初一数学列方程解应用题归类含答案
初一数学方程应用题(有详细解答)
初一数学方程(组)的应用练习1、用如课本图4-10中的长方形和正方形纸板作侧面和底面,做成如课本图4-11的竖式和横式两种无盖纸盒.现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?解:由上图可知,做第一种无盖纸盒需要4块长方形,1个正方形;做第二种纸盒需要3个长方形,2个正方形;可以设做第一种纸盒x 个,第二种纸盒y 个,则有方程组①左右两边同时乘以4,可得4x+8y=4000,上下相减,可得5y=2000,y=400,则x=200解得:x=200,y=4002.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲、乙两种零件分别x 、y 天,则解得:x=16,y=13又因为x ,y 为整数,所以x=17,y=133、某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套? 解:设每天分别安排x ,y 名工人生产螺栓,螺母解得:x=34,y=85解:设成本价分别为x ,y 元解:设制作两种工艺品分别为.甲说:设七年级、八年级人数分别为方案三:设粗加工、精加工分别为解:A 村运往C 地x 吨,B 村运往C 地y 吨16、某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380元.(1) 求A 、B 两种型号的计算器每只进价各是多少元?(2) 该经销商计划购进这两种型号的计算器,根据市场行情,销售一只A 型计算器可获利10元,销售一只B 型计算器可获利15元.该经销商希望销售完这两种型号的计算器,所获利润为60元.则该经销商有哪几种进货方案?解:设A 、B 两种计算器的进价分别为x ,y 元(1)解得x=40,y=60(2)设进A 、B 计算器分别为z 、w 件,则 10z+15w=60,显然z 、w 必须为整数,因此 z=0,w=4;z=1,w 为非整数 z=2,w 为非整数 z=3,w=2z=4,w 为非整数 z=5,w 为非整数 z=6,w=0,所有有三种方案其实本题还可以进一步分析,由于15在60以内的整数倍只能是0、15、30、45、60,因此就要求(60-10z )/15必须为15、30、45或60,显然60-10z 的结果只可能为60、50、40、30、20、10、0,而只有60、30、0满足条件,在这三种情况下z 分别为0、3、6,w 则分别为4、2、0。
完整版)初一数学列方程解应用题归类含答案
完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
七年级数学一元一次方程应用题归类汇集(含答案)
七年级数学一元一次方程应用题归类聚集(含答案)一元一次方程应用题归类聚集一、列方程解应用题的一般步骤〔解题思路〕〔1〕审—审题:认真审题,弄清题意,找出能够表示此题含义的相等关系〔找出等量关系〕.〔2〕设—设出未知数:根据提问,巧设未知数.〔3〕列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.〔4〕解——解方程:解所列的方程,求出未知数的值.〔5〕答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.〔注意带上单位〕二、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度时间时间=路程速度速度=路程时间〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,那么列方程为。
解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:xx 3.6 840 2、某人从家里骑自行车到学校。
假设每小时行15千米,可比预定时间早到15分钟;假设每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x小/时,那么列出方程是:15〔x-0.25〕=9〔x+0.25〕方法二:设从家里到学校有x千米,那么列出方程是:x15x15 15609603、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
列方程解应用题100道附详解
列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。
初一方程应用题及答案
初一方程应用题及答案一、进货与销售小明卖水果,他进了一批苹果和橙子。
苹果的进价是每斤2元,他拿到了10斤;橙子的进价是每斤3元,他拿到了8斤。
小明计划每斤苹果卖3.5元,每斤橙子卖4元。
请计算小明的总进价和总销售额,以及他的盈利。
苹果的总进价 = 2元/斤× 10斤 = 20元橙子的总进价 = 3元/斤× 8斤 = 24元小明的总进价 = 20元 + 24元 = 44元苹果的总销售额 = 3.5元/斤× 10斤 = 35元橙子的总销售额 = 4元/斤× 8斤 = 32元小明的总销售额 = 35元 + 32元 = 67元小明的盈利 = 总销售额 - 总进价 = 67元 - 44元 = 23元答案:小明的总进价是44元,总销售额是67元,他的盈利是23元。
二、速度与时间小红骑自行车去学校,全程10公里。
她以每小时15公里的速度骑行,到达学校的时间是多少?距离 = 速度× 时间时间 = 距离 / 速度 = 10公里 / 15公里/小时 = 2/3小时 = 40分钟答案:小红用40分钟骑自行车到学校。
三、货币换算小明去旅行,他换了500美元成人民币。
如果汇率是1美元=6.5人民币,那么小明换得多少人民币?人民币 = 美元× 汇率 = 500美元× 6.5人民币/美元 = 3250人民币答案:小明换得了3250人民币。
四、年龄计算小李今年的年龄是小王去年的年龄的2倍减去5岁。
如果小王去年的年龄是10岁,那么小李今年几岁?小李今年的年龄 = 小王去年的年龄× 2 - 5岁 = 10岁× 2 - 5岁= 15岁答案:小李今年15岁。
五、围栏建设小明要在他家的花园周围建设围栏。
花园的形状是矩形,长20米,宽10米。
围栏的每个栅栏的长度是4米,小明需要多少条栅栏?周长 = (长 + 宽) × 2 = (20米 + 10米) × 2 = 60米栅栏条数 = 周长 / 每个栅栏的长度 = 60米 / 4米 = 15条答案:小明需要15条栅栏来建设围栏。
苏科版数学七年级上册《第四章 一元一次方程应用题》类型归纳及练习及答案
苏科版数学七年级上册《第四章一元一次方程应用题》类型归纳及练习及答案一元一次方程应用题归类(典型例题、练)一、列方程解应用题的一般步骤(解题思路)1) 审题:仔细审题,理解题意,找到能够表示问题含义的等量关系。
2) 设定未知数:根据问题,巧妙地设定未知数。
3) 列出方程:设定未知数后,表示相关的含有字母的表达式,然后利用已知等量关系列出方程。
4) 解方程:解决所列方程,求出未知数的值。
5) 检验并写出答案:检验所求出的未知数是否是方程的解,是否符合实际情况,检验后写出答案(注意单位统一和书写规范)。
第一类:与数字、比例有关的问题:例1.比例分配问题:设其中一部分为x,利用已知比例,写出相应的代数式。
常用等量关系:各部分之和=总量。
甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?例2.数字问题:1.要搞清楚数字的表示方法:一个三位数,一般可以设百位数字为a,十位数字为b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,1≤b≤9,1≤c≤9),则这个三位数表示为:100a+10b+c。
2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示。
1) 有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
2) 一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。
第二类:与日历、调配有关的问题:例3.日历问题:探索日历问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题。
在日历上,三个相邻数(列)的和为54,求这三天分别是几号?变式:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)1.3.5.7.911.13.15.17.1921.23.25.27.2931.33.35.37.391.若将十字框上下左右平移,但一定要框住数列中的5个数,设中间的数为a,则十字框框住的5个数字之和为5a。
初一方程应用题带答案大全
初一方程应用题带答案大全
一、小明的身高问题
小明今年13岁,他的身高为x厘米。
一年后,他的身高将是他现在身高的1.1倍。
请问小明明年多高?
解答:小明明年身高为1.1x厘米。
二、小红的年龄问题
小红现在的年龄是x岁,三年前她的年龄是x - 3岁。
请问她3年后年龄是多少?
解答:小红3年后的年龄为x + 3岁。
三、小李的数学成绩
小李数学考试的分数是x分,如果他再多得10分,分数将是他现在的1.2倍。
请问小李这次数学考试得了多少分?
解答:小李这次数学考试得了x + 10分。
四、小张的大米问题
小张的家里有一袋大米,重x千克。
他领走了一半的大米,还剩下10千克。
请问小张领走了多少千克大米?
解答:小张领走了0.5x千克大米。
五、小王的钱袋问题
小王的钱袋里有x元钱,他花了一半的钱之后还剩下8元。
请问小王一共有多
少元钱?
解答:小王一共有2x元钱。
六、小刘的苹果问题
小刘一共有x个苹果,他卖掉一半的苹果之后还剩下6个。
请问小刘一共有多
少个苹果?
解答:小刘一共有2x个苹果。
以上为初一方程应用题带答案大全,希望对初中学生学习方程有所帮助。
七年级数学解方程应用题及答案
七年级数学解方程应用题及答案:1-5题1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离.设原定时间为a小时45分钟=3/4小时根据题意40a=403+(40-10)(a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离4021/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2(a+16)-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有142=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率.设四月份的利润为某则某某(1+10%)=13.2所以某=12设3月份的增长率为y则10某(1+y)=某y=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排.如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍.求有多少人设有a间,总人数7a+6人7a+6=8(a-5-1)+47a+6=8a-44a=50有人=750+6=356人:6-10题6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油按比例解决设可以炸a千克花生油1:0.56=280:aa=2800.56=156.8千克完整算式:28010.56=156.8千克7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本设总的书有a本一班人数=a/10二班人数=a/15那么均分给2班,每人a/(a/10+a/15)=1015/(10+15)=150/25=6本8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.这个小队有多少人一共有多少棵树苗设有a人5a+14=7a-62a=20a=10一共有10人有树苗510+14=64棵9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油设油重a千克那么桶重50-a千克第一次倒出1/2a-4千克,还剩下1/2a+4千克第二次倒出3/4(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油根据题意1/8a-5/3+50-a=1/348=7/8aa=384/7千克原来有油384/7千克:10-15题10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适(1班42人,2班43人,3班45人)设96米为a个人做根据题意96:a=33:1533a=9615a43.6所以为2班做合适,有富余,但是富余不多,为3班做就不够了11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数.设原分数分子加上123,分母减去163后为3a/4a根据题意(3a-123+73)/(4a+163+37)=1/26a-100=4a+2002a=300a=150那么原分数=(3150-123)/(4150+163)=327/76312、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)设水果原来有a千克60+60/(2/3)=1/4a60+90=1/4a1/4a=150a=600千克水果原来有600千克13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨(用方程解)设原来有a吨a(1-3/5)+20=1/2a0.4a+20=0.5a0.1a=20a=200原来有200吨14、王大叔用48米长的篱笆靠墙围一块长方形菜地.这个长方形的长和宽的比是5:2.这块菜地的面积是多少设长可宽分别为5a米,2a米根据题意5a+2a2=48(此时用墙作为宽)9a=48a=16/3长=80/3米宽=32/3米面积=80/316/3=1280/9平方米或5a2+2a=4812a=48a=4长=20米宽=8米面积=208=160平方米第一种:每月付22元月租费,然后美分钟收取通话费0.2元.第二种:不收月租费每分钟收取通话费0.4元.如果每月通话80分钟哪种计费方式便宜如果每月通话300分钟,又是哪种计费方式便宜呢设每月通话a分钟当两种收费相同时22+0.2a=0.4a0.2a=22a=110所以就是说当通话110分钟时二者收费一样通话80分钟时,用第二种22+0.280=380.480=32通过300分钟时,用第一种22+0.2300=82。
七年级上册数学列方程解应用题
七年级上册数学列方程解应用题题目 1:和差倍分问题。
某工厂三个车间共有 180 人,第二车间人数是第一车间人数的 3 倍多 1 人,第三车间人数是第一车间人数的一半还少 1 人,三个车间各有多少人?解析:设第一车间有x人,则第二车间有(3x + 1)人,第三车间有((1)/(2)x - 1)人。
根据题意,可列方程:x + (3x + 1) + ((1)/(2)x - 1) = 180x + 3x + 1 + (1)/(2)x - 1 = 180(9)/(2)x = 180x = 40第二车间人数:3x + 1 = 3×40 + 1 = 121(人)第三车间人数:(1)/(2)x - 1 = (1)/(2)×40 - 1 = 19(人)答案:第一车间 40 人,第二车间 121 人,第三车间 19 人。
题目 2:行程问题。
甲、乙两地相距 162 千米,甲地有一辆货车,速度为每小时 48 千米,乙地有一辆客车,速度为每小时 60 千米,求两车同时相向而行,多长时间相遇?解析:设两车相遇的时间为x小时。
根据路程 = 速度×时间,可得货车行驶的路程为48x千米,客车行驶的路程为60x千米。
两车相向而行,它们行驶的路程之和等于两地的距离,可列方程:48x + 60x = 162108x = 162x = 1.5答案:1.5 小时相遇。
题目 3:工程问题。
一项工程,甲单独做 20 天完成,乙单独做 30 天完成,两人合作多少天可以完成这项工程?解析:设两人合作x天可以完成这项工程。
把这项工程的工作量看作单位“1”,甲每天的工作效率为(1)/(20),乙每天的工作效率为(1)/(30)。
根据工作总量 = 工作时间×工作效率,可列方程:((1)/(20) + (1)/(30))x = 1(1)/(12)x = 1x = 12答案:12 天可以完成。
题目 4:销售问题。
某商品的进价是 1500 元,标价为 2500 元,商店要求以利润率不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?解析:设售货员最低可以打x折出售此商品。
初一数学列方程解应用题归类含答案
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1.相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000x=22.追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲?200x+1000=300xx=102. 甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?40x1.5+40x+80x=3003. 车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?3.环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长1.王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的200X+400=300XX=42. 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6XX=200200x4=800800/400=2圈3 .有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为600/x分过完第二铁桥所需的时间为(600/x+1/12)/(2x-50)分.。
初一解方程练习题及答案
初一解方程练习题及答案解方程是数学学科中的重要内容,也是初中阶段数学学习的一个重要部分。
通过解方程,我们可以找到未知数的值,从而解决各种实际问题。
本文将为初一学生提供一些解方程的练习题及答案,希望能够帮助同学们提高解方程的能力。
一、一元一次方程练习题1. 解方程3x + 5 = 142. 解方程12 - 4x = 83. 解方程2(x + 3) = 104. 解方程5(x - 2) - 3x = 2(4 - x)5. 解方程2(x + 5) - 3(x - 1) = -x + 4二、一元一次方程答案1. 解方程3x + 5 = 14解:将5移到等号右边,得3x = 14 - 5化简得3x = 9再将3移到x的前面,得x = 9/3化简得x = 3所以方程的解为x = 3。
2. 解方程12 - 4x = 8解:将12移到等号右边,得-4x = 8 - 12化简得-4x = -4再将-4移到x的前面,得x = -4/-4化简得x = 1所以方程的解为x = 1。
3. 解方程2(x + 3) = 10解:展开方程,得2x + 6 = 10将6移到等号右边,得2x = 10 - 6化简得2x = 4再将2移到x的前面,得x = 4/2化简得x = 2所以方程的解为x = 2。
4. 解方程5(x - 2) - 3x = 2(4 - x)解:展开方程,得5x - 10 - 3x = 8 - 2x化简得2x - 10 = 8 - 2x将-2x移到等号右边,得4x - 10 = 8将10移到等号右边,得4x = 8 + 10化简得4x = 18再将4移到x的前面,得x = 18/4化简得x = 9/2所以方程的解为x = 9/2。
5. 解方程2(x + 5) - 3(x - 1) = -x + 4解:展开方程,得2x + 10 - 3x + 3 = -x + 4化简得-x + 13 = -x + 4将x移到等号右边,得13 = 4此方程无解。
(完整版)初一数学列方程解应用题归类含答案
应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。
2022-2023学年七年级数学上学期期末专题08 列方程解决问题重难题型分类练(九大考点)
列方程解决问题重难题型分类练(九大考点)一.数字类1.列方程解应用题:一个两位数,个位数字是十位数字的2倍,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数大36,求原来的两位数.2.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是.3.有一个两位数,个位上的数比十位上的数大5,如果把这个两位数的两个数字的位置对换,那么所得的新数与原数的和是143.求这个两位数.二.(超级经典题型)方程与数轴的融合4.如图,线段AB=28厘米,点D和点C在线段AB上,且AC:BC=5:2,DC:AB=1:4.点P 从点A出发以4厘米/秒的速度沿射线AD向点C运动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,点Q到达点D所在的位置后停止运动.点P和点Q同时出发,点Q运动的时间为t 秒.(1)求线段AD的长度;(2)当点C恰好为PQ的中点时,求t的值;(3)当PQ=7厘米时,求t的值.5.已知AB=8,点P从点A出发,以每秒2个单位长度的速度沿射线AB运动,M为线段AP的中点.设点P的运动时间为t秒.(1)若点P在线段AB上,则t=秒时,PB=2AM.(2)若点P在AB的延长线上(如图),设线段BP的中点为N.①线段MN的长度是否保持不变?请说明理由;②是否存在t的值,使M、N、B三点中的某个点是其余两点所连线段的中点?若存在,求出所有满足条件的t的值;若不存在,请说明理由.6.如图所示,点A,B,C是数轴上的三个点,且A,B两点表示的数互为相反数,AB=12,AC=13AB.(1)点A表示的数是;(2)若点P从点B出发沿着数轴以每秒2个单位的速度向左运动,则经过秒时,点C 恰好是BP的中点;(3)若点Q从点A出发沿着数轴以每秒1个单位的速度向右运动,线段QB的中点为M.当MC =2QB时,则点Q运动了多少秒?请说明理由.三.行程类之一般相遇、追及7.M、N两地相距600km,甲、乙两车分别从M、N两地出发,沿一条公路匀速相向而行,甲与乙的速度分别为100km/h和20km/h,甲从M地出发,到达N地立刻调头返回M地,并在M地停留等待乙车抵达,乙从N地出发前往M地,和甲车会合.(1)求两车第二次相遇的时间;(2)求甲车出发多长时间,两车相距20km.8.甲、乙两地相距72km,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以v1km/h、v2km/h 的速度匀速驶往乙地.工程车到达乙地后停留了2h,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)v1=,v2=;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km?四.行程类之车过隧道大桥9.一列匀速前进的火车,通过列车隧道.(1)如果通过一个长300米的隧道AB,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;(2)如果火车以相同的速度通过了另一个隧道CD,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD的长.10.一列动车以300km/h的速度过第一、第二个隧道,已知第二个隧道的长度比第一个隧道长度的2倍还多1.5km,若该列动车过第二个隧道比第一个隧道多用了93秒,则第二个隧道的长度是.五.行程类之顺水逆水11.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)12.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.六.工程类13.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?14.由于地铁施工,需要拆除我校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?七.方案设计类15.为了更好地落实“双减”政策,丰富学生课后托管服务内容,某校决定购买一批足球运动装备.经市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等.(1)求每套队服和每个足球的价格各是多少?(2)甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.若该校购买100套队服和a个足球(其中a≥10且为整数),请通过计算说明,学校采用哪种优惠方案更省钱?①请用含a的式子表示:甲商城所花的费用,乙商城所花的费用;②当购买的足球数a为何值时在两家商场购买所花的费用一样?16.为举办校园文化节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不足90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?(3)如果甲班有10名同学被调去参加书画比赛不能参加演出,请你为两班设计一种最省钱的购买服装方案.17.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)据环保组织调查统计,全市至少有6×105个水龙头、2×104个抽水马桶漏水.若一万个漏水的水龙头一个月能漏掉a立方米水;一万个漏水的马桶一个月漏掉b立方米水,则全市一个月仅这两项所造成的水流失量是多少?(2)针对居民用水浪费现象,市政府将制定居民用水标准:规定每个三口之家每月的标准用水量,超过标准部分加价收费.若不超标部分的水价为每立方米3.5元;超标部分为每立方米4.2元.某家庭某月用水12立方米,交水费44.8元,请你通过列方程求出我市规定的三口之家每月的标准用水量为多少立方米.(3)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:每天8:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日8:00为用水低谷期,水价可定为每立方米3.2元.若某三口之家按照此方案需支付的水费与(2)问所交水费相同,又知该家庭用水高峰期的用水量比低谷期少20%.请计算哪种方案下的用水量较少?少多少?18.列一元一次方程解应用题.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?八.日常生活中的方程--水电类19.列方程解应用题:为了加强公民的节水意识,某市将要采用价格调控手段达到节水目的,设计了如下的调控方案.价目表每月用水量单价不超出10吨的部分 2.5元/吨超出10吨的部分3元/吨(1)甲户居民五月份用水12吨,则水费为元.(2)乙户居民八月份缴纳水费40元,则该户居民八月份用水多少吨?(列方程解答)20.近日,无锡市发展改革委印发《关于优化调整居民阶梯气价政策有关事项的通知》,从2022年1月1日起,增加一、二档用气量,“一户多人口”政策同步调整.气量分档年用气量(立方米)价格(元/立方米)调整前调整后第一档年用气量≤300年用气量≤400 2.73第二档300<年用气量≤600400<年用气量≤1000 3.28第三档年用气量>600年用气量>1000 3.82人口超过4人的家庭,每增加1人,一、二档上限增加80立方米、200立方米(原政策一、二档上限增加60立方米、120立方米).(1)若小明家有5口人,年用气量1000立方米.则调整前气费为元,调整后气费为元;(2)小红家有4口人,若调整后比调整前气费节省109元,则小红家年用气量为多少立方米?九.(易错题型)利润,购物类21.某超市第一次用3800元购进了甲、乙两种商品,其中甲种商品40件,乙种商品160件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为25元/件.(1)甲、乙两种商品每件进价各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完,可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多160元,那么a的值是多少?22.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:甲超市乙超市消费金额(元)优惠活动消费金额(元)优惠活动0~100(包含100)无优惠0~200(包含200)无优惠100~350(包含350)一律享受九折优惠大于200超过200元的部分享受八折优惠大于350一律享受八折优惠(1)小王需要购买价格为240元的商品,去哪家店更划算?(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?23.某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:价格\类型A型B型进价(元/个)3565标价(元/个)50100(1)这两种玻璃保温杯各购进多少个?(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?24.初一(1)班和初一(2)班的学生为了筹备班级元旦活动到超市上购买橙子,超市有促销活动,如果一次性所购橙子数量超过30千克,可以有一定程度的优惠,价格如下:原价优惠价每千克价格3元 2.5元1班的学生先购买一次,发现数量不够,去超市再次购买,第二次购买数量多于第一次,两次共计购买48千克,2班的学生一次性购买橙子48千克.(1)若1班的学生第一次购买16千克,第二次购买32千克,则2班比1班少付多少元?(2)若1班两次共付费126元,则1班第一次、第二次分别购买橙子多少千克?一.数字类1.列方程解应用题:一个两位数,个位数字是十位数字的2倍,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数大36,求原来的两位数.试题分析:设原来十位上的数字为x,则个位数字为2x.利用新数=原数+36,列方程求解即可.答案详解:解:设原来十位上的数字为x,依题意得:10×2x+x=10x+2x+36,解得x=4,则2x=8.答:原来的两位数是48.2.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是26.试题分析:设十位数字为x,个位数字为x+4,根据数字问题的数量关系建立方程组求出其解即可.答案详解:解:设十位数为x,个位数字为x+4,根据题意得:10x+x+4=3(x+x+4)+2,解得:x=2,则这个两位数是26;所以答案是:26.3.有一个两位数,个位上的数比十位上的数大5,如果把这个两位数的两个数字的位置对换,那么所得的新数与原数的和是143.求这个两位数.试题分析:设这个两位数的十位为x,个位为(x+5),根据这个两位数的两个数字的位置对换所得的新数与原数的和是143,即可得出关于x的一元一次方程,解之即可得出结论.答案详解:解:设这个两位数的十位为x,个位为(x+5),根据题意得:10x+(x+5)+10(x+5)+x=143,解得:x=4,∴x+5=9.答:这个两位数是49.二.(超级经典题型)方程与数轴的融合4.如图,线段AB =28厘米,点D 和点C 在线段AB 上,且AC :BC =5:2,DC :AB =1:4.点P 从点A 出发以4厘米/秒的速度沿射线AD 向点C 运动,点P 到达点C 所在位置后立即按照原路原速返回,到达点D 所在位置后停止运动,点Q 从点B 出发以1厘米/秒的速度沿着射线BC 的方向运动,点Q 到达点D 所在的位置后停止运动.点P 和点Q 同时出发,点Q 运动的时间为t 秒.(1)求线段AD 的长度;(2)当点C 恰好为PQ 的中点时,求t 的值; (3)当PQ =7厘米时,求t 的值.试题分析:(1)根据线段间的比例可得AD 和DC 的长,再根据线段的和差可得答案; (2)分三种情况:当0≤t ≤5时,PC =20﹣4t ,CQ =8﹣t ;当5<t ≤274时,PC =4t ﹣20,CQ =8﹣t ,当274<t ≤15时,PC =DC =7,CQ =8﹣t ,再分别列出方程即可;(3)①当0≤t ≤5时,4t +t =28﹣7;②当5<t ≤274时,8+4t ﹣20﹣t =7;③当 274<t ≤15时,7=15﹣t .答案详解:解:(1)∵AB =28cm ,AC :BC =5:2, ∴AC =28×57=20cm ,BC =28﹣20=8cm . ∵DC :AB =1:4, ∴DC =28×14=7cm ,∴AD =AC ﹣DC =20﹣7=13cm ;(2)①当0≤t ≤5时,PC =20﹣4t ,CQ =8﹣t , ∴20﹣4t =8﹣t ,解得t =4; ②当5<t ≤274时,PC =4t ﹣20,CQ =8﹣t , ∴4t ﹣20=8﹣t , 解得t =5.6; ③当274<t ≤15时,PC =DC =7,CQ =8﹣t ,∴7=8﹣t , 解得t =1(舍去).综上,当点C 恰好为PQ 的中点时,t 的值是4或5.6; (3)①当0≤t ≤5时, 4t +t =28﹣7, 解得t =4.2; ②当5<t ≤274时, 8+4t ﹣20﹣t =7, 解得t =193; ③当274<t ≤15时,7=15﹣t , 解得t =8.综上,当PQ =7厘米时,t 的值是4.2或193或8.5.已知AB =8,点P 从点A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为线段AP 的中点.设点P 的运动时间为t 秒.(1)若点P 在线段AB 上,则t = 2 秒时,PB =2AM . (2)若点P 在AB 的延长线上(如图),设线段BP 的中点为N . ①线段MN 的长度是否保持不变?请说明理由;②是否存在t 的值,使M 、N 、B 三点中的某个点是其余两点所连线段的中点?若存在,求出所有满足条件的t 的值;若不存在,请说明理由.试题分析:(1)根据PB=2AM列方程求解即可;(2)①用含有t的代数式表示MN即可判断MN长度是否为定值;②由题知存在点B是MP中点情况列方程求出t值即可.答案详解:解:(1)由题知,PB=AB﹣AP=8﹣2t,AM=12AP=12×2t=t,∵PB=2AM,∴8﹣2t=2t,解得t=2,所以答案是:2;(2)①MN长度不变,理由如下:由题知,MN=12AP−12BP=12×2t−12(2t﹣8)=4,故MN的长度保持不变;②存在,①点B是MN中点时,即BN=12MN,∴12(2t﹣8)=12×4,解得t=6,②点M是BN的中点时,即BN=2BM,∴12(2t﹣8)=2(t﹣8),解得t=12,∴t的值为6或12时,M、N、B三点中的某个点是其余两点所连线段的中点.6.如图所示,点A,B,C是数轴上的三个点,且A,B两点表示的数互为相反数,AB=12,AC=13AB.(1)点A表示的数是﹣6;(2)若点P从点B出发沿着数轴以每秒2个单位的速度向左运动,则经过8秒时,点C恰好是BP 的中点;(3)若点Q 从点A 出发沿着数轴以每秒1个单位的速度向右运动,线段QB 的中点为M .当MC =2QB 时,则点Q 运动了多少秒?请说明理由.试题分析:(1)根据AB =12,且A ,B 两点表示的数互为相反数,直接得出即可; (2)设经过t 秒点C 是BP 的中点,根据题意列方程求解即可; (3)设点Q 运动了x 秒时MC =2QB ,分情况列方程求解即可. 答案详解:解:(1)∵AB =12,且A ,B 两点表示的数互为相反数, ∴点A 表示的数是﹣6, 所以答案是:﹣6;(2)∵AB =12,AC =13AB , ∴AC =4,BC =8,设经过t 秒点C 是BP 的中点, 根据题意列方程得2t =8+8, 解得t =8, 所以答案是:8;(3)设点Q 运动了x 秒时MC =2QB , ①当Q 点在B 点左侧时,即CQ =32BQ , 根据题意列方程得t ﹣4=32(12﹣t ), 解得t =445; ②当Q 点在B 点右侧时,即BC +12BQ =2BQ , 根据题意列方程得8+12(t ﹣12)=2(t ﹣12), 解得t =523; 综上,当Q 运动了445秒或523秒时MC =2QB .三.行程类之一般相遇、追及7.M、N两地相距600km,甲、乙两车分别从M、N两地出发,沿一条公路匀速相向而行,甲与乙的速度分别为100km/h和20km/h,甲从M地出发,到达N地立刻调头返回M地,并在M地停留等待乙车抵达,乙从N地出发前往M地,和甲车会合.(1)求两车第二次相遇的时间;(2)求甲车出发多长时间,两车相距20km.试题分析:(1)设经过x小时两车第二次相遇,根据“甲车行驶路程减去乙车行驶路程=600”列方程求解;(2)设甲车出发t小时与乙车相距20km,分第一次相遇前、后,第二次相遇前、后及甲车到达M地停留等待乙车抵达时五种情况,列方程求解.答案详解:解:(1)设经过x小时两车第二次相遇,由题意可得:100x﹣20x=600,解得:x=7.5,答:两车经过7.5小时第二次相遇;(2)设甲车出发t小时与乙车相距20km,①两车第一次相遇前,100t+20t=600﹣20,解得:t=29 6;②两车第一次相遇后且甲车还未到达N地,100t+20t=600+20,解得:t=31 6;③甲车到达N地返回M地至两车第二次相遇前,100t﹣20t=600﹣20,解得:t=29 4;④甲车到达N地返回M地至两车第二次相遇后,100t﹣20t=600+20,解得:t=31 4;⑤甲车达到N地等待乙车抵达时,20t=600﹣20,解得:t =29, 综上,甲车出发296时或316时或294时或314时或29时,两车相距20km .8.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以v 1km /h 、v 2km /h 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)v 1= 36km /h ,v 2= 12km /h ; (2)求出发多长时间后,两车相遇? (3)求出发多长时间后,两车相距30km ?试题分析:(1)分别用两车行驶路程除以行驶时间即可得到两车的速度; (2)设出发x 小时后两车相遇,可得 36(x ﹣2)+12x =72×2,即可解得答案;(3)设出发t 小时后两车相距30km ,分三种情况:①在工程车还未到达乙地,即当0<t <2时,36t ﹣12t =30,②在工程车在乙地停留,即当2≤t ≤4时,12t +30=72,③在工程车返回甲地的途中,即当4<t ≤6时,未相遇时:36(t ﹣2)+12t +30=72×2,相遇后:36(t ﹣2)+12t ﹣30=72×2,即可分别解得答案.答案详解:解:(1)由题意得:v 1=72×212−6−2=36(km /h ),v 2=7212−6=12(km /h ), 所以答案是:36km /h ,12km /h ; (2)设出发x 小时后两车相遇, 根据题意得:36(x ﹣2)+12x =72×2, 解得x =92,答:出发92小时后两车相遇;(3)设出发t 小时后两车相距30km ,①在工程车还未到达乙地,即当0<t <2时,36t ﹣12t =30,解得t =54; ②在工程车在乙地停留,即当2≤t ≤4时,12t +30=72,解得t =72;③在工程车返回甲地的途中,即当4<t ≤6时,未相遇时:36(t ﹣2)+12t +30=72×2,解得t =318(不合题意,舍去),相遇后:36(t ﹣2)+12t ﹣30=72×2,解得t =418;答:出发54、72、418小时,两车相距30km .四.行程类之车过隧道大桥9.一列匀速前进的火车,通过列车隧道.(1)如果通过一个长300米的隧道AB ,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;(2)如果火车以相同的速度通过了另一个隧道CD ,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD 的长.试题分析:(1)等量关系为:(隧道长度+火车长度)÷15=火车长度÷2.5; (2)等量关系为:隧道的长度CD =火车的长度+行驶的路程. 答案详解:解:(1)解:设这列火车的长度是x 米. 由题意得:(300+x )÷15=x ÷2.5, 解得:x =60.答:这列火车的长度是60米.(2)根据题意知,602.5×20+60=540(米).所以,CD 的长为540米.10.一列动车以300km /h 的速度过第一、第二个隧道,已知第二个隧道的长度比第一个隧道长度的2倍还多1.5km ,若该列动车过第二个隧道比第一个隧道多用了93秒,则第二个隧道的长度是 14km .试题分析:根据题意可以列出相应的方程,注意单位要统一. 答案详解:解:设第一个隧道长度是xkm ,x 300×3600=2x+1.5300×3600−93,解得,x =6.25, ∴2x +1.5=14, 所以答案是:14km .五.行程类之顺水逆水11.某人乘船由A 地顺流而下到达B 地,然后又逆流而上到C 地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A 、B 、C 三地在一条直线上,若AC 两地距离是2千米,则AB 两地距离多少千米?(C 在A 、B 之间) 试题分析:根据路程、速度、时间之间的关系列出方程即可解答.答案详解:解:设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米. 根据题意,得x 8+2+x−28−2=3解得 x =252. 答:AB 两地距离为252千米.12.一只汽艇从A 码头顺流航行到B 码头用2小时,从B 码头返回到A 码头,用了2.5小时,如果水流速度是3千米/时,求: (1)汽艇在静水中的速度; (2)A 、B 两地之间的距离.试题分析:(1)可设汽艇在静水中的平均速度是x 千米/小时,根据等量关系:甲码头到乙码头的路程是一定的,列出方程求解即可; (2)根据速度、时间、路程间的关系解答.答案详解:解:(1)设汽艇在静水中的速度为xkm /h .由题意,得 2(x +3)=2.5(x ﹣3) ﹣0.5x =﹣13.5 x =27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x +3)=2(27+3)=60(千米) 答:A 、B 两地之间的距离是60千米.六.工程类13.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?试题分析:由题意甲工程队单独做此工程需4个月完成,则知道甲每个月完成14,乙工程队单独做此工程需6个月完成16,当两队合作2个月时,共完成(2×14+2×16),设乙工程队再单独做此工程需x 个月能完成,则根据等量关系甲完成的+乙完成的=整个工程,列出方程式即可. 答案详解:解:设乙工程队再单独需x 个月能完成, 由题意,得2×14+2×16+16x =1. 解得x =1.答:乙工程队再单独需1个月能完成.14.由于地铁施工,需要拆除我校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 试题分析:设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 答案详解:解:设先安排整理的人员有x 人, 根据题意得:130x +130×2(x +6)=1, 解得:x =6.答:先安排整理的人员有6人.七.方案设计类15.为了更好地落实“双减”政策,丰富学生课后托管服务内容,某校决定购买一批足球运动装备.经市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等. (1)求每套队服和每个足球的价格各是多少?(2)甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.若该校购买100套队服和a 个足球(其中a ≥10且为整数),请通过计算说明,学校采用哪种优惠方案更省钱?①请用含a的式子表示:甲商城所花的费用100a+14000,乙商城所花的费用80a+15000;②当购买的足球数a为何值时在两家商场购买所花的费用一样?试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)①根据题意列式子即可;②根据甲、乙两商场的优惠方案即可求解;答案详解:解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)①甲商场购买所花的费用为:150×100+100(a−10010)=100a+14000(元),乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);所以答案是:100a+14000;80a+15000;②两家商场购买所花的费用一样时,100a+14000=80a+15000,解得a=50,答:购买的足球数a为50时在两家商场购买所花的费用一样.16.为举办校园文化节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不足90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?(3)如果甲班有10名同学被调去参加书画比赛不能参加演出,请你为两班设计一种最省钱的购。
初一数学列方程组解应用题(含答案)
列方程组解应用题知识框架一、列方程解应用题的主要步骤(1) 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系;(2) 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;(3) 找到题目中的等量关系,建立方程;(4) 解方程;(5) 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 重难点(1) 设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量(2) 用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量(3) 找准等量关系,构建方程(明显的等量关系与隐含的等量关系)例题精讲一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。
每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。
【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?【考点】列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩, 将两式相加,得9()243x y +=,则27(2)x y +=,⑴ 4-⨯⑶,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⑴+⑵,得:230x =,于是15x =.将15x =代入⑴或⑵,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【巩固】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【考点】列方程组解应用题【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【例 4】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题【解析】 5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 5】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩ ⑵式整理得416x y +=,则164x y =-;代入⑴得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【例 6】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩ 由()1式知,a 是奇数,且小于17.()2式可化简为由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【例 7】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服.【例 8】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x y y -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米二、设而不求【例 9】 10位小学生的平均身高是1.5米,其中有些低于1.5米的,他们的平均身高是1.2米;另一些高于1.5米的,平均身高是1.7米,那么最多有________位同学的身高恰好是1.5米.【考点】列方程组解应用题【解析】 设身高低于1.5米的有x 人,身高高于1.5米的有y 人,则:1.2 1.7 1.5()x y x y +=+,得32x y =,所以x 最小为2,y 最小为3,身高恰好是1.5米的同学最多有10(23)5-+=人.【答案】身高恰好是1.5米的同学最多有5人【巩固】 庙里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,平均每个和尚每天恰好吃一个馒头.问:庙里至少有多少个和尚?【考点】列方程组解应用题【解析】 设庙里有7x 个大和尚,29y 个小和尚,则共吃()4111x y +个馒头.由“平均每个和尚每天恰好吃一个馒头”,可列方程:7294111x y x y +=+,化简为179x y =.当9x =,17y =时和尚最少,有792917556⨯+⨯=(个)和尚.【答案】至少有556个和尚【例 10】 某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多多少分?【考点】列方程组解应用题【解析】 设原来一等奖的平均分为x 分,二等奖的平均分为y 分,得:10(104)(3)(204)(1)20x x y y --⨯+=++-418424x y -=+4442x y =+10.5x y =+,即原来一等奖平均分比二等奖平均分多10.5分.【答案】原来一等奖平均分比二等奖平均分多10.5分【巩固】 有两个学生参加4次数学测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第5次测验,这样5次的平均分数都提高到了90分.求第5次测验两人的得分.(每次测验满分为100分)【考点】列方程组解应用题【解析】 设某一学生前4次的平均分为x 分,第5次的得分为y 分,则其5次总分为4905450x y +=⨯=,于是4504y x =-.显然90100y <≤,故904504100x <-≤,解得87.590x ≤<.由于x 为整数,可能为88和89,而且这两个学生前4次的平均分不同,所以他们前4次的平均分分别为88分和89分,那么他们第5次的得分分别为:45088498-⨯=分;45089494-⨯=分.【答案】第5次的得分分别为:98分;94分【例 11】 购买3斤苹果,2斤桔子需要6.90元;购买8斤苹果,9斤桔子需要22.80元,那么苹果、桔子各买1斤需要 元.【考点】列方程组解应用题【关键词】2008年,第六届,希望杯,1试,六年级【解析】 假设购买1斤苹果、桔子分别需要x 元、y 元,则:32 6.98922.8x y x y +=⎧⎨+=⎩, 两式相加得111129.7x y +=,即 2.7x y +=。
初一数学解方程题及答案
初一数学解方程题及答案1、A、B两个车站相距240千米,一公共汽车从A站开出,每小时行驶48千米,一小轿车从B站开出,每小时行驶72千米.小轿车从B站开出1小时后,客车从A站开出,两车相向而行,几小时后两车相遇?设两车x小时后相遇.72x1+(72+48)x=240120x=168x=1.42、一拖拉机准要去拉货,每小时走30千米,出发30分钟后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?设小轿车用x小时可以追上拖拉机.50x=30x+30x1/220x=15x=0.753、甲乙两人在10km的环行公路上跑步,甲每分跑230m,乙每分跑170m.(1).若两人同时同地同向出发,经过多少时间首次相遇?(2).若甲先跑10min,乙再同地同向出发,还需多长时间两人首次相遇?(3).若两人同时同地同向出发,经过多长时间第二次相遇?解:(1)第一次相遇也就是甲比乙恰好多跑一圈,设经过t时间.230t-170t=10000解得t=500/3分钟(2)甲先跑10分钟,就跑了230*10=2300米,不到10km,那么他们第一次相遇也是甲比乙恰好多跑一圈230*10+230t-170t=10000解得t=385/3分钟(3)230t-170t=20000解得t=1000/3分钟4、飞机在两城市之间飞行,顺风返回要4h,逆风返回要5h,飞机在静风中速度为360km/h.求风速及两城市之间的距离.解:设风速为v,两城市距离为ss/(360+v)=4s/(360-v)=5解得v=40km/h s=1600km5、一轮船从甲地顺流而下8h到达乙地,原路返回要12h才能到达甲地.一直水流速度是每小时3km,求甲乙两地的距离.(1).设间接未知数解方程:设船在静水中的速度为x km/h,则船在顺水中的速度为_,船在逆水中的速度为_.列出相应的方程为_______.解得:x=_.从而得两码头之间的距离为_km.(2)设直接未知数列方程:设甲乙两码头的距离为x km,则船在顺水中的速度为__,船在逆水中的速度为__,列出相应的方程为______,解得两码头之间的距离为_km.解:(1)x+3 x-3 8*(x+3)=12*(x-3)15km/h 144(2)x/8 x/12 x/8-3=x/12+3 1446、某部队士兵以每小时4km的速度从部队步行到市中心广场去参加公益活动,走了1.5h后,小马奉命回部队取一件东西,他以每小时6km的速度回部队取了东西后又以同样的速度追赶队伍,结果在距广场2km处追上队伍,求某部队与市中心广场的距离.解:设距离为s,那么在距广场2km的地方就是s-2.部队是一直在走,所以这段路程总共用时(s-2)/4小马是先随着大队伍走了1.5h后折回再追上大队伍,跟着大队伍走了1.5h,然后折回原地用时1.5*4/6=1h,然后小马从原地追到距广场2km处,用时(s-2)/6,所以小马的总用时为1.5+1+(s-2)/6大队伍和小马的用时应该是一样的,所以(s-2)/4=1.5+1+(s-2)/6解得s=327、船在静水中的速度为16im/h,水流速度为2km/h,上午8点逆流而上,问这船最多开出多远就应返回,才能保证中午12点前回到出发地?解:设开出x km,恰好能在12点回到出发地,那么来回总共用时4个小时x/(16-2)+x/(16+2)=4解得x=31.58、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解:设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.说明:这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中mn.9、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解:根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答:需要进货100件,每件商品应定价25元.说明:商品的定价问题是商品交易中的重要问题,也是各种考试的热点.10、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解:设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答:第一次存款的年利率约是2.04%.说明:这里是按教育储蓄求解的,应注意不计利息税.11、一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解:设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答:渠道的上口宽2.5m,渠深1m.说明:求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.初中数学列方程解应用题知识点汇总一.列方程解应用题的一般步骤:1.认真审题:分析题中已知和未知,明确题中各数量之间的关系;2.寻找等量关系:可借助图表分析题中的`已知量和未知量之间关系,找出能够表示应用题全部含义的相等关系;3.设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法;4.列方程:根据这个相等关系列出所需要的代数式,从而列出方程注意它们的量要一致,使它们都表示一个相等或相同的量;列方程应满足三个条件:方程各项是同类量,单位一致,左右两边是等量;5.解方程:解所列出的方程,求出未知数的值;6.写出答案:检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。
七年级上册数学解方程应用题
七年级上册数学解方程应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 解析:- 设甲出发t秒与乙相遇。
- 甲先走12米后,两人共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度和×时间,可列方程(8 + 6)t=285 - 12。
- 化简得14t = 273,解得t=(273)/(14)=19.5秒。
2. 一辆汽车从A地到B地,若每小时行45千米,就要比原计划晚0.5小时到达;若每小时行50千米,就可比原计划提前0.5小时到达。
求A、B两地的距离。
- 解析:- 设原计划用x小时到达。
- 根据路程相等,可列方程45(x + 0.5)=50(x - 0.5)。
- 展开括号得45x+22.5 = 50x - 25。
- 移项得50x - 45x=22.5 + 25。
- 合并同类项得5x = 47.5,解得x = 9.5小时。
- 那么A、B两地的距离为50×(9.5 - 0.5)=450千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 解析:- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
- 两人合作4天的工作量为((1)/(10)+(1)/(15))×4,乙单独做x天的工作量为(1)/(15)x,可列方程((1)/(10)+(1)/(15))×4+(1)/(15)x = 1。
- 先计算((1)/(10)+(1)/(15))×4=((3 + 2)/(30))×4=(2)/(3)。
- 方程变为(2)/(3)+(1)/(15)x=1,移项得(1)/(15)x = 1-(2)/(3),(1)/(15)x=(1)/(3),解得x = 5天。
初一方程应用题及答案
初一方程应用题及答案1. 问题:小明的爸爸给他买了一个篮球和一个足球,篮球的价格是足球价格的两倍。
如果篮球和足球的总价是240元,那么篮球的价格是多少?解答:设足球的价格为x元,则篮球的价格为2x元。
根据题意,我们可以得到方程:x + 2x = 2403x = 240x = 240 ÷ 3x = 80因此,足球的价格是80元,篮球的价格是2x = 160元。
答案:篮球的价格是160元。
2. 问题:一个班级有40名学生,其中男生人数是女生人数的两倍。
问这个班级有多少名男生?解答:设女生人数为x,则男生人数为2x。
根据题意,我们可以得到方程:x + 2x = 403x = 40x = 40 ÷ 3x = 13.33由于人数必须是整数,我们取最接近的整数,即女生人数为13人,男生人数为2x = 26人。
答案:这个班级有26名男生。
3. 问题:一个长方形的长是宽的3倍,如果长方形的周长是40厘米,那么长方形的长和宽分别是多少?解答:设长方形的宽为x厘米,则长为3x厘米。
根据周长公式,我们可以得到方程:2(x + 3x) = 408x = 40x = 40 ÷ 8x = 5因此,长方形的宽是5厘米,长是3x = 15厘米。
答案:长方形的长是15厘米,宽是5厘米。
4. 问题:一个数的3倍减去4等于这个数的2倍加上6,求这个数。
解答:设这个数为x,根据题意,我们可以得到方程:3x - 4 = 2x + 63x - 2x = 6 + 4x = 10答案:这个数是10。
5. 问题:一个工厂生产两种产品,A产品每件利润是20元,B产品每件利润是30元。
如果工厂一天生产了100件产品,总利润是3000元,那么工厂生产了多少件A产品?解答:设工厂生产了x件A产品,则生产了100-x件B产品。
根据题意,我们可以得到方程:20x + 30(100 - x) = 300020x + 3000 - 30x = 3000-10x = 0x = 0但是,x=0不符合题意,因为工厂至少生产了一件A产品。
初一数学列方程解应用题归类含答案
初一数学列方程解应用题归类含答案Modified by JEEP on December 26th, 2020.列方程解应用题销售问题1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。
4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。
则进价为每件多少元5、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折6、某种商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了还是赔了7.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元现售价是多少元工程问题1、一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成2、一项工程A、B两人合作6天可以完成。
如果A先做3天,B再接着做7天,可以完成,B单独完成这项工程需要多少天3.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件4.一件工作,甲单独完成需小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务1,一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天人员调配、配套问题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母2、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人3.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套4.某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套行程问题1、甲、乙两站的铁路长685千米,两列火车同时从两站相向开出,慢车每小时行千米,快车每小时行千米,它们各行完全程后,立即返回,经过多少小时这两车在返回途中相遇2、A,B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。
7年级方程应用题及答案
7年级方程应用题及答案7年级方程应用题及答案列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。
以下是7年级方程应用题及答案,欢迎阅读。
1.一辆汽车,从甲地到乙地.如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达.问甲乙两地的距离及原计划行驶的时间.2.小红、小乔买了一本习题集,利用暑假做习题.小红做了364道,小乔做了228道后剩下的题目正好是小红剩下的.2倍,问此书共有多少习题?3.父亲今年47岁,儿子今年20岁,问几年以前,父亲的年龄是儿子年龄的4倍?4.一个植树小组去栽树,如果每人栽5棵,还剩下14棵树苗;如果每人栽7棵,就缺少4棵树苗.问这个小组有多少人?一共有多少棵树苗?5.甲、乙、丙三人现在的岁数的和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,求乙的年龄.6.甲、乙、丙、丁四人一共做了370个零件,如果把甲做的个数加10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,四人做的零件数就正好相等,那么乙实际做了多少个?7.有一辆公共汽车从始站出发,车上每个座位上坐着一位乘客,没有站着,那么车上的座位数是多少呢?仅供参考:1.设原计划行驶x小时,则45×(x+0.5)=50×(x-0.5)45x+22.5=50x-2550x-45x=25+22.5x=9.5代入50×(x-0.5)=5×(9.5-0.5)=450所以原计划行驶9.5小时,两地相距450千米.2.设此书共有x道习题,则(x-364)×2=x-2282x-728=x-228x=728-228x=500所以此书共有500道习题.3.设x年以前,父亲的年龄是儿子年龄的4倍,则47-x=(20-x)×447-x=80-4x4x-x=80-473x=33x=11所以11年前,父亲的年龄是儿子年龄的4倍.4.设植树小组有x人,则5x+14=7x-47x-5x=14+42x=18x=9代入5x+14=5×9+14=59所以这个小组有9人,共有59棵树苗.5.设甲比乙小x岁,当甲是x岁时,由题意知,乙是2x岁,丙是38岁,当甲17岁时,乙的岁数是x+17岁,丙是2(x+17)岁,由甲、丙的岁数差可得:38-x=2(x+17)-1738-x=2x+34-1738-x=2x+173x=21x=7所以甲7岁时,乙14岁,丙是38岁.设已从14岁到现在经过y年,则(7+y)+(14+y)+(38+y)=113 59+3y=1133y=54y=1814+18=32所以乙现在的年龄是32岁.6.由题意知:甲+10=乙-20=丙×2=。
初一解方程计算题及答案
初一解方程计算题及答案在初中数学中,解方程是一个重要的概念和技能。
解方程是指找到使等式成立的未知数的值。
在初一阶段,学生们通常会学习到简单的一元一次方程的解法。
本文将提供一些初一阶段常见的解方程计算题及其答案,以帮助学生们巩固解方程的知识。
1. 问题:求解方程3x + 4 = 19解析:首先,我们可以将等式3x + 4 = 19变形为3x = 19 - 4,即3x = 15。
然后,我们通过除以3来求得x的值,即x = 15 ÷ 3,因此x = 5。
答案:x = 52. 问题:求解方程5 - 2y = 11解析:不同于第一个问题,这个方程中未知数y在等式左边。
我们可以将等式5 - 2y = 11变形为-2y = 11 - 5,即-2y = 6。
然后,通过除以-2来求得y的值,即y = 6 ÷ -2,因此y = -3。
答案:y = -33. 问题:求解方程2x + 3 = 4x - 5解析:这是一个含有未知数x的方程,等式两边都有x。
为了解方程,我们需要将x放在等式的一边。
我们可以开始通过减去2x和加上5来移项,得到5 + 3 = 4x - 2x。
简化后得到8 = 2x。
然后通过除以2来求得x的值,即x = 8 ÷ 2,因此x = 4。
答案:x = 44. 问题:求解方程2(x + 3) = 14 - 2x解析:这个方程中含有括号。
首先,我们可以通过乘法分配律将方程展开为2x + 6 = 14 - 2x。
接下来,我们可以将含有x的项移到等式的一边,得到2x + 2x = 14 - 6。
简化后得到4x = 8。
然后通过除以4来求得x的值,即x = 8 ÷ 4,因此x = 2。
答案:x = 25. 问题:求解方程3(x - 4) = 2(x + 1)解析:在这个方程中,我们需要先展开括号,然后继续移项和化简。
首先,我们可以通过乘法分配律展开括号,得到3x - 12 = 2x + 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题
销售问题
1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?
2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?
3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。
4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。
则进价为每件多少元?
5、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折?
6、某种商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了还是赔了?
7.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元?现售价是多少元?
工程问题
1、一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?
2、一项工程A、B两人合作6天可以完成。
如果A先做3天,B再接着做7天,可以完成,B单独完成这项工程需要多少天?3.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件?
4.一件工作,甲单独完成需7.5小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?1,一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天
人员调配、配套问题
1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
2、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
3.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套?
4.某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
行程问题
1、甲、乙两站的铁路长685千米,两列火车同时从两站相向开出,慢车每小时行68.8千米,快车每小时行71.2千米,它们各行完全程后,立即返回,经过多少小时这两车在返回途中相遇?
2、A,B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。
已知小军骑车比小明步行每分钟多行130米,小明每分钟步行多少米。
3、一只小船从甲港开往乙港顺水而行,每小时行28千米,到乙港后又逆水而行,回到甲港,逆水比顺水多行2小时,已知水速每小时4千米,求甲、乙两港相距多少千米?
4、爸爸和小光两人在400米环形跑道上练练习长跑,爸爸的速度为200米/分钟,小光速度为爸爸的一半,两人从起点同时同向出发,爸爸经过多长时间第一次追上小光?。