin(B)=对边/邻边。

阿基米德三角形性质与高考题

阿基米德三角形性质与高考题

阿基米德三角形性质与高考题性质1即:)2,2(2121y y p y y Q +19.(07年江苏卷)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,.(1)若2=⋅,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立说明理由.(4分)19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线AB 的方程为y kx c =+,将该方程代入2y x =得20x kx c --=.令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-,得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点.性质2:2||||||QF BF AF =⋅例7.(13广东)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.性质3:QFB QFA ∠=∠22.(05江西)如图,设抛物线上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.22.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.性质4:过焦点的阿基米德三角形面积的最小值为2p(21)(06年全国卷2)已知抛物线24x y =的焦点为F ,A 、B 是热线上的两动点,且(0).AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。

专题一 阿基米德三角形的性质

专题一 阿基米德三角形的性质

阿基米德三角形的性质阿基米德三角形:抛物线的弦与过弦的端点的两条切线所围成的三角形。

阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的。

阿基米德三角形的性质:设抛物线方程为x2=2py,称弦AB为阿基米德三角形的底边,M为底边AB的中点,Q为两条切线的交点。

性质1 阿基米德三角形底边上的中线与抛物线的轴。

性质2 阿基米德三角形的底边即弦AB过抛物线内定点C,则另一顶点Q的轨迹为。

性质3 抛物线以C为中点的弦与Q点的轨迹。

性质4 若直线l与抛物线没有公共点,以l上的点为顶点的阿基米德三角形的底边过定点。

性质5 底边长为a的阿基米德三角形的面积的最大值为。

性质6 若阿基米德三角形的底边过焦点,则顶点Q的轨迹为抛物线的,且阿基米德三角形的面积的最小值为。

性质7 在阿基米德三角形中,∠QFA=∠QFB。

性质8 在抛物线上任取一点I(不与A、B重合),过I作抛物线切线交QA、QB于S、T,则△QST 的垂心在上。

性质9 |AF |·|BF |=|QF |2.性质10 QM 的中点P 在抛物线上,且P 处的切线与AB 。

性质11 在性质8中,连接AI 、BI ,则△ABI 的面积是△QST 面积的 倍。

例1 (2005江西卷,理22题)如图,设抛物线2:C yx 的焦点为F ,动点P 在直线:20l x y 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA =∠PFB .解:(1)设切点A 、B 坐标分别为2201110(,)(,)(()x x x x x x 和,∴切线AP 的方程为:20020;x x y x 切线BP 的方程为:21120;x x yx解得P 点的坐标为:0101,2PPx x x y x x所以△APB 的重心G 的坐标为 ,222201010101014(),3333P pPGx y y y y x x x x x x x x y所以234p GG y y x ,由点P在直线l 上运动,从而得到重心G 的轨迹方程为:221(34)20,(42).3xyx yx x 即(2)方法1:因为221000111111(,),(,),(,).4244x x FAx x FP x x FB x x 由于P 点在抛物线外,则||0.FP∴201010012220111()()2444cos ,1||||||||()4x x x x x x x x FP FA AFPFP FA FP FP x x同理有20110110122211111()()2444cos ,1||||||||()4x x x x x x x x FP FB BFPFP FB FP FP x x∴∠AFP =∠PFB . 方法2:①当1010000,,0,0,x x x x x y 时由于不妨设则所以P 点坐标为1(,0)2x ,则P 点到直线AF 的距离为:211111||14;:,24x x dBF yx x 而直线的方程即211111()0.44x x x yx所以P 点到直线BF 的距离为:221111112222211||11|()|()||42442121()()44x x x x x x d x x x所以d 1=d 2,即得∠AFP =∠PFB . ②当100x x 时,直线AF 的方程:2020011114(0),()0,4044x yx x x x yx x 即直线BF 的方程:212111111114(0),()0,444x yx x x x yx x 即所以P 点到直线AF 的距离为:22201010010001122220111|()()||)()||42424121()44x x x x x x x x x x x d xx x ,同理可得到P 点到直线BF 的距离102||2x x d ,因此由d 1=d 2,可得到∠AFP =∠PFB例2 (2006全国卷Ⅱ,理21题)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值. 解:(Ⅰ)由已知条件,得F (0,1),λ>0. 设A (x 1,y 1),B (x 2,y 2).由AF →=λFB →, 即得 (-x 1,1-y )=λ(x 2,y 2-1),⎩⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ②将①式两边平方并把y 1=14x 12,y 2=14x 22代入得 y 1=λ2y 2 ③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4, 抛物线方程为y =14x 2,求导得y ′=12x . 所以过抛物线上A 、B 两点的切线方程分别是 y =12x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2, 即y =12x 1x -14x 12,y =12x 2x -14x 22.解出两条切线的交点M 的坐标为(x 1+x 22,x 1x 24)=(x 1+x 22,-1). ……4分 所以FM →·AB →=(x 1+x 22,-2)·(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0 所以FM →·AB →为定值,其值为0. ……7分(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =12|AB ||FM |.|FM |=(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)+4 =λ+1λ+2=λ+1λ.因为|AF |、|BF |分别等于A 、B 到抛物线准线y =-1的距离,所以 |AB |=|AF |+|BF |=y 1+y 2+2=λ+1λ+2=(λ+1λ)2.于是 S =12|AB ||FM |=(λ+1λ)3,由λ+1λ≥2知S ≥4,且当λ=1时,S 取得最小值4.例3(2007江苏卷,理19题)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0,)C c 任作一直线,与抛物线2yx 相交于AB 两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l y c 交于,P Q ,(1)若2OA OB,求c 的值;(5分) (2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立说明理由。

抛物线——阿基米德三角形

抛物线——阿基米德三角形

解析几何——阿基米德三角形知识点:抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形。

因为阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的2/3预备知识:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=阿基米德三角形有一些有趣的性质:性质1:阿基米德三角形底边上的中线平行于抛物线的轴.证明:设11(,)A x y ,22(,)B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+,联立方程组得1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩解得两切线交点Q (122y y p ,122y y +),进而可知QM ∥x 轴.性质2:QM 的中点P 在抛物线上,且P 处的切线与AB 平行.证明:由性质1知Q (122y y p ,122y y +),M 1212(,22x x y y ++,易得P 点坐标为21212()(,82y y y y p ++,此点显然在抛物线上;过P 的切线的斜率为121222p p y y y y =++=ABk ,结论得证.性质3如图,连接AI 、BI ,则△ABI 的面积是△QST 面积的2倍.证明:如图,这里出现了三个阿基米德三角形,即△QAB 、△TBI 、△SAI ;应用阿基米德三角形的性质:弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23;设BI 与抛物线所围面积为1S ,AI 与抛物线所围面积为2S ,AB 与抛物线所围面积为S ,则123322ABI QAB QST S S S S S =--- =12333222QST S S S S --- =123()2QST S S S S --- =32ABI QST S S - ,∴ABI S = 2QST S .性质4:若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线证明:设Q (x ,y ),由性质1,x =122y y p ,y =122y y +,∴122y y px=由A 、B 、C 三点共线知10122221210222y y y y y y y x p p p--=--,即21121020y y y y x y x +--2102y py =-,将y =122y y +,122y y px =代入得00()y y p x x =+,即为Q 点的轨迹方程.性质5:抛物线以C 点为中点的弦平行于Q 点的轨迹.利用两式相减法易求得以C 点为中点的弦的斜率为0p y ,因此该弦与Q 点的轨迹即直线l 平行.性质6若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.证明:如上图,设l 方程为0ax by c ++=,且11(,)A x y ,22(,)B x y ,弦AB 过点C 00(,)x y ,由性质2可知Q 点的轨迹方程00()y y p x x =+,该方程与0ax by c ++=表示同一条直线,对照可得00,c bp x y a a ==-,即弦AB 过定点C (c a ,bp a-).性质7(1)若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线;反之,若阿基米德三角形的顶点Q 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形面积的最小值为2p .证明(2):若底边过焦点,则00,02p x y ==,Q 点轨迹方程为2p x =-即为准线;易验证1QA QB k k ⋅=-,即QA ⊥QB ,故阿基米德三角形为直角三角形,且Q 为直角顶点;∴|QM |=122x x ++2p =22124y y p++2p ≥122||4y y p +2p =224p p +2p =p ,而121||()2QAB S QM y y =- ≥12||||QM y y ⋅≥2p性质8底边长为a 的阿基米德三角形的面积的最大值为38a p.证明:|AB |=a ,设Q 到AB 的距离为d ,由性质1知1212||22x x y y d QM p +≤=-221212244y y y y p p +=-=212()4y y p-,设直线AB 方程为:x my n =+,则2221(1)()a m y y =+-∴221()y y -≤2a ,∴d ≤24a p ,即S =12ad ≤38a p.性质9在阿基米德三角形中,∠QFA =∠QFB .证明:如图,作AA '⊥准线,BB '⊥准线,连接QA '、QB '、QF 、AF 、BF ,则1'FA y k p=-,显然'1FA QA k k ⋅=-,∴FA '⊥QA ,又∵|AA '|=|AF |,由三角形全等可得∠QAA '=∠QAF ,∴△QAA '≅△QAF ,∴|QA '|=|QF |,∠QA 'A =∠QFA ,同理可证|QB '|=|QF |,∠QB 'B =∠QFB ,∴|QA '|=|QB '|,即∠QA 'B '=∠QB 'A '∴∠QA 'A =∠QA 'B '+900=∠QB 'A '+900=∠QB 'B ,∴∠QFA =∠QFB ,结论得证.特别地,若阿基米德三角形的底边AB 过焦点F ,则QF ⊥AB.性质10|AF |·|BF |=|QF |2.证明:|AF |·|BF |=12(()22p p x x +⋅+=21212()24p p x x x x +++=212(2y y p +22124y y ++24p ,而|QF |2=221212()()222y y y y p p +-+=212()2y y p +22124y y ++24p =|AF |性质11在抛物线上任取一点I (不与A 、B 重合),过I 作抛物线切线交QA 、QB 于S 、T ,则△QST 的垂心在准线上.证明:设211(2,2)A pt pt 、222(2,2)B pt pt 、233(2,2)I pt pt ,易求得过B 、I 的切线交点T 2323(2,())pt t p t t +,过T 向QA 引垂线,其方程为1231232()4t x y p t t pt t t +=++,它和抛物线准线的交点纵坐标123123()4y p t t t pt t t =+++,显然这个纵坐标是关于123,,t t t 对称的,因此从S 点向QB 引垂线,从Q 点向ST 引垂线,它们与准线的交点也是上述点,故结论得证.例1:(2019年台州高三期末21)设点P 为抛物线2:y x Γ=外一点,过点P 作抛物线Γ的两条切线PA ,PB ,切点分别为A ,B .(Ⅰ)若点P 为(1,0)-,求直线AB 的方程;(Ⅱ)若点P 为圆22(2)1x y ++=上的点,记两切线PA ,PB 的斜率分别为1k ,2k ,求1211||k k -的取值范围.解:(Ⅰ)设直线PA 方程为11x m y =-,直线PB 方程为21x m y =-.由121,,x m y y x =-⎧⎨=⎩可得2110y m y -+=.因为PA 与抛物线相切,所以21=40m ∆-=,取12m =,则1A y =,1A x =.即(1,1)A .同理可得(1,1)B -.所以AB :1x =.(Ⅱ)设00(,)P x y ,则直线PA 方程为1100y k x k x y =-+,直线PB 方程为2200y k x k x y =-+.由11002,,y k x k x y y x =-+⎧⎨=⎩可得211000k y y k x y --+=.因为直线PA 与抛物线相切,所以1100=14()k k x y ∆--+20101=441=0x k y k -+.同理可得20202441=0x k y k -+,所以1k ,2k 时方程200441=0x k y k -+的两根.所以0120y k k x +=,12014k k x =.则12k k -==.又因为2200(2)1x y ++=,则031x -≤≤-,所以1211||=k k -1212=k k k k-4,⎡∈⎣.P A B Oxy例2:已知点H (0,-8),点P 在x 轴上,动点F 满足PF ⊥PH ,且PF 与y 轴交于点Q ,Q 是线段PF 的中点.(1)求动点F 的轨迹E 的方程;(2)点D 是直线l :x-y-2=0上任意一点,过点D 作E 的两条切线,切点分别为A ,B ,证明:直线AB 过定点.解:(1)设F (x ,y ),y ≠0,P (m ,0),Q (0,n ),则 ぀=(-m ,-8), =(-m ,n ),∵PF ⊥PH ,∴m 2-8n=0,即m 2=8n ,=0, ,∴ =− , = 2,代入m 2=8n ,得x 2=4y (y ≠0).故轨迹E 的方程为x 2=4y (y ≠0).(2)证明:设D (x 0,x 0-2),A (x 1,y 1),B (x 2,y 2),∵直线DA 与抛物线相切,且y'= 2,∴k DA = 12,∴直线DA 的方程为y= 12x-y 1,∵点D 在DA 上,∴x 0-2= 12x 0-y 1,化简得x 0x 1-2y 1-2x 0+4=0.同理,可得B 点的坐标满足x 0x 2-2y 2-2x 0+4=0.故直线AB 的方程为x 0x-2y-2x 0+4=0,即x 0(x-2)-2(y-2)=0,∴直线AB 过定点(2,2).练习1.已知点A(﹣4,4)、B(4,4),直线AM 与BM 相交于点M,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C.(1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 做曲线C 的切线,切点分别为D、E,求△QDE 的面积S 的最小值.练习2.如图,点F 是抛物线τ:22x py =(0p >)的焦点,点A 是抛物线上的定点,且()2,0AF = ,点B ,C 是抛物线上的动点,直线AB ,AC 斜率分别为1k ,2k .(1)求抛物线τ的方程;(2)若212k k -=,点D 是抛物线在点B ,C 处切线的交点,记BCD ∆的面积为S ,证明S 为定值.欢迎扫码关注公众号“数学HOME”,获取本文(包括练习详解)及更多资料的WORD版。

阿基米德三角形常用结论及证明

阿基米德三角形常用结论及证明

阿基米德三角形常用结论及证明嘿,伙计们!今天我们要聊聊一个超级有趣的数学问题——阿基米德三角形!这个名字听起来就很酷炫,是不是?那你知道阿基米德三角形有哪些常用结论和证明吗?别着急,让我们一起来揭开它的神秘面纱吧!我们来了解一下什么是阿基米德三角形。

阿基米德三角形是一个古老的几何图形,它的每个顶点都是一个等边三角形的内切圆与外接圆的交点。

这个图形看起来有点像一个金字塔,但是它有很多神奇的性质和结论哦!1. 阿基米德三角形的内角之和是180度。

这个结论很简单,因为每个小三角形的内角都是60度,而一个大三角形的内角之和就是3个小三角形的内角之和,也就是180度。

2. 阿基米德三角形的边长比是一个恒定的值。

具体来说,如果一个大三角形的边长分别是a、b、c,那么它的内切圆半径r、外接圆半径R和边长比之间的关系就是:(a+b+c)/2 = R + r = (a+b+c)/2R。

这个关系式告诉我们,无论阿基米德三角形的大小如何变化,它的边长比总是保持不变。

3. 阿基米德三角形的面积可以通过海伦公式计算。

海伦公式是一个关于三角形面积和三边长之间关系的公式,它的形式是:S = sqrt(p*(p-a)*(p-b)*(p-c)),其中S是三角形的面积,a、b、c分别是三角形的三边长。

阿基米德三角形的面积可以通过将大三角形的面积除以9得到,即:S = (a+b+c)/2 * R^2 / 9。

4. 阿基米德三角形可以用来计算任意多边形的面积。

这个结论可能有点难以理解,但是它可以帮助我们解决很多实际问题。

比如说,我们知道一个正方形的面积是边长的平方,那么我们可以通过阿基米德三角形的方法计算出任意多边形的面积。

具体做法是先将多边形划分成若干个小三角形,然后根据阿基米德三角形的性质计算出每个小三角形的面积,最后将这些小三角形的面积相加就可以得到整个多边形的面积了。

5. 阿基米德三角形可以用来求解复杂的数学问题。

比如说,我们知道一个圆的周长是πd,其中d是直径。

2025年新人教版高考数学一轮复习讲义 第八章 培优点11 阿基米德三角形

2025年新人教版高考数学一轮复习讲义  第八章 培优点11 阿基米德三角形

2025年新人教版高考数学一轮复习讲义第八章培优点11 阿基米德三角形三角形叫做阿基米德三角形.如图.性质1 阿基米德三角形的底边AB上的中线MQ平行于抛物线的轴.性质2 若阿基米德三角形的底边AB过抛物线内的定点C,则另一顶点Q的轨迹为一条直线,该直线与以C点为中点的弦平行.性质3 若直线l与抛物线没有公共点,以l上的点为顶点的阿基米德三角形的底边AB过定点(若直线l方程为:ax+by+c=0,则定点的坐标为性质5 若阿基米德三角形的底边AB过焦点,则顶点Q的轨迹为准线,且阿基米德三角形的面积最小,最小值为p2.例 (多选)(2023·南平模拟)过抛物线y 2=2px (p >0)的焦点F 作抛物线的弦与抛物线交于A ,B 两点,M 为弦AB 的中点,分别过A ,B 两点作抛物线的切线l 1,l 2,l 1,l 2相交于点P .下面关于△P AB 的描述正确的是A.点P 必在抛物线的准线上B.AP ⊥PBC.设A (x 1,y 1),B (x 2,y 2),则△P AB 的面积S的最小值为D.PF ⊥AB √√√先证明出抛物线y2=2px(p>0)在其上一点(x0,y0)处的切线方程为y0y =px+px0.证明如下:切线方程为y0y=px+px0.由根与系数的关系可得y1y2=-p2,y1+y2=2mp,对于A,抛物线y2=2px在点A处的切线方程为y1y=px+px1,即点P 在抛物线的准线上,A 正确;所以AP⊥PB,B正确;对于D,当AB垂直于x轴时,由抛物线的对称性可知,点P为抛物线的准线与x轴的交点,此时PF⊥AB;综上,PF⊥AB,D正确;思维升华(1)椭圆和双曲线也具有多数上述抛物线阿基米德三角形类似性质.(2)当阿基米德三角形的顶角为直角时,则阿基米德三角形顶点的轨迹为蒙日圆.跟踪训练 (2021·全国乙卷)已知抛物线C:x2=2py(p>0)的焦点为F,且F 与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在圆M上,PA,PB是C的两条切线,A,B是切点,求△PAB 面积的最大值.由(1)知,抛物线方程为x2=4y,由题意可知直线AB的斜率存在,则Δ=16k2+16b>0(※),x1+x2=4k,x1x2=-4b,即P(2k,-b).因为点P在圆M上,所以4k2+(4-b)2=1,①且-1≤2k≤1,-5≤-b≤-3,所以当b=5时,t取得最大值,t max=5,此时k=0,能力提升1.若抛物线上任意两点A,B处的切线交于点P,则称△PAB为“阿基米德三角形”,当弦AB经过抛物线的焦点F时,△P AB具有以下特征:①点P必在抛物线的准线上;②PF⊥AB.若经过抛物线y2=4x的焦点的一条弦为AB,“阿基米德三角形”为△P AB,且点P的纵坐标为4,则直线AB的方程为√A.x-2y-1=0B.2x+y-2=0C.x+2y-1=0D.2x-y-2=0123456设抛物线的焦点为F,由题意可知,抛物线y2=4x的焦点坐标为F(1,0),准线方程为x=-1,因为△P AB为“阿基米德三角形”,且弦AB经过抛物线y2=4x的焦点,所以点P必在抛物线的准线上,所以点P(-1,4),即x-2y-1=0.2.我们把抛物线的弦AB与过弦的端点A,B处的两条切线所围成的△P AB(P 为两切线的交点)叫做“阿基米德三角形”.当弦AB经过抛物线的焦点F时,△P AB具有以下性质:①P点必在抛物线的准线上;②P A⊥PB;③PF⊥A B.已知直线l:y=k(x-1)与抛物线y2=4x交于A,B两点,若|AB|=8,则抛物线的“阿基米德三角形”P AB的面积为√抛物线的焦点为F(1,0),准线方程为x=-1,直线l:y=k(x-1)经过抛物线的焦点,依题意,k≠0,设A(x1,y1),B(x2,y2),解得k2=1,即k=±1,当k=1时,因为△P AB为“阿基米德三角形”,则直线PF的斜率k PF=-1,直线PF的方程为y=-x+1,点P必在抛物线的准线x=-1上,3.已知抛物线C:x2=4y,直线y=kx+b与抛物线交于A,B两点,|AB|=8,且抛物线在A,B处的切线相交于点P,则△P AB的面积最大值为√方法一 设A(x1,y1),B(x2,y2),由根与系数的关系得x1+x2=4k,x1x2=-4b,32232(1)k 当k =0时,(S △P AB )max =32.4.(多选)(2024·廊坊模拟)如图,△PAB 为阿基米德三角形.抛物线x 2=2py (p >0)上有两个不同的点A (x 1,y 1),B (x 2,y 2),以A ,B 为切点的抛物线的切线P A ,PB 相交于点P .则下列结论正确的为A.若弦AB 过焦点,则△P AB 为直角三角形且∠APB=90°B.点P 的坐标是C.弦AB 所在直线的方程为(x 1+x 2)x -2py -x 1x 2=0D.△P AB 的边AB 上的中线与y 轴平行(或重合)√√√联立x2=2py,得x2-2pkx-p2=0,所以P A⊥PB,即∠APB=90°,故A正确;化简得(x1+x2)x-2py-x1x2=0,故C正确.5.抛物线的弦与过弦的端点的两条切线所围成的三角形常称为阿基米德三角形,阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于该弦所形成的阿基米德三角形面积的 .已知A(-2,1),B(2,1)为抛物线C:x2=4y上两点,则在A点处抛物线C的切线-1的斜率为______;弦AB与抛物线所围成的封闭图形的面积为_____.所以在A点处抛物线C的切线的斜率为-1,切线方程为y-1=-(x+2),即y=-x-1,同理在B点处抛物线C的切线方程为y=x-1,所以两切线的交点为P(0,-1),Q处的切线分别交P A,PB于点M,N.设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+b,由根与系数的关系得x1x2=-2pb,设抛物线C:x2=2py在点A处切线方程为y-y1=t(x-x1),设点Q (x 0,y 0),本课结束。

第18讲 阿基米德三角形(解析几何)(解析版)

第18讲 阿基米德三角形(解析几何)(解析版)

第18讲阿基米德三角形知识与方法阿基米德(约公元前287年一前212年),是伟大的古希腊哲学家、百科式科学家、数学家、物理学家,并且享有“力学之父”的美称.他在求体积或面积时采用的“平衡法”一档杆原理,被后人命名为“阿基米德方法”.正是由于他对当时数学作出的突出贡献以及对后世数学发展的深邃影响,他又被后人誉为“数学之神”.本节主要探讨的阿基米德三角形指的是圆锥曲线(椭圆、双曲线、拋物线)的弦与过弦的端点的两条切线所围成的三角形.阿基米德三角形得名于阿基米德在研究与拋物线有关的面积问题时得出的一个结论:抛物线的弦与拋物线所围成的封闭图形的面积,等于抛物线的弦与过弦的端点的两条切线所围成的三角形面积的三分之二.(结论的证明利用了“平衡法”)该结论的变式叙述可见于《普通高中课程标准实验教科书·数学选修3-1(A版):数学史选讲》(人民教育出版社2007年1月第2版).接下来,我们就去探讨一下阿基米德三角形中蕴藏的一些重要性质:条件:已知抛物线C:x2=2py(p>0),如图所示,D为某一直线l上的动点,过D作C的两条切线,切点分别为A,B,F为直线AB与y轴的交点,则有以下结论成立:结论1.1直线AB的方程为(x1+x2)x−2py−x1x2=0.证明:设A(x1,y1),则x12=2py1.由于y′=xp ,所以切线DA的斜率为x1p,故切线DA的方程为x1x=p(y+y1)(1)设B(x2,y2),同理可得DB的方程为x2x=p(y+y2)(2) (1)÷(2)化简后,可得y=x1x22p(3)将(3)代入(1),可得x=x1+x22,所以点D的坐标为(x1+x22,x1x22p)故直线AB的方程为(x1+x2)x−2py−x1x2=0说明:特别的,当D为直线y=−p2上的动点时,直线AB的方程为(x1+x2)x−2py+p2=0且该直线过拋物线的焦点F.第二部分中的典例第(1)问考查的就是该性质的具体运用.结论1.2k DF⋅k AB=k DA⋅k DB=x1x2p2证明:由结论1.1的证明可知点F的坐标为(0,−x1x22p)又k DF=2x1x2p(x1+x2),k AB=x1+x22p,k DA=x1p,k DB=x2p,所以结论1.2得证.说明:特别的,当D为直线y=−p2上的动点时,有DF⊥AB,DA⊥DB;且此时△DAB面积的达到最小,其最小值为p2.第三部分中的第2题、第3题考查的均是该条性质及推论的运用,如若我们对上述性质比较熟悉,则审题结束时【答案】或许已了然于心.结论1.3在阿基米德△DAB中,有∠DFA=∠DFB.证明:如图,过点A,B分别作抛物线准线的垂线AA1,BB1,垂足为A1,B1.连接A1D,B1D,DF,AF,BF,A1F,则k A1F =−px1,k AD=x1p.易知,AD⊥A1F.又AA1=AF,所以AD垂直且平分A1F,故A1D=DF,∠DA1A=∠DFA.同理可得B1D=DF,∠DB1B=∠DFB,所以A1D=B1D=DF,∠DA1B1=∠DB1A1.进而∠DA1A=∠DB1B,即∠DFA=∠DFB.说明:第三部分中的第4题的第(2)问恰恰就考查了这一结论.结论1.4DA,AB,DB的斜率成等差数列、A,D,B三点的横坐标成等差数列.证明:结合结论1.2的证明过程以及点D坐标(x1+x22,x1x22p),稍作运算,便可证得该结论.说明:第三部分中的第5题的第(1)问中就涉及到了这一结论.结论1.5线段FA,FD,FB的长度之间的关系为FD2=x12x22p2+p2|x1x2|⋅FA⋅FB−p2.证明:经过简单计算即可得到上述结果.说明:特别的,当D为直线y=−p2上的动点时,有线段FA,FD,FB的长度成等比数列.结论1.6若以E(0,−5x1x22p)为圆心的圆与直线AB相切于点T,则四边形ADBE的面积为|x1−x2|38p −x1x2⋅|x1−x2|p证明:易知DA ⃗⃗⃗⃗⃗ =(x 1−x 22,x 1(x 1−x 2)2p ),DB ⃗⃗⃗⃗⃗⃗ =(x 2−x 12,x 2(x 2−x 1)2p). 利用面积公式S ΔDAB =12√DA ⃗⃗⃗⃗⃗ 2⋅DB ⃗⃗⃗⃗⃗⃗ 2−(DA ⃗⃗⃗⃗⃗ ⋅DB⃗⃗⃗⃗⃗⃗ )2,可得 S △DAB=12|x 1−x 22⋅x 2(x 2−x 1)2p −x 2−x 12⋅x 1(x 1−x 2)2p |=|x 1−x 2|38p又S △EAB =12|EF|⋅|x 1−x 2|=12(−5x 1x 22p +x 1x 22p )⋅|x 1−x 2|=−x 1x 2⋅|x 1−x 2|p所以S 四边形 ADBE =S Δ+S ΔA =|x 1−x 2|38p−x 1x 2⋅|x 1−x 2|p.说明:当D 为直线y =−p2上的动点,且E (0,5p2)时,则四边形ADBE 的面积为|x 1−x 2|38p+p |x 1−x 2|.结论1.7△DAB 的重心G 满足的方程为4x 2−6py −x 1x 2=0. 证明:过程从略,感兴趣的读者可自行尝试证明.说明:当D 为直线y =−p2上的动点时,△DAB 的重心G 的轨迹方程为4x 2−6py +p 2=0结论1.8 若P 为拋物线弧AB 上一点,拋物线在点P 处的切线与直线..分别交与M,N 两点,则S △DMN :S △PAB =1:2证明:设P (x 3,y 3),则有x M =x 1+x 32,x N =x 2+x 32,所以AM MD =MP PN =DNNB =|x 1−x 3||x 2−x 3|.设AMMD =MP PN=DNNB =a,S △PMD =b ,因为S ΔPMA S ΔPMD=AMMD =a ,所以S ΔPMA =ab同理S △PND =b a ,S ΔPNB =b a 2,所以S △DMN =b (1+1a ). 又S ΔNMD S △BAD=MD⋅DN AD⋅BD=a(a+1)2,所以S ΔBAD =b ⋅(a+1)3a 2.所以S ΔPBA =S ΔDAB −S △DMN −S ΔPAM −S ΔPBN =b ⋅2(a+1)a所以S ΔDMN :S △PAB =1:2.值得注意的是抛物线的性质远也不止这些,上述所列诸条,大多数是在区域模拟考试及高考中经常出现的.众所周知,以阿基米德三角形为背景的直线的定点、三角形的面积、轨迹、最值等相关问题是高考和模拟考考查的热点也是难点.纸上得来终觉浅,接下来我们不妨从多个视角去赏析一道高考题,以进一步体会阿基米德三角形的相关性质.典型例题【例1】已知曲线C:y =12x 2,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见解析;(2)3或4√2.【分析】分析题目可知,直线AB 是切点所在的直线,只需找到㔹点的共同属性即可.故可采用“设而不求”的思想就将该问题解决. 【解析】解法1:设而不求设D (t,−12),A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x1−t=x 1即DA 的方程为2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得DB 的方程为2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0,所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =wx +12.由{y =tx +12y =x 22,可得x 2−2tx −1=0 于是x 1+x 2=2t,x 1x 2=−1,y 1+y 2=t (x 1+x 2)+1=2t 2+1,|AB|=√1+t 2|x 1−x 2|=√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1)设d 1,d 2分别为点D,E 到直线AB 的距离,则d 1=√t 2+1,d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1. 设M 为线段AB 的中点,则M (t,t 2+12).由于EM⃗⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,而EM ⃗⃗⃗⃗⃗⃗ =(t,t 2−2),AB⃗⃗⃗⃗⃗ 与向量(1,t)平行,所以t +(t 2−2)t =0.解得t =0或t =±1. 当t =0时,S =3;当t =±1时,S =4√2.因此,四边形ADBE 的面积为3或4√2.分析:本题还可从寻找切点A,B 定直线入手,将直线AB 用参数表示,借助海伦秦九韶公式将面积问题解决. 解法2:求切点定直线(1)设D (t,−12),过D 点与C 相切的直线方程设为y +12=k(x −t),切线AD,BD 的斜率分别为k 1,k 2.由{y +12=k(x −t)y =x 22,可得x 2−2kx +2kt +1=0(1) 由Δ=0,可得k 2−2kt −1=0(2)于是k 1+k 2=2t,k 1k 2=−1 将@代入(1),可得A (k 1,k 122),B (k 2,k 222),所以k AB =k 1+k 22=t.故直线AB 的方程为y =k 1+k 22x +12,即直线AB 过定点(0,12).(2)设线段AB 的中点坐标为T (x 0,y 0),则有 x 0=k 1+k 22=t,y 0=k 12+k 224=t 2+12,所以k ET =t 2−2t又k AB ⋅k ET =−1,解得t =0或t =±1 又DA ⃗⃗⃗⃗⃗ =(k 1−k 22,k 12+12),DB⃗⃗⃗⃗⃗⃗ =(k 2−k 12,k 22+12) 利用面积公式S =12√AB ⃗⃗⃗⃗⃗ 2⋅AC ⃗⃗⃗⃗⃗ 2−(AB ⃗⃗⃗⃗⃗ ⋅AC ̅̅̅̅)2=12|x 1y 2−x 2y 1|可得 S △DAB=12|k 1−k 22⋅k 22+12−k 2−k 12⋅k 12+12|=18|k 1−k 2|3 同理可得 S △EAB =|k 1−k 2|当t =0时,|k 1−k 2|=2,此时S 冏边形 ADBE =18|k 1−k 2|3+|k 1−k 2|=3 当t =±1时,|k 1−k 2|=2√2,此时S 㐰边形 ADBE =18|k 1−k 2|3+|k 1−k 2|=4√2注:此处给出的这种方法是解决此类问题的通性通法,但注意不要漏掉斜率为0的情形. 解法3:设直线定“待参”设直线AB 的方程设为y =kx +m,A (x 1,y 1),B (x 2,y 2)由{y =kx +my =x 22,可得x 2−2kx −2m =0.于是x 1+x 2=2k,x 1x 2=−2m由于y ′=x ,所以切线DA,BD 的斜率分别为x 1,x 2 所以切线DA,BD 的方程分别为x 1x =y +y 1,x 2x =y +y 2联立可得D 点的纵坐标y D =12x 1x 2=−m ,又D 为直线y =−12上的动点,所以m =12 故直线AB 过定点(0,12) (2)由(1)知x D =y D +y 1x 1=12x 1x 2+12x 12x 1=x 1+x 22=k设线段AB 的中点坐标为T (x 0,y 0),则有x 0=x 1+x 22=k所以TD 垂直于直线y =−12过A,B 分别作直线y =−12的垂线,垂足分别为A 1,B 1,如图所示,所以点D 为A 1B 1的中点.记AB 过的定点为F ,则有AA 1=AF,BB 1=BF 由(1)知k AD ⋅k BD =x 1x 2=−1,所以DA ⊥DB 易得S △DAB =12S 梯形AA 1B 1B =(y 1+12+y 2+12)|x 1−x 2|2=|x 1−x 2|38又S △EAB =12|EF|⋅|x 1−x 2|=12(52−12)⋅|x 1−x 2|=|x 1−x 2| 以下计算同方法二. 解法四:设切点定截距设A (x 1,x 122),B (x 2,x 222),D (m,−12),直线AB:y =kx +b . 联立{y =12x 2y =kx +b⇒x 2−2kx −2b =0,由韦达定理得{x 1+x 2=2kx 1⋅x 2=−2b又y ′=x ,从而直线DA,DB 的方程分别为y =x 1x −12x 12,y =x 2x −12x 22.因为切线过点D (m,−12),所以有{mx 1−12x 12=−12mx 2−12x 22=−12即x 1,x 2为方程x 2−2mx −1=0的两根,即x 1⋅x 2=−1=−2b ⇒b =12,所以直线AB 过定点(0,12).(2)由(1)知,x 1+x 2=2k ,则y 1+y 2=k (x 1+x 2)+1=2k 2+1,所以,AB 的中点T (k,k 2+12). 当k =0时,M (0,12),此时,四边形ADBE 的面积S =3.当k ≠0时,由k TE ⋅k AB =−1得k 2−2k=−1k ,解得k 2=1.所以,|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=2(k 2+1)=4. 又点E 到直线AB 的距离d 1=√1+k 2=√2,点D 到直线AB 的距离d 2=√1+k 2=√2所以四边形ADBE 的面积S =12×|AB|×(d 1+d 2)=4√2.综上,四边形ADBE 的面积为3或4√2.强化训练以阿基米德三角形为背景考查的高考题主要还有以下几种类型.(一)轨迹问题1.如图,抛物线C 1:x 2=4y,C 2:x 2=−2py(p >0).点M (x 0,y 0)在拋物线C 2上,过M 作C 1的切线,切点为A,B(M为原点O 时,A,B 重合于O).当x 0=1−√2时,切线MA 的斜率为−12. (1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A,B 重合于O 时,中点为O ).【答案】(1)p =2;(2)见解析 【解析】(1)p =2过程从略; (2)设N(x,y),A (x 1,x 124),B (x 2,x 224),x 1≠x 2由N 为线段AB 中点知x =x 1+x 22(1),所以y =x 12+x 228(2).所以,切线MA,MB 的方程分别为y =x 12(x −x 1)+x 124,(3)y =x 22(x −x 2)+x 224.(4)由(3)(4)得,MA,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 02=4y 0,所以x 1x 2=−x 12+x 226.(5)由(1)(2)(5)得x 2=43y,x ≠0.当x 1=x 2时,A,B 重合于O 时,中点N 为O ,坐标满足x 2=43y .因此AB 中点N 的轨迹方程为x 2=43y .2.已知抛物线x 2=4y 的焦点为F,A,B 是抛物线上的两动点,且AF ⃗⃗⃗⃗⃗ =λFB ⃗⃗⃗⃗⃗ (λ>0)过A,B 两点分别作扡物线的切线,设其交点为M .(1)证明FM̅̅̅̅̅⋅AB ⃗⃗⃗⃗⃗ 为定值; (2)设△ABM 的面积为S ,写出S =f(λ)的表达式,并求S 的最小值.【答案】(1)见解析;(2)4.【解析】(1)由已知条件,得F(0,1),λ>0. 设A (x 1,y 1),B (x 2,y 2).由AF⃗⃗⃗⃗⃗ =λFB ⃗⃗⃗⃗⃗ (λ>0) 即(−x 1,1−y )=λ(x 2,y 2−1),也即{−x 1=λx 2①1−y 1=λ(y 2−1)②将①式两边平方并把x 12=4y 1,x 22=4y 2代入得y 1=λ2y 2③解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=−4, 拋物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A,B 两点的切线方程分别是y =12x 1(x −x 1)+y 1,y =12x 2(x −x 2)+y 2易得M 的坐标为(x 1+x 22,−1).所以FM ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(x 1+x 22,−2)⋅(x 2−x 1,y 2−y 1)=0 (II)由(I )知在△ABM 中,FM ⊥AB ,因而S =12|AB|⋅|FM|.又|FM⃗⃗⃗⃗⃗⃗ |=√(x 1+x 22)2+(−2)2=√λ+1λ+2=√λ√λ|AB⃗⃗⃗⃗⃗ |=λ+1λ+2=(√λ+√λ)2于是S =12|AB|⋅|FM|=12(√λ√λ)3,由√λ+√λ⩾2知S ⩾2,且当λ=1时,S 取得最小值4.3.如图,等边三角形OAB 的边长为8√3,且其三个顶点均在拋物线E:x 2=2py(p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =−1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.【答案】(1)x 2=4y ; (2)见解析.【解析】(1)抛物线E 的方程为x 2=4y ,过程略.(2)设P (x 0,y 0),x 0≠0,由y =14x 2,得y ′=12x ,直线l 的方程为y −y 0=12x 0(x −x 0),即y =12x 0x −14x 02.联立20011241y x x x y ⎧=-⎪⎨⎪=-⎩,即200421x x x y ⎧-=⎪⎨⎪=-⎩,所以2004,12x Q x ⎛⎫-- ⎪⎝⎭ 设M (0,y 1),所以MP⃗⃗⃗⃗⃗⃗ =(x 0,y 0−y 1),MQ ⃗⃗⃗⃗⃗⃗ =(x 02−42x 0,−1−y 1) 因为MP ⃗⃗⃗⃗⃗⃗ ⋅MQ ⃗⃗⃗⃗⃗⃗ =0,所以x 02−42x 0−y 0−y 0y 1+y 1+y 12=0.又y 0=14x 02(x 0≠0),所以y 1=1 故以PQ 为直径的圆恒过M(0,1).4.如图,设抛物线C:y =x 2的焦点为F ,动点P 在直线l:x −y −2=0上运动,过P 作拋物线C 的两条切线PA,PB ,且与抛物线C 分别相切于A,B 两点. (1)求△APB 的重心G 的轨迹方程; (2)证明∠PFA =∠PFB .【答案】(1)y =13(4x 2−x +2); (2)见解析.【解析】(1)设切点A,B 坐标分别为(x,x 02)和(x 1,x 12)((x 1≠x 0), 所以切线AP 的方程为:2x 0x −y −x 02=0; 切线BP 的方程为:2x 1x −y −x 12=0;解得P 点的坐标为:x P =x 0+x 12,y P =x 0x 1所以△APB 的重心G 的坐标为x G =x 0+x 1+x P3=x P ,y G =y 0+y 1+y P 3=x 02+x 12+x 0x 13=(x 0+x 1)2−x 0x 13=4x P2−y p 3所以y p =−3y G +4x G 2,由点P 在直线l 上运动.从而得到重心G 的轨迹方程为: x −(−3y +4x 2)−2=0,y =13(4x 2−x +2).(2)因为FA ⃗⃗⃗⃗⃗ =(x 0,x 02−14),FP ⃗⃗⃗⃗⃗ =(x 0+x 12,x 0x 1−14),FB ⃗⃗⃗⃗⃗ =(x 1,x 12−14). 由于P 点在拋物线外,则|FP⃗⃗⃗⃗⃗ |≠0.所以cos⁡∠AFP =FP ⃗⃗⃗⃗⃗ ⋅FA ⃗⃗⃗⃗⃗ |FP⃗⃗⃗⃗⃗ ||FA ⃗⃗⃗⃗⃗ |=x 0+x 12⋅x +(x x −14)(x 2−14)|FP ̅̅̅̅|√x 02+(x 02−14)2=x 0x 1+14|FP⃗⃗⃗⃗⃗ |同理有cos⁡∠BFP =FP ⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ |FP⃗⃗⃗⃗⃗ ||FB ⃗⃗⃗⃗⃗ |=x 0+x 12⋅x +(x x −14)(x 2−14)|FP ⃗⃗⃗⃗⃗ |√x 12+(x 12−14)2=x 0x 1+14|FP⃗⃗⃗⃗⃗ |所以∠PFA =∠PFB .5.如图,设抛物线方程为 x 2=2py(p >0),M 为直线y =−2p 上任意一点,过M 引抛物线的切线,切点分别为A,B .(1)求证:A,M,B 三点的横坐标成等差数列;(2)已知当M 点的坐标为(2,−2p)时,|AB|=4√10,求此时抛物线的方程;(3)是否存在点M ,使得点C 关于直线AB 的对称点D 在拋物线x 2=2py(p >0)上,其中点C 满足 OC⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ (O 为坐标原点).若存在,求出所有适合题意的点的坐标;若不存在,请说明理由.【解析】(1)证明:由题意设A (x 1,x 122p ),B (x 2,x 222p),x 1<x 2,M (x 0,−2p ). 由x 2=2py 得y =x 22p,得y ′=xp,所以k MA =x 1p,k MB =x 2p.因此直线MA 的方程为y +2p =x 1p(x −x 0),直线MB 的方程为y +2p =x 2p(x −x 0).所以x 122p+2p =x 1p(x 1−x 0),(1)x 222p+2p =x 2p(x 2−x 0).(2)由(1)、(2)得x 1+x 22=x 1+x 2−x 0,因此x 0=x 1+x 22,即2x 0=x 1+x 2.所以A,M,B 三点的横坐标成等差数列.(2) 由(1)知,当x 0=2时,将其代入(1)、(2)并整理得:x 12−4x 1−4p 2=0,x 22−4x 2−4p 2=0所以x 1,x 2是方程x 2−4x −4p 2=0的两根,因此x 1+x 2=4,x 1x 2=−4p 2, 又k AB =x 222p −x 122p x2−x 1=x 1+x 22p=x 0p,所以k AB =2p由弦长公式得|AB|=√1+k2√(x1+x2)2−4x1x2=√1+4p2√16+16p2.又|AB|=4√10,所以p=1或p=2,因此所求抛物线方程为x2=2y或x2=4y.(3)设D(x3,y3),由题意得C(x1+x2,y1+y2),则CD的中点坐标为Q(x1+x2+x32,y1+y2+y32).设直线AB的方程为y−y1=x0p(x−x1),由点Q在直线AB上,并注意到点(x1+x22,y1+y22)也在直线AB上,代入得y3=x0px3.若D(x3,y3)在拋物线上,则x32=2py3=2x0x3.因此x3=0或x3=2x0.即D(0,0)或D(2x0,2x02p).(1)当x0=0时,则x1+x2=2x0=0,此时,点M(0,−2p)适合题意.(2)当x0≠0,对于D(0,0), 此时C(2x0,x12+x222p ),k CD=x12+x222p2x0=x12+x224px0,又k AB=x0p,AB⊥CD所以k AB⋅k CD=x0p ⋅x12+x224px0=x12+x224p2=−1,即x12+x22=−4p2,矛盾.对于D(2x0,2x02p ),因为C(2x0,x12+x222p),此时直线CD平行于y轴,又k AB=x0p≠0,所以直线AB与直线CD不垂直,与题设矛盾,所以x0≠0时,不存在符合题意的M点.综上所述,仅存在一点M(0,−2p)适合题意.。

阿基米德三角形

阿基米德三角形
阿基米德三角形及其性质
.
阿基米德三角形名称的由来
抛物线的弦与过弦的端点的两条切 线所围的三角形,这个三角形又常被称 为阿基米德三角形,因为阿基米德最早 利用逼近的思想证明了:抛物线的弦与 抛物线所围成的封闭图形的面积等于阿 基米德三角形面积的2/3.
B A
P
.
引理
引理1:AB与CD是抛物线的两条平行弦,且AB=2CD, AB、CD的中点分别是M、N。P为抛物线的AB弧(含抛 物线顶点的部分)上一点,且P与AB的距离最远。求证: P、N、M三点共线,且PM=4PN。
2p
2
M ( x1 x2 , y1 y2 ) ,易得 P 点坐
2
2
标为 ( ( y1 y2 )2 , y1 y2 ) ,此点
8p
2
显然在抛物线上;过 P 的切线的
斜率为
p y1 y2
2p y1 y2
= kAB ,
2
结论得证.
.
阿基米德三角形的性质
性质 3 如图,连接 AI、BI,则△ABI 的面积是△QST 面积的 2 倍. 证明:如图,这里出现了三个 阿基米德三角形,即△QAB、△TBI、 △SAI;应用阿基米德三角形的性质: 弦与抛物线所围成的封闭图形的面积
| 1 t 8
(x02 4t)2 (t 1)2 x02

又S
QAB
1 4 (1 2
x02 ) 4
4 x02 2
S
于是
QAB
4
(x02 4)[x02 (t 1)2 ]
S PDE 1 t
(x02 4t)2
4 x04 [4 (t 1)2 ]x02 4(t 1)2
1t
x04 8tx02 16t 2

抛物线中的阿基米德三角形

抛物线中的阿基米德三角形

抛物线中的阿基米德三角形抛物线中的阿基米德三角形是一个古希腊数学家阿基米德发现的特殊几何形状。

它是一种由一条弦和抛物线组成的三角形,弦刚好平分抛物线的焦点和对称轴之间的距离。

阿基米德三角形的性质非常有趣。

首先,它不难想象,当弦的位置改变时,三角形的形状也会随之变化。

然而,阿基米德发现,无论弦的位置如何改变,三角形的面积始终不变。

其次,阿基米德三角形是无限个等腰直角三角形的集合。

这些等腰直角三角形的直角均在抛物线上,另外两个顶点分别在抛物线的焦点和对称轴上。

这个性质有什么用处呢?事实上,阿基米德利用这个性质,证明了抛物线的弧长和面积公式,成为数学史上的一项重要成就。

阿基米德三角形所展现出来的美妙性质,让我们更加深刻地理解了抛物线这一几何概念。

同时,这也凸显出了古希腊数学家的天才与智慧。

阿基米德三角形及其性质

阿基米德三角形及其性质

1
1
2
2
3
3
易求得过 B、I 的切线交点 T (2 pt t , p(t t )) ,
23
2
3
过 T 向 QA 引垂线,其方程为
2t x y p(t t ) 4 pt t t ,
1
2
3
123
它和抛物线准线的交点纵坐标
y p(t t t ) 4 pt t t ,
123
123
显然这个纵坐标是关于 t , t , t 对称的,因此从 S 点向 Q 123
2p
2
M ( x1 x2 , y1 y2 ) ,易得 P 点坐标为
2
2
( ( y1 y2 )2 , y1 y2 ) ,此点显然在抛
8p
2
物线上;过 P 的切线的斜率为
p y1 y2
2p y1 y2
= kAB ,结论得证.
2
阿基米德三角形的性质
性质 3 如图,连接 AI、BI,则△ABI 的面积是△QST 面积的 2 倍. 证明:如图,这里出现了三个阿基米德三角形,即△QAB、△TBI、△SAI; 应用阿基米德三角形的性质:
t- 2=8t, 2=16t2,
B
A
OQ
E
D
F
P
解得 t=-1,此时SS△△QPDAEB=2, 故存在 t=-1,使△QAB 与△PDE 的面积之比是常数 2.
阿基米德三角形的性质
性质 4 若阿基米德三角形的底边即弦 AB 过抛物线内定点 C,则另一顶点
Q 的轨迹为一条直线.
证明:设 Q(x,y),由性质 1,x= y1 y2 ,y= y1 y2 ,
F
(1)求△APB 的重心 G 的轨迹方程. A

阿基米德三角形

阿基米德三角形

高考解析几何热点——阿基米德三角形阿基米德三角形 圆锥曲线的弦与过弦的端点的两条切线所围成的三角形.一条弦与抛物线交于A ,B 两点,过A ,B 分别作抛物线的切线交于Q 点,△ABQ 即为阿基米德三角形.证明以下性质所需要的结论:抛物线的切线与切点弦抛物线)0(22>=p px y 上一点),(00y x P 处的切线方程是)(00x x p y y +=; 抛物线)0(22>=p px y 外一点),(00y x P 所引两条切线,切点为A 、B ,则切点弦AB 所在直线方程为 )(00x x p y y +=.抛物线)0(22>=p py x 上一点),(00y x P 处的切线方程是 )(00y y p x x +=; 抛物线)0(22>=p py x 外一点),(00y x P 所引两条切线,切点为A 、B ,则切点弦AB 所在直线方程为:)(00y y p x x +=.性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设1122(,),(,)A x y B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为:22()y y p x x =+,联立方程组得:1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩解得两切线交点1212,22y y y y Q p⎛⎫+ ⎪⎝⎭,进而可知x QM //轴. 性质2:若阿基米德三角形的底边即弦AB 过抛物线内定点C ,则另一顶点Q 的轨迹为一条直线.证明:设(,)Q x y ,),(00y x C 由性质1得1212,22y y y y x y p +==,所以 122y y px =。

由,,A B C 三点共线知 10122221210222y y y y y y y x p p p--=-- 即 221121020102y y y y x y x y py +--=-将 1212,22y y y y y px +== 代入得 00()y y p x x =+,即为Q 点的轨迹方程. 特别地,弦AB 过抛物线的焦点)0,2(p F ,Q 点的轨迹方程为抛物线准线:2p x -=.性质3:若直线l 与抛物线没有公共点,点Q 直线l 上的动点,则切点弦AB 一定过抛物线内的某一定点.证明:设l 方程为0ax by c ++=,且1122(,),(,)A x y B x y ,弦AB 过点00(,)C x y ,由性质2可知Q 点的轨迹方程为00()y y p x x =+,该方程与0ax by c ++=表示同一对照可得00,c bp x y a a ==-,即弦AB 过定点,c bp C aa ⎛⎫- ⎪⎝⎭. 特别地,若点Q 是准线:2p x -=上的动点,则切点弦AB 一定过焦点)0,2(p F .l性质4:在阿基米德三角形中,QFA QFB ∠=∠.证明:如图,作AA '⊥准线,BB '⊥准线,连接,,,,AQ QB QF AF BF '',则1FA y k p '=-, 显然1'-=⋅QA FA k k ,所以 FA QA '⊥,又因为 AA AF '=,由三角形全等可得 QAA QAF '∠=∠,所以,QAA QAF QA QF QA A QFA '''≅⇒=∠=∠ 同理可得 ,QB QF QB B QFB QA QB QA B QB A ''''''''=∠=∠⇒=⇒∠=∠ 所以 009090QA A QA B QB A QB B QFA QFB ''''''∠=∠+=∠+=∠⇒∠=∠ 性质5:2AF BF QF ⋅=证明:2121212()2224p p p p AF BF x x x x x x ⎛⎫⎛⎫⋅=+⋅+=+++ ⎪ ⎪⎝⎭⎝⎭ 22221212244y y y y p p ⎛⎫+=++ ⎪⎝⎭而222222212121212222244y y y y y y y y p p QF AF BF p p p ⎛⎫⎛⎫⎛⎫++=-+=++=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。

阿基米德抛物线定理

阿基米德抛物线定理

阿基米德抛物线定理
阿基米德抛物线定理是指:在抛物线中,连接抛物线的弦与抛物线的两个端点和抛物线的焦点所形成的三角形,被称为阿基米德三角形。

该三角形具有以下性质:- 该三角形的两个直角边长之和等于抛物线的焦半径长;
- 该三角形的斜边长等于抛物线的直径长;
- 该三角形的内切圆半径等于抛物线的焦点到准线的距离的一半;
- 该三角形的面积等于其周长与抛物线的焦半径长的积的一半。

这些性质在数学和物理学领域中具有广泛的应用,对于解决抛物线相关问题具有重要的指导意义。

专题:阿基米德三角形与高考

专题:阿基米德三角形与高考

专题7.30:圆锥曲线阿基米德三角性质的研究与拓展【问题提出】圆锥曲线弦的两个端点和在这两端点处的切线的交点所构成的三角形叫做阿基米德三角形, 这条弦叫做阿基米德三角形的底, 两切线的交点叫做阿基米德三角形的顶点. 特别地, 我们把底边过焦点的阿基米德三角形称之为阿基米德焦点三角形. 【探究拓展】探究1 已知抛物线C :22y px =的焦点为F ,过弦AB 的两端点作抛物线的切线PA 、PB ,两切线交于点P ,则PFA PFB ∠=∠.变式1.1 (2005江西卷理22)如图,设抛物线C :2y x =的焦点为F ,动点P 在直线l :20x y --=上运动,过P 作抛物线C 的两条切线PA 、PB , 且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明PFA PFB ∠=∠.探究2 已知抛物线C :22y px =中弦AB 过焦点F ,过弦AB 的两端点作抛物线的切线QA 、QB ,两切线交于点Q ,则点Q 的轨迹为准线,且△AQB 面积的最小值为2p .变式2.1 (2006全国卷二理21)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两 动点,且()0AF FB λλ=>.过A 、B 两点分别作抛物线的切线,设其交点为M .(1)证明FM AB ⋅为定值;(2)设△ABM 的面积为S ,写出()S f λ=的表达式,并求S 的最小值.探究3 已知抛物线C :22y px =的焦点为F ,过弦AB 的两端点作抛物线的切线PA 、PB ,两切线交于点P ,点M 为AB 的中点,则PM 平行于x 轴.变式3.1(2007江苏卷理19) 如图,在平面直角坐标系xOy 中,过y 轴正方向上一点()0C ,c 任作一直线,与抛物线2y x =相交于A ,B 两点.一条垂直于x 轴的直线,分别与线段AB 和直线l :y c =-交于点P ,Q .(1)若2OA OB ⋅=,求c 的值;(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线; (3)试问(2)的逆命题是否成立?说明理由.变式3.2 (2008山东卷理22)如图,设抛物线方程()220x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A ,B . (1)求证:A ,B ,M 三点的横坐标成等差数列;(2)已知当M 点的坐标为()22,p -时,AB =,求此时抛物线的方程;(3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线()220x py p =>上,其中,点C 满足OC OA OB =+ (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.探究4 已知直线l 与抛物线C :22y px =没有公共点,过直线l 上一点P 引抛物线的切线PA 、PB ,切点为A 、B ,则弦AB 过一定点.变式 4.1(2008江西卷理21)设点()00P x ,y 在直线()01x m y m,m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA 、PB ,切点为A 、B ,定点10M ,m ⎛⎫⎪⎝⎭.(1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程; (2)求证:A ,M ,B 三点共线.【专题反思】你学到了什么?还想继续研究什么?(2005江西卷,理22题)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.22.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;0220=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为PPG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243GG p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d1=d2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d1=d2,可得到∠AFP=∠PFB(2006全国卷Ⅱ,理21题)已知抛物线x2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f(λ)的表达式,并求S 的最小值. 21.解:(Ⅰ)由已知条件,得F(0,1),λ>0. 设A(x1,y1),B(x2,y2).由AF →=λFB →, 即得 (-x1,1-y)=λ(x2,y2-1), ⎩⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ② 将①式两边平方并把y1=14x12,y2=14x22代入得 y1=λ2y2 ③ 解②、③式得y1=λ,y2=1λ,且有x1x2=-λx22=-4λy2=-4, 抛物线方程为y =14x2,求导得y ′=12x . 所以过抛物线上A 、B 两点的切线方程分别是 y =12x1(x -x1)+y1,y =12x2(x -x2)+y2, 即y =12x1x -14x12,y =12x2x -14x22.解出两条切线的交点M 的坐标为(x 1+x 22,x 1x 24)=(x 1+x 22,-1). ……4分 所以FM →·AB →=(x 1+x 22,-2)·(x2-x1,y2-y1)=12(x22-x12)-2(14x22-14x12)=0 所以FM →·AB →为定值,其值为0. ……7分(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =12|AB||FM|. |FM|=(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)+4=λ+1λ+2=λ+1λ.因为|AF|、|BF|分别等于A 、B 到抛物线准线y =-1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是 S =12|AB||FM|=(λ+1λ)3,由λ+1λ≥2知S ≥4,且当λ=1时,S 取得最小值4.(2007江苏卷,理19题)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0,)C c 任作一直线,与抛物线2y x =相交于AB 两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于,P Q ,(1)若2OA OB ⋅=,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由。

阿基米德三角形及其性质

阿基米德三角形及其性质

阿基米德三角形及其性质阿基米德三角形名称的由来抛物线的弦与过弦的端点的两条切线所围的三角形,因为阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的2/3.BA称这个三角形为阿基米德三角形P引理1:AB与CD是抛物线的两条平行弦,且AB=2CD,AB、CD的中点分别是M、N。

P为抛物线的AB弧(含顶点的部分)上一点,且P与AB的距离最远。

求证:P、N、M三点共线,且PM=4PN。

CNDCDNM 1引理2:弓形APB 的面积是△APB 面积的4/3倍。

引理3:P 为线段QM 的中点。

阿基米德三角形的性质性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设11(,)A x y ,22(,)B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+,联立方程组得 1122211222()()22y y p x x y y p x x y px y px=+⎧⎪=+⎪⎨=⎪⎪=⎩ 解得两切线交点Q (122y y p ,122y y +),进而可知QM ∥x 轴.性质2 QM 的中点P 在抛物线上,且P 处的切线与AB 平行.证明:由性质1知Q (122y y p,122y y +),M 1212(,)22x x y y ++,易得P 点坐标为 21212()(,)82y y y y p ++,此点显然在抛 物线上;过P 的切线的斜率为121222p py y y y =++=AB k ,结论得证.性质3 如图,连接AI 、BI ,则△ABI 的面积是△QST 面积的2倍.证明:如图,这里出现了三个阿基米德三角形,即△QAB 、△TBI 、△SAI; 应用阿基米德三角形的性质:弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23;设BI与抛物线所围面积为1S ,AI 与抛物线所围面积为2S ,AB 与抛物线所围面积为S ,则123322ABI QAB QST S S S S S =--- =12333222QST S S S S --- =123()2QST S S S S --- =32ABI QST S S - ,∴ABI S = 2QST S .2012年江西卷理20题已知三点(0,0),(2,1),(2,1)O A B -,曲线C 上任意一点M (x ,y )满足||()2MA MB OM OA OB +=⋅++u u r u u r u u r u u r u u r. (1)求曲线C 的方程;(2)动点00(,)Q x y (022x -<<)在曲线C 上,曲线C在点Q 处的切线为l .问:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值;若不存在,说明理由.OABPF D EQ解:(1)由MA→=(-2-x,1-y ),MB →=(2-x,1-y ),得 |MA→+MB →|= -2x 2+2 -2y 2, OM→·(OA →+OB →)=(x ,y )·(0,2)=2y , 由已知得 -2x 2+2 -2y 2=2y +2, 化简得曲线C 的方程:x 2=4y .(2)假设存在点P (0,t )(t <0)满足条件,则直线PA 的方程是y =t -12x +t ,PB 的方程是y =1-t2x +t .曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,它与y 轴交点为F ⎝ ⎛⎭⎪⎫0,-x 204.由于-2<x 0<2,因此-1<x 02<1.①当-1<t <0时,-1<t -12<-12,存在x 0∈(-2,2)使得x 02=t -12,即l 与直线PA 平行,故当-1<t <0时不符合题意.O ABPFDEQ②当t ≤-1时,t -12≤-1<x 02,1-t 2≥1>x 02,所以l 与直线PA ,PB 一定相交. 分别联立方程组⎩⎪⎨⎪⎧y =t -12x +t ,y =x 02x -x 204,⎩⎪⎨⎪⎧y =1-t2x +t ,y =x 02x -x 204,解得D ,E 的横坐标分别是x D =x 20+4t 2 x 0+1-t ,x E =x 20+4t2 x 0+t -1,则x E -x D =(1-t )x 20+4tx 20- t -1 2.又|FP |=-x 204-t ,有S △PDE =12·|FP |·|x E -x D |=1-t 8· x 20+4t2 t -1 2-x 20.又S △QAB =12·4·⎝ ⎛⎭⎪⎫1-x 204=4-x 202,于是S △QAB S △PDE =41-t · x 20-4[ x 20- t -1 2] x 20+4t2=41-t ·x 40-[4+ t -1 2]x 20+4 t -1 2x 40+8tx 20+16t2. 对任意x 0∈(-2,2),要使S △QABS △PDE 为常数,则t 要满足⎩⎪⎨⎪⎧-4- t -1 2=8t ,4 t -1 2=16t 2, 解得t =-1,此时S △QABS △PDE=2, 故存在t =-1,使△QAB 与△PDE 的面积之比是常数2.性质4 若阿基米德三角形的底边即弦AB 过抛物线内定点C ,则另一顶点 Q 的轨迹为一条直线.证明:设Q (x ,y ),由性质1,x =122y y p ,y =122y y +,∴122y y px =由A 、B 、C 三点共线知10122221210222y y y y y y y x p p p--=--, 即21121020y y y y x y x +--2102y py =-, 将y =122y y +,122y y px =代入得00()y y p x x =+,即为Q 点的轨迹方程.l性质5 抛物线以C 点为中点的弦平行于Q 点的轨迹.利用两式相减法易求得以C 点为中点的弦的斜率为0py ,因此该弦与Q 点的轨迹即直线l 平行.l性质6 若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.证明:如上图,设l 方程为0ax by c ++=,且11(,)A x y ,22(,)B x y ,弦AB 过点C 00(,)x y ,由性质2可知Q 点的轨迹方程,00()y y p x x =+ 该方程与0ax by c ++=表示同一条直线,对照可得00,c bp x y a a ==-,即弦AB 过定点C (c a ,bp a-).阿基米德三角形的性质性质7 (1)若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线;反之,若阿基米德三角形的顶点Q 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形面积的最小值为2p .证明(2):若底边过焦点,则00,02p x y ==,Q 点轨迹方程为2px =-即为准线;易验证1QA QB k k ⋅=-,即QA ⊥QB ,故阿基米德三角形为直角三角形,且Q 为直角顶点; ∴|QM |=122x x ++2p =22124y y p ++2p ≥122||4y y p +2p =224p p +2p =p ,而121||()2QAB S QM y y =- ≥12||||QM y y ⋅≥2p2007年江苏卷理19题如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,.(1)若2OA OB =g r u r,求c 的值;(2)若P 为线段AB 的中点,求证:QA 为此抛物线 的切线;(3)试问(2)的逆命题是否成立?说明理由.A B CPQOx y l阿基米德三角形的性质性质8 底边长为a 的阿基米德三角形的面积的最大值为38ap.证明:|AB |=a ,设Q 到AB 的距离为d , 由性质1知1212||22x x y y d QM p+≤=-221212244y y y y pp +=-=212()4y y p-,设直线AB 方程为:x my n =+,则 2221(1)()a m y y =+-,∴221()y y -≤2a ,∴d ≤24ap,即S =12ad ≤38ap.阿基米德三角形的性质特别地,若阿基米德三角形的底边AB 过焦点F ,则QF ⊥AB.性质9 在阿基米德三角形中,∠QFA =∠QFB .证明:如图,作AA '⊥准线,BB '⊥准线,连接 QA '、QB '、QF 、AF 、BF ,则1'FA y k p=-, 显然'1FA QA k k ⋅=-,∴FA '⊥QA ,又∵|AA '|=|AF |, 由三角形全等可得∠QAA '=∠QAF , ∴△QAA '≅△QAF ,∴|QA '|=|QF |,∠QA 'A =∠QFA ,同理可证|QB '|=|QF |,∠QB 'B =∠QFB , ∴|QA '|=|QB '|,即∠QA 'B '=∠QB 'A '∴∠QA 'A =∠QA 'B '+900=∠QB 'A '+900=∠QB 'B , ∴∠QFA =∠QFB ,结论得证.2005年江西理22题正确云--朱苗苗189****4247如图,设抛物线2:x y C =的焦点为F ,动点P 在直线 02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切 于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA =∠PFB . xyOAB PFl2006全国卷II 理21题已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.阿基米德三角形的性质性质10 |AF |·|BF |=|QF|2.证明:|AF |·|BF |=12()()22p px x +⋅+=21212()24p p x x x x +++=212()2y y p+22124y y ++24p , 而|QF |2=221212()()222y y y y p p +-+=212()2y y p +22124y y ++24p =|AF |·|BF |.阿基米德三角形的性质正确云--朱苗苗189****4247性质11 在抛物线上任取一点I (不与A 、B 重合),过I 作抛物线切线交QA 、QB 于S 、T ,则△QST 的垂心在准线上.证明:设211(2,2)A pt pt 、222(2,2)B pt pt 、233(2,2)I pt pt ,易求得过B 、I 的切线交点T2323(2,())pt t p t t +,过T 向QA 引垂线,其方程为1231232()4t x y p t t pt t t +=++,它和抛物线准线的交点纵坐标123123()4y p t t t pt t t =+++, 显然这个纵坐标是关于123,,t t t 对称的,因此从S 点向QB 引垂线,从Q 点向ST 引垂线,它们与准线的交点也是上述点,故结论得证.谢谢!。

阿基米德三角形的性质

阿基米德三角形的性质

阿基米德三角形的性质【概念】一、阿基米德三角形:抛物线(圆锥曲线)的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形(如图一SAB ∆即为阿基米德三角形).重要结论:抛物线与弦之间所围成区域的面积(图二中的阴影部分)为阿基米德三角形面积的三分之二.图(一) 图(二)阿基米德运用逼近的方法证明了这个结论. 【证明】:如图(三)SM 是SAB ∆中AB 边上的中线,则SM 平行于x 轴(下面的性质1证明会证到),过M '作抛物线的切线,分别交SA 、SB 于,A B '',则A AM ''∆、B BM ''∆也是阿基米德三角形,可知A C '是A AM ''∆中AM '边上的中线,且A C '平行于x 轴,可得点A '是SA 的中点,同理B '是SB 的中点,故M '是SM 的中点,则SA B S ''∆是M AB S '∆的12,由此可知:A A C S '''''∆是C M A S ''∆的12,B B D S '''''∆是D M B S ''∆的12,以此类推,图(二)中蓝色部分的面积是红色部分而知的12,累加至无穷尽处,便证得重要结论.【性质1】:阿基米德三角形底边上的中线平行于抛物线的轴. 【证明】:设),(11y x A ,),(22y x B ,M 为弦AB 的中点,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,联立方程,1212px y =,2222px y =,解得两切线交点)2,2(2121y y p y y Q +【性质2】:若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线;【证明】:设),(11y x A ,),(22y x B ,00(,)C x y 为抛物线内的定点,弦AB 的过定点C ,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,则设另一顶点(),Q x y '',满足11()y y p x x ''=+且22()y y p x x ''=+,故弦AB 所在的直线方程为()yy p x x ''=+,又由于弦AB 过抛物线内的定点00(,)C x y ,故00()y y p x x ''=+,即点Q 的轨迹方程为直线00()y y p x x =+ .【性质3】:抛物线以C 点为中点的弦平行于Q 点的轨迹;【证明】:由【性质2】的证明可知:点Q 的轨迹方程为直线00()y y p x x =+ .因为点C 为弦AB 的中点,故Q 的轨迹方程为121222y y x x y p x ++⎛⎫=+ ⎪⎝⎭,斜率122p k y y =+;而弦AB 所在的直线方程为()yy p x x ''=+,由【性质1】的证明可知:122y y y +'=,122y yx p'=,故弦AB 所在的直线方程为121222y y y y y p x p ⎛⎫+=+ ⎪⎝⎭,斜率122pk y y =+,又因为直线AB 与Q 的轨迹方程不重合,故可知两者平行. 【性质4】:若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点(若直线l 方程为:0ax by c ++=,则定点的坐标为,c bp C aa ⎛⎫− ⎪⎝⎭;【证明】:任取直线l :0ax by c ++=上的一点()0,o Q x y ,则有000ax by c ++=,即00a cy x b b=−−┅①,过点Q 作抛物线22y px =的两条切线,切点分别为,A B ,则又由【性质2】的证明可知:弦AB 所在的直线方程为00()y y p x x =+,把①式代入可得:()00a c x y p x x b b ⎛⎫−−=+ ⎪⎝⎭,即0a c y p x px yb b ⎛⎫−−=+ ⎪⎝⎭,令0a y p b −−=且 0c px y b +=,可得:弦AB 所在的直线过定点,c bp C a a ⎛⎫− ⎪⎝⎭.【性质5】:底边为a 的阿基米德三角形的面积最大值为pa 83;【证明】:AB a =,设Q 到AB 的距离为d ,由性质1知:22212121212122()22444x x y y y y y y y y d QM p p p p++−≤=−=−=(直角边与斜边),设直线AB 的方程为 x my n =+,则2221(1)()a m y y =+−,所以2322121()428a a y y a d s ad p p−≤⇒≤⇒=≤. 【性质6】:若阿基米德三角形的底边过焦点,顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为2p ;【证明】:由性质2,若底边过焦点,则00,02p x y ==,Q 点的轨迹方程是2px =−,即为准线;易验证1QA QB k k ⋅=−,即QA QB ⊥,故阿基米德三角形为直角三角形,且Q 为直角顶点。

阿基米德三角形数学核心素养微专题含答案

阿基米德三角形数学核心素养微专题含答案

数学核心素养微专题------阿基米德三角形及其应用【知识储备】 ★阿基米德三角形阿基米德三角形:抛物线的弦与过弦的端点的两条切线所围成的三角形阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的 ★阿基米德三角形的性质设抛物线方程为x 2=2py ,称弦AB 为阿基米德三角形的底边,M 为底边AB 的中点,Q 为两条切线的交点 性质1阿基米德三角形底边上的中线与抛物线的轴性质2 在抛物线上任取一点I (不与A 、B 重合),过I 作抛物线切线交QA 、QB 于S 、T ,则△QST 的垂心在 上,连接AI 、BI ,则△ABI 的面积是△QST 面积的 倍特例 QM 的中点P 在抛物线上,且P 处的切线与AB性质3 阿基米德三角形的底边即弦AB 过抛物线内定点C ,则另一顶点Q 的轨迹为特例(1) 抛物线以C 为中点的弦与Q 点的轨迹特例(2) 若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为抛物线的且阿基米德三角形的面积的最小值为1AP BP k k ⋅=-,即PA PB ⊥PF AB ⊥AP 与x 轴交于点C ,BP 与x 轴交于点D ,12,22==C D x x x x 性质4 若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点性质5 底边长为a 的阿基米德三角形的面积的最大值为性质6 在阿基米德三角形中,∠QFA =∠QFB性质7 |AF |·|BF |=|QF |2【深度学习】例1.(2019成都二诊理16).已知F 为抛物线2:4C x y =的焦点,过点F 的直线l 与抛物线C 相交于不同的两点,A B ,抛物线C 在,A B 两点处的切线分别是12,l l ,且12,l l 相交于点P ,则32||||PF AB +的最小值为 ________. 变式:(变式2019成都二诊文16).已知F 为抛物线2:4C x y =的焦点,过点F 的直线l 与抛物线C 相交于不同的两点,A B ,抛物线C 在,A B 两点处的切线分别是12,l l ,且12,l l 相交于点P ,设m AB =则||PF 的值为 ________.(结果用m 表示)例2.(2019年全国III 卷文理21题).已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.例3.(2013年辽宁理20). 如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).例4.(2012年江西理20)已知三点(0,0),(2,1),(2,1)O A B -,曲线C 上任意一点M (x ,y )满足||()2MA MB OM OA OB +=⋅++. (1)求曲线C 的方程;(2)动点00(,)Q x y (022x -<<)在曲线C 上,曲线C 在点Q 处的切线为l .问:是否存在定点P (0,t )(t <0),使得l 与P A ,PB 都相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值.若不存在,说明理由.【自我检测】1.(2006重庆文22题)如图,对每个正整数n ,(,)n n n A x y 是抛物线24x y =上的点,过焦点F 的直线n FA 角抛物线于另一点(,)n n n B s t 。

阿基米德三角形的性质

阿基米德三角形的性质

阿基米德三角形的性质(一)切线方程:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y += 2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x += 4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-= 性质1:阿基米德三角形底边上的中线平行于抛物线的轴.证明:设),(11y x A ,),(22y x B ,M 为弦AB 的中点,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,联立方程,1212px y =,2222px y =,解得两切线交点)2,2(2121y y p y y Q +性质2:若阿基米德三角形的底边即弦AB 过抛物线的定点C ,则另一顶点Q 的轨迹为一条直线性质3:.抛物线以C 点为中点的弦平行于Q 点的轨迹性质4:若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点性质5:底边为a 的阿基米德三角形的面积最大值为p a 83性质6:若阿基米德三角形的底边过焦点,顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为2p性质7:在阿基米德三角形中,QFB QFA ∠=∠性质8:抛物线上任取一点I (不与B A ,重合),过I 作抛物线切线交QA ,QB 于T S ,,则QST ∆的垂心在准线上 性质9:2QF BF AF =⋅性质10:QM 的中点P 在抛物线上,且P 处的切线与AB 平行性质11:在性质8中,连接BI AI ,,则ABI ∆的面积是QST ∆面积的2倍1.如图,设抛物线方程为)0(22>=p py x ,M 为 直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为B A ,(Ⅰ)求证:M B A ,,三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为)2,2(p -时,410AB =,求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.2.设点),(00y x p 在直线)10,(<<±≠=m m y m x 上,过点P 作双曲线122=-y x 的两条切线PB PA ,,切点为B A ,,定点)0,1(m M .(1)求证:三点M B A ,,共线.(2)过点A 作直线0=-y x 的垂线,垂足为N ,试求AMN∆的重心G 所在曲线方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阿基米德三角形的性质阿基米德三角形:抛物线的弦与过弦的端点的两条切线所围成的三角形。

阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的。

阿基米德三角形的性质:设抛物线方程为x2=2py,称弦AB为阿基米德三角形的底边,M为底边AB的中点,Q为两条切线的交点。

性质1 阿基米德三角形底边上的中线与抛物线的轴。

性质2 阿基米德三角形的底边即弦AB过抛物线内定点C,则另一顶点Q的轨迹为。

性质3 抛物线以C为中点的弦与Q点的轨迹。

性质4 若直线l与抛物线没有公共点,以l上的点为顶点的阿基米德三角形的底边过定点。

性质5 底边长为a的阿基米德三角形的面积的最大值为。

性质6 若阿基米德三角形的底边过焦点,则顶点Q的轨迹为抛物线的,且阿基米德三角形的面积的最小值为。

性质7 在阿基米德三角形中,∠QFA=∠QFB。

性质8 在抛物线上任取一点I(不与A、B重合),过I作抛物线切线交QA、QB于S、T,则△QST 的垂心在上。

性质9 |AF|·|BF|=|QF|2.性质10 QM的中点P在抛物线上,且P处的切线与AB。

性质11 在性质8中,连接AI、BI,则△ABI的面积是△QST面积的倍。

例 1 (2005江西卷,理22题)如图,设抛物线2:C yx 的焦点为F ,动点P 在直线:20l x y 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA =∠PFB . 解:(1)设切点A 、B 坐标分别为221110(,)(,)(()x x x x x x 和,∴切线AP 的方程为:20020;x x y x 切线BP 的方程为:21120;x x yx解得P 点的坐标为:0101,2PPx x x y x x所以△APB 的重心G 的坐标为 , 222201010101014(),3333P pPGx y y y y x x x x x x x x y所以234p GG y y x ,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:221(34)20,(42).3xyx yx x 即(2)方法1:因为221000111111(,),(,),(,).4244x x FAx x FP x x FB x x 由于P 点在抛物线外,则||0.FP∴201010012220111()()2444cos ,1||||||||()4x x x x x x x x FP FA AFPFP FA FP FP x x同理有20110110122211111()()2444cos ,1||||||||()4x x x x x x x x FP FB BFPFP FB FP FP xx∴∠AFP =∠PFB . 方法2:①当101000,,0,0,x x x x x y 时由于不妨设则所以P 点坐标为1(,0)2x ,则P 点到直线AF 的距离为:211111||14;:,24x x dBF yx x 而直线的方程即211111()0.44x x x yx所以P 点到直线BF 的距离为:221111112222211||11|()|()||42442121()()44x x x x x x d x x x所以d 1=d 2,即得∠AFP =∠PFB . ②当100x x 时,直线AF 的方程:2020011114(0),()0,4044x yx x x x yx x 即直线BF 的方程:212111111114(0),()0,444x yx x x x yx x 即所以P 点到直线AF 的距离为: 22201010010001122220111|()()||)()||42424121()44x x x x x x x x x x x d xx x ,同理可得到P 点到直线BF 的距离102||2x x d ,因此由d 1=d 2,可得到∠AFP =∠PFB例2 (2006全国卷Ⅱ,理21题)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值. 解:(Ⅰ)由已知条件,得F (0,1),λ>0. 设A (x 1,y 1),B (x 2,y 2).由AF →=λFB →, 即得 (-x 1,1-y )=λ(x 2,y 2-1),⎩⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ②将①式两边平方并把y 1=14x 12,y 2=14x 22代入得 y 1=λ2y 2 ③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4, 抛物线方程为y =14x 2,求导得y ′=12x . 所以过抛物线上A 、B 两点的切线方程分别是 y =12x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2, 即y =12x 1x -14x 12,y =12x 2x -14x 22.解出两条切线的交点M 的坐标为(x 1+x 22,x 1x 24)=(x 1+x 22,-1). ……4分 所以FM →·AB →=(x 1+x 22,-2)·(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0 所以FM →·AB →为定值,其值为0. ……7分(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =12|AB ||FM |.|FM |=(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4 =y 1+y 2+12×(-4)+4 =λ+1λ+2=λ+1λ.因为|AF |、|BF |分别等于A 、B 到抛物线准线y =-1的距离,所以|AB |=|AF |+|BF |=y 1+y 2+2=λ+1λ+2=(λ+1λ)2. 于是 S =12|AB ||FM |=(λ+1λ)3,由λ+1λ≥2知S ≥4,且当λ=1时,S 取得最小值4.例3(2007江苏卷,理19题)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0,)C c 任作一直线,与抛物线2y x 相交于AB 两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l yc 交于,P Q ,(1)若2OA OB,求c 的值;(5分) (2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分)(3)试问(2)的逆命题是否成立?说明理由。

(4分) 解:(1)设过C 点的直线为ykxc ,所以20x kx c c,即20x kx c,设A 1122,,,x yB x y ,OA =11,x y ,22,OBx y ,因为2OA OB,所以12122x x y y ,即12122x x kx c kx c ,221212122x x k x x kc x x c所以222c k c kc k c ,即220,c c所以21cc 舍去(2)设过Q的切线为111yy k x x ,/2y x ,所以112k x ,即2211111222yx x x y x xx ,它与yc 的交点为M11,22x cc x ,又21212,,2222x x y y k k Pc ,所以Q,2kc ,因为12x x c ,所以21c x x ,所以M12,,222x x kcc ,所以点M 和点Q 重合,也就是QA 为此抛物线的切线。

(3)(2)的逆命题是成立,由(2)可知Q,2kc ,因为PQ x 轴,所以,2PkPy 因为1222x x k,所以P 为AB 的中点。

例4(2008山东卷,理22题)如图,设抛物线方程为22(0)x py p ,M 为直线2yp 上任意一点,过M 引抛物线的切线,切点分别为A B ,.(Ⅰ)求证:AM B ,,三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(22)p ,时,410AB.求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p上,其中,点C 满足OCOAOB (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.解:(Ⅰ)证明:由题意设221212120(2)22x x A x B x x x M x p p p,,,,,,.由22xpy 得22x yp,得x y p, 所以1MAx k p,2MBx k p.因此直线MA 的方程为102()x y pxx p,直线MB 的方程为202()x ypxx p.所以211102()2x x px x pp,①222202()2x x px x pp.②由①、②得121202x x x x x , 因此122x x x ,即0122x x x .所以AM B ,,三点的横坐标成等差数列. (Ⅱ)解:由(Ⅰ)知,当02x 时,将其代入①、②并整理得:2211440x x p , 2222440x x p ,所以12x x ,是方程22440x x p 的两根,因此124x x ,2124x x p ,又222112021222ABx x x x x p p k x x pp,所以2AB k p.由弦长公式得2221212241()411616ABk x x x x p p.又410AB ,所以1p 或2p ,因此所求抛物线方程为22x y 或24x y .(Ⅲ)解:设33()D x y ,,由题意得1212()C x x y y ,,则CD 的中点坐标为12312322x x x y y y Q,,设直线AB 的方程为011()x yy xx p,由点Q 在直线AB 上,并注意到点121222x x y y ,也在直线AB 上,代入得033x y x p.若33()D x y ,在抛物线上,则2330322x py x x ,因此30x 或302x x .即(00)D ,或20022x D x p,.(1)当00x 时,则12020x x x ,此时,点(02)M p ,适合题意.(2)当00x ,对于(00)D ,,此时2212022xx C x p,,221222CDx x p k x 22124x x px ,又0ABx k p,ABCD ,所以2222012122144AB CDx x x x x k k ppx p ,即222124x x p ,矛盾.对于20022x D x p ,,因为2212022x x C x p,,此时直线CD 平行于y 轴,又00AB x k p,所以直线AB 与直线CD 不垂直,与题设矛盾,所以00x 时,不存在符合题意的M 点.综上所述,仅存在一点(02)M p ,适合题意.例5(2008江西卷,理21题)设点00,P x y 在直线,01x m y m m上,过点P 作双曲线221x y 的两条切线PA PB 、,切点为A B 、,定点M (1m,0). (1)过点A 作直线0x y的垂线,垂足为N ,试求△AMN的重心G 所在的曲线方程;(2)求证:AM B 、、三点共线.证明:(1)设1122(,),(,)A x y B x y ,由已知得到120y y ,且22111x y ,22221x y ,设切线PA 的方程为:11()yy k xx 由1122()1yy k x x x y 得2221111(1)2()()10k x k y kx x y kx 从而2222211114()4(1)()4(1)0k y kx k y kx k ,解得11x ky因此PA 的方程为:111y y x x 同理PB 的方程为:221y yx x又0(,)P m y 在PA PB 、上,所以1011y y mx ,2021y y mx即点1122(,),(,)A x y B x y 都在直线01y y mx上又1(,0)M m也在直线01y y mx上,所以三点A M B 、、共线(2)垂线AN 的方程为:11yy xx ,由110yy x x x y 得垂足1111(,)22x y x y N ,设重心(,)G x y所以11111111()321(0)32x y x x m x y yy 解得1139341934x y m x y x my由22111x y 可得11(33)(33)2x yx ymm即2212()39xy m为重心G 所在曲线方程.。

相关文档
最新文档