线性规划问题求解方法27页PPT
合集下载
线性规划PPT课件
线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
第一章线性规划问题及单纯形解法演示文稿
线性规划问题的可行解集S是凸集 设X属于S,若x=0,则一定为极点;若x 0,则为极点的充要条件是:x的正分量所 对应的系数列向量线性无关。
只要存在可行解,就一定存在极点
极点的个数是有限的
最优解只可能在凸集的极点上,而不可能发生 在凸集的内部
38
第38页,共65页。
关于标准型解的若干基本概念:
Z=15x11+21x12+18x13+
20x21+25x22+16x23, x11+x12+x13≤200, x21+x22+x23≤150, x11+ x21 =100, x12+x22=80, x13+x23≥90, x13+x23≤120, xij≥0 ﹙i=1,2 j=1,2,3﹚.
10
第10页,共65页。
maxz( x) c x c x c x
11
22
nn
s.t.
a x a x a x b
11 1
12 2
1n n
1
ax 21 1
a x 22 2
a x 2n n
b 2
am1
x 1
a x m2 2
a x mn n
b m
x , x ,, x 0
1
2
n
12
第12页,共65页。
1、标准型的几种不同的表示方式
对有限个约束条件则其可行域的顶点也是有限的。
z=10000=50x1+100x
2
z=0=50x1+100x2
x2
x1+x2=300
AB C
E
z=27500=50x1+100x
只要存在可行解,就一定存在极点
极点的个数是有限的
最优解只可能在凸集的极点上,而不可能发生 在凸集的内部
38
第38页,共65页。
关于标准型解的若干基本概念:
Z=15x11+21x12+18x13+
20x21+25x22+16x23, x11+x12+x13≤200, x21+x22+x23≤150, x11+ x21 =100, x12+x22=80, x13+x23≥90, x13+x23≤120, xij≥0 ﹙i=1,2 j=1,2,3﹚.
10
第10页,共65页。
maxz( x) c x c x c x
11
22
nn
s.t.
a x a x a x b
11 1
12 2
1n n
1
ax 21 1
a x 22 2
a x 2n n
b 2
am1
x 1
a x m2 2
a x mn n
b m
x , x ,, x 0
1
2
n
12
第12页,共65页。
1、标准型的几种不同的表示方式
对有限个约束条件则其可行域的顶点也是有限的。
z=10000=50x1+100x
2
z=0=50x1+100x2
x2
x1+x2=300
AB C
E
z=27500=50x1+100x
简单线性规划最终版课件
【解题回顾】要能从实际问题中, 建构有关线 性规划问题的数学模型.关键求出 约束条件和目标函数.
32
解: 设投资方对甲、乙两个项目各投资x、y万元
依题意线性约束条件为: x y 10 目标函数为:Z x 0.5 y
3 x y 18
x
0
y 0
作出可行域
可知直线Z=x+0.5y通过点A时利润最大
而且还与直线 Z=Ax+By的斜率有关.
19
把问题1的有关数据列表表示如下:
资源
A种配件 B种配件 所需时间 利润(万元)
甲产品 乙产品 资源限额 (1件) (1件)
4
0
16
0
4
12
1
2
8
2
3
设甲,乙两种产品分别生产x,y件,
20
y
4 3
4
0
8x
21
y
4 3
o
22
M
4
8
y
4 3
0
M(4, 2)
由
x y 3x
10 y 18
x y
4 6
A4,6
Zmax 4 6 0.5 7(万元) 答:
33
练习题
1、某厂拟生产甲、乙两种适销产品,每件销售 收入分别为3000元、2000元,甲、乙产品都需 要在A.B两种设备上加工,在每台A.B上加工1件 甲所需工时分别为1h、2h,加工1件乙所需工时 分别为2h,1h.A.B两种设备每月有效使用台时数 分别为400h和500h。如何安排生产可使收入最 大解?: 设每月生产甲产品x件,生产乙产品y件,每
规格类型 钢板类型
第一种钢板
A规格
2
B规格
32
解: 设投资方对甲、乙两个项目各投资x、y万元
依题意线性约束条件为: x y 10 目标函数为:Z x 0.5 y
3 x y 18
x
0
y 0
作出可行域
可知直线Z=x+0.5y通过点A时利润最大
而且还与直线 Z=Ax+By的斜率有关.
19
把问题1的有关数据列表表示如下:
资源
A种配件 B种配件 所需时间 利润(万元)
甲产品 乙产品 资源限额 (1件) (1件)
4
0
16
0
4
12
1
2
8
2
3
设甲,乙两种产品分别生产x,y件,
20
y
4 3
4
0
8x
21
y
4 3
o
22
M
4
8
y
4 3
0
M(4, 2)
由
x y 3x
10 y 18
x y
4 6
A4,6
Zmax 4 6 0.5 7(万元) 答:
33
练习题
1、某厂拟生产甲、乙两种适销产品,每件销售 收入分别为3000元、2000元,甲、乙产品都需 要在A.B两种设备上加工,在每台A.B上加工1件 甲所需工时分别为1h、2h,加工1件乙所需工时 分别为2h,1h.A.B两种设备每月有效使用台时数 分别为400h和500h。如何安排生产可使收入最 大解?: 设每月生产甲产品x件,生产乙产品y件,每
规格类型 钢板类型
第一种钢板
A规格
2
B规格
应用数学基础下课件第二十四章线性规划初步
并使目标函数S 0.25x1 0.15x2取最小值.
线性规划问题的数学模型是前面所述的两类实际问题的
抽象数学形式,反映了客观事物数量的本质规律.在该问题中, 满足所有约束条件的解称为线性规划问题的可行解.全部可行 解的集合称为可行解集.在可行解中,使目标函数取得最大值 或最小值的解,称为最优解.在实际建模过程中,要根据实际 问题,抓住最本质因素,剔除次要因素,建立一个既简单而 又比较真实反映问题本质规律的模型.
最少?
表24-1 运费
/ 元 t 1
粮库
A 1
A 2
需求量/t
粮店
B
B
1
2
18
25
24
22
12
15
供应量/t B
3
20
28
24
29
30
设从Ai粮库运到Bj粮店的粮食为xij (t),其中(i 1, 2; j 1, 2,3), 得
到运量见表24-2.
表24-2 运量
t
粮库
A 1
A 2
需求量/t
粮店
并且所有的xij 0, (i 1, 2; j 1, 2,3).
设S表示总运费,则有
S 18x11 25x12 20x13 21x21 22x22 24x23
故所求问题数学模型为: 求一组变量xij , (i 1, 2; j 1, 2,3)的值, 使其满足条件
x11 x12 x13 28
82xx11
18x2 14x3 2x2 6x3
20x4 80x4
3600 2400
并且x1, x2 , x3, x4均为非负整数.
设S表示总收入,则
S 24x1 40x2 36x3 80x4 于是该问题的数学模型为:
线性规划ppt课件
a11x1+a12x2++a1nxn=b1
a21x1+a22x2++a2nxn=b2
(*)
am1x1+am2x2++amnxn=bm
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
或者更简洁的,利用矩阵与向量记为
max z CT x
s.t. Ax b
(**)
x0
其中C和x为n维列向量,b为m维列向量, b≥0,A为m×n矩阵,m<n且rank(A)=m
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
⑶约束条件为 a11x1+a12x2++a1nxn≥b1 减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有
⑷变量xj无约束。
令xj= xj - xj,对模型中的进行变量代换。
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念
可行解 满足约束条件(包括非负条 件)的一组变量值,称可行解。
所有可行解的集合称为可行域。
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
x0 必非最优解。
证 (1)显然
线性规划PPT优秀课件
y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例 例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例 y
5Hale Waihona Puke 例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
探索结论
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1) 2x+y=3
x-y=7 C(3,6) y=6
线性规划课件ppt
根据实际问题的特点,选择适合的线性规划模型进行建模和优化。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
线性规划完整ppt课件
设变量 x、 y 满足 | x|| y|1,则 x 2 y 的最大值和式训练(三)
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤:
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤:
1.2线性规划求解方法法
止。
运筹学课件
线性规划
例 2.3.1 求解问题
算 例
min z x 2 2 x 3 x1 2 x 2 x 3 2 x 3x x 1 2 3 4 s.t. x2 x3 x5 2 x j 0; j 1,2,...,5
运筹学课件
注释
单纯形法的基本思路: 从可行域中某
一个顶点(即基本可行解)开始,判断此 顶点是否是最优解,如不是,则再找另一 个使得其目标函数值更优的顶点,称之 为迭代,再判断此点是否是最优解。直
单 纯 形 法
到找到一个顶点(基本可行解)为其最优
解,就是使得其目标函数值最优的解, 或者能判断出线性规划问题无最优解为
D {x Ax b, x 0}
是凸集
定理:任意多个凸集的交还是凸集
♂返回
运筹学课件
线性规划
问 题
1.可行域顶点的个数是否有限? 2.最优解是否一定在可行域顶点上达到? 3.如何找到顶点? 4.如何从一个顶点转移到另一个顶点
♂返回
运筹学课定理 问题
基本 可行 解与 基本 定理
基本假设 凸集
可行域的凸性
♂返回
运筹学课件
考虑线性规划的标准形式
线性规划
min c x
基 本 假 设
Ax b s.t. x 0
其中 x, c R n , b R m , A R mn ,并且假定可行域
D {x R n Ax b, x 0} 不空,系数矩阵 A 是行
说 明
♂返回
灵敏度分析:建立数学模型和求得最优解后, 研究线性规 划的一个或多个参数(系数)ci , aij , bj 变化时, 对最优解产生的影响。