“三个二次”之间的关系表

合集下载

新教材高中数学第二章一元二次函数方程和不等式

新教材高中数学第二章一元二次函数方程和不等式

新教材高中数学第二章一元二次函数方程和不等式2.3 二次函数与一元二次方程、不等式最新课程标准要求学生从函数的角度来看待一元二次方程。

学生需要结合一元二次函数的图像,判断一元二次方程实根的存在性及实根的个数,并了解函数的零点与方程根的关系。

此外,学生还需要从函数的角度来看待一元二次不等式。

他们需要通过从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。

他们需要掌握利用一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。

同时,通过一元二次函数的图像,学生还需要了解一元二次不等式与相应函数、方程的联系。

知识点:二次函数与一元二次方程、不等式的解的对应关系当Δ>0时,一元二次方程y=ax^2+bx+c(a>0)有两个不相等的实数根x1,x2(x1<x2);当Δ=0时,有两个相等的实数根x1=x2=-b/2a;当Δ<0时,没有实数根。

当a>0时,二次不等式ax^2+bx+c>0(a>0)的解集为{x|xx2};当ax^2+bx+c0)时,解集为{x|x10时相同。

状元随笔一元二次不等式的解法:1.图像法:当a>0时,解形如ax^2+bx+c>0(≥0)或ax^2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax^2+bx+c=0的解;②画出对应函数y=ax^2+bx+c 的图像简图;③由图像得出不等式的解集。

2.代数法:将所给不等式化为一般式后借助分解因式或配方求解。

当p0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q。

有口诀如下:“大于取两边,小于取中间”。

教材解难]教材P50思考:从函数的角度和方程的角度两个角度来看待一元二次不等式。

从函数的角度来看,一元二次不等式ax^2+bx+c>0表示二次函数y=ax^2+bx+c的函数值大于0,图像在x轴的上方;一元二次不等式ax^2+bx+c>0的解集即二次函数图像在x轴上方部分的自变量的取值范围。

谈三个二次关系及及综合运用--

谈三个二次关系及及综合运用--

谈“三个二次”关系及其综合运用济钢高级中学 杨同才 2011年7月17日 12:29隋宇为于11-7-17 16:02推荐杨老师的文章从最基本的问题入手,通过数形结合的方法将“三个二次”的问题说的很清楚很全面,很有参考价值。

邵丽云于11-7-19 14:28推荐杨老师的“三个二次”关系及其综合运用这篇文章,以二次函数为主线充分论述三个二次间的关系,并对相关问题进行了总结归纳,可见杨老师平时教学的用心,值得学习。

一、”三个二次”的关系”三个二次”指一元二次函数、一元二次方程、一元二次不等式,是中学数学的重要内容,具有丰富的内涵和广泛的应用,在研究二次曲线与直线的位置关系、运用导数解决复杂函数性质等问题时,常常转化成二次方程、二次函数、二次不等式的问题。

”三个二次”将等与不等、数与形紧密的结合在一起,对数形结合思想、函数方程思想、等价转化思想有较高的要求。

因而在高考试题中将近占一半的试题与“三个二次”问题有关,作为教师进一步澄清三者的内在联系对提高学生数学思维水平有很大帮助!“三个二次”中,一元二次函数最为重要,在初中学生就专题学习了二次函数,研究了二次函数的定义、图像、性质和实际问题中的最值,往往作为中考试题的最后一个压轴题。

初中也学习了一元二次方程及其规范解法,如公式法、配方法、因式分解法等。

只有一元二次不等式及解法在初中仅是初步了解。

初中阶段对函数、方程、不等式的学习都是彼此独立的,对于“三个二次”的横向联系缺乏认识。

升入高中才真正揭开三者的内在联系,逐步形成用函数、方程、不等式“三位一体”的思考方式审视问题、解决问题。

在“三个二次”中一元二次函数2y=a +b +c x x 是重点,从它的配方形式22b 4ac-b y=a ++ 2a 4x a ⎛⎫ ⎪⎝⎭中充分反映了函数值y 随自变量x 的变化而变化的规律,可以容易的观察出何时取最值,也能考查出自变量x 取关于2b a-对称值时函数值的取值特点。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

3.3 一元二次不等式及其解法 Word版含解析

3.3 一元二次不等式及其解法 Word版含解析

3.3 一元二次不等式及其解法1.掌握一元二次不等式的解法.(重点)2.能根据“三个二次”之间的关系解决简单问题.(难点)[基础·初探]教材整理1 一元二次不等式的概念阅读教材P74~P74倒数第四行,完成下列问题.1.一元二次不等式的概念一般地,含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.判断(正确的打“√”,错误的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若a>0,则一元二次不等式ax2+1>0无解.()(3)x=1是一元二次不等式x2-2x+1≥0的解.()(4)x2-x>0为一元二次不等式.()【解析】(1)×.当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)×.因为a>0,所以不等式ax2+1>0恒成立,即原不等式的解集为R.(3)√.因为x=1能使不等式x2-2x+1≥0成立.故该说法正确.(4)×.因为一元二次不等式是整式不等式,而不等式中含有x,故该说法错误.【答案】(1)×(2)×(3)√(4)×教材整理2 一元二次不等式、二次函数、二次方程间的关系阅读教材P74倒数第三行~P78练习A以上内容,完成下列问题.三个“二次”的关系:1.不等式x2≤1的解集为________.【解析】令x2-1=0,其两根分别为-1,1,故x2≤1的解集为{x|-1≤x≤1}.【答案】{x|-1≤x≤1}2.不等式2x≤x2+1的解集为________.【解析】2x≤x2+1⇔x2-2x+1≥0⇔(x-1)2≥0,∴x∈R.【答案】R3.设集合M={x|x2-x<0},N={x|x2<4},则M与N的关系为________.【解析】因为M={x|x2-x<0}={x|0<x<1},N={x|x2<4}={x|-2<x<2},所以M N.【答案】M N4.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:【解析】可根据图表求得两个零点为x1=-2,x2=3,结合二次函数的图象(略)求解.【答案】{x|x<-2或x>3}[小组合作型](1)x2-5x>6;(2)4x2-4x+1≤0;(3)-x2+7x>6.【精彩点拨】【自主解答】 (1)由x 2-5x >6,得 x 2-5x -6>0.∵x 2-5x -6=0的两根是x =-1或6. ∴原不等式的解集为{x |x <-1,或x >6}. (2)4x 2-4x +1≤0,即(2x -1)2≤0, 方程(2x -1)2=0的根为x =12. ∴4x 2-4x +1≤0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =12. (3)由-x 2+7x >6,得x 2-7x +6<0, 而x 2-7x +6=0的两个根是x =1或6. ∴不等式x 2-7x +6<0的解集为 {x |1<x <6}.1.在解一元二次不等式中,需求所对应的一元二次方程的根,可借用求根公式法,或“十字相乘法”求解,根据数形结合写出解集.2.解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集.[再练一题]1.解下列不等式:(1)2x2-x+6>0;(2)-12x2+3x-5>0;(3)(5-x)(x+1)≥0.【解】(1)∵方程2x2-x+6=0的判别式Δ=(-1)2-4×2×6<0,函数y=2x2-x+6的图象开口向上,与x轴无交点.∴原不等式的解集为R.(2)原不等式可化为x2-6x+10<0,∵Δ=62-40=-4<0,∴原不等式的解集为∅.(3)原不等式可化为(x-5)(x+1)≤0,∴原不等式的解集为{x|-1≤x≤5}.【精彩点拨】因式分解→比较根的大小→分类讨论求解【自主解答】原不等式转化为(x-2a)(x+a)<0.对应的一元二次方程的根为x1=2a,x2=-a.(1)当a>0时,x1>x2,不等式的解集为{x|-a<x<2a};(2)当a=0时,原不等式化为x2<0,无解;(3)当a<0时,x1<x2,不等式的解集为 {x |2a <x <-a }.综上所述,原不等式的解集为: a >0时,{x |-a <x <2a }; a =0时,x ∈∅; a <0时,{x |2a <x <-a }.1.含参数的不等式的解题步骤 (1)将二次项系数转化为正数;(2)判断相应方程是否有根(如果可以直接分解因式,可省去此步); (3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根的大小).2.解含参数的一元二次不等式(1)若二次项系数含有参数,则需对二次项系数大于0与小于0进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.[再练一题]2.解关于x 的不等式:ax 2-2≥2x -ax (a <0).【导学号:18082046】【解】 原不等式移项得ax 2+(a -2)x -2≥0, 化简为(x +1)(ax -2)≥0. ∵a <0,∴(x +1)⎝ ⎛⎭⎪⎫x -2a ≤0.当-2<a <0时,2a ≤x ≤-1; 当a =-2时,x =-1;当a <-2时,-1≤x ≤2a . 综上所述, 当-2<a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a. [探究共研型]集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?【提示】 y =x 2-2x -3的图象如图所示.函数y =x 2-2x -3的值满足y >0时自变量x 组成的集合,亦即二次函数y =x 2-2x -3的图象在x 轴上方时点的横坐标x 的集合{x |x <-1或x >3};同理,满足y <0时x 的取值集合为{x |-1<x <3},满足y =0时x 的取值集合,亦即y =x 2-2x -3图象与x 轴交点横坐标组成的集合{-1,3}.这说明:方程ax 2+bx +c =0(a ≠0)和不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)是函数y =ax 2+bx +c (a ≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y =0时,函数y =ax 2+bx +c (a ≠0)就转化为方程,当y >0或y <0时,就转化为一元二次不等式.探究2 方程x 2-2x -3=0与不等式x 2-2x -3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?【提示】 方程x 2-2x -3=0的解集为{-1,3}.不等式x 2-2x -3>0的解集为{x |x <-1或x >3},观察发现不等式x 2-2x -3>0解集的端点值恰好是方程x 2-2x -3=0的根.这说明:一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则⎩⎪⎨⎪⎧x 1+x 2=-ba ,x 1x 2=ca ,即不等式的解集的端点值是相应方程的根.若不等式ax 2+bx +c ≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤2,求不等式cx 2+bx+a <0的解集.【精彩点拨】 一元二次不等式解集的两个端点值是一元二次方程的两个根.【自主解答】 法一:由ax 2+bx +c ≥0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13≤x ≤2,知a <0, 又⎝ ⎛⎭⎪⎫-13×2=c a <0,则c >0.又-13,2为方程ax 2+bx +c =0的两个根, ∴-b a =53.∴b a =-53.又c a =-23,∴b =-53a ,c =-23a . ∴不等式变为⎝ ⎛⎭⎪⎫-23a x 2+⎝ ⎛⎭⎪⎫-53a x +a <0,即2ax 2+5ax -3a >0.又∵a <0,∴2x 2+5x -3<0.所求不等式的解集为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫-3<x <12.法二:由已知得a <0 且⎝ ⎛⎭⎪⎫-13+2=-b a ,⎝ ⎛⎭⎪⎫-13×2=c a ,知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=ac ,其中a c =1⎝ ⎛⎭⎪⎫-13×2,-b c =-b a c a =⎝ ⎛⎭⎪⎫-13+2⎝ ⎛⎭⎪⎫-13×2=1⎝ ⎛⎭⎪⎫-13+12,∴x 1=1⎝ ⎛⎭⎪⎫-13=-3,x 2=12. ∴不等式cx2+bx +a <0(c >0)的解集为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫-3<x <12.已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a, 将不等式化为具体的一元二次不等式求解.[再练一题]3.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.【解】 由题意知⎩⎪⎨⎪⎧2+3=-b a ,2×3=ca, a <0,即⎩⎪⎨⎪⎧b =-5a ,c =6a , a <0.代入不等式cx 2-bx +a >0, 得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0, 解得-12<x <-13,所以所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13.1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 【解析】 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 【答案】 A 2.不等式2x +1<1的解集是( ) A.(-∞,-1)∪(1,+∞) B.(1,+∞)C.(-∞,-1)D.(-1,1)【解析】 ∵2x +1<1,∴2x +1-1=2-x -1x +1<0,即x -1x +1>0,∴(x -1)(x +1)>0解得x >1或x <-1,∴不等式2x +1<1的解集为(-∞,-1)∪(1,+∞). 【答案】 A3.二次函数y =x 2-4x +3在y <0时x 的取值范围是________.【导学号:18082047】【解析】 由y <0,得x 2-4x +3<0,∴1<x <3.【答案】 (1,3)4.若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则实数a =________,实数b =________.【解析】 由题意可知-1,2是方程ax 2+bx +2=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧ -1+2=-b a ,-1×2=2a ,解得a =-1,b =1.【答案】 -1 15.解下列不等式:(1)x (7-x )≥12;(2)x 2>2(x -1).【解】 (1)原不等式可化为x 2-7x +12≤0,因为方程x 2-7x +12=0的两根为x 1=3,x 2=4.所以原不等式的解集为{x |3≤x ≤4}.(2)原不等式可以化为x2-2x+2>0,因为判别式Δ=4-8=-4<0,方程x2-2x+2=0无实根,而抛物线y=x2-2x+2的图象开口向上,所以原不等式的解集为R.。

高中数学必修一 (教案)二次函数与一元二次方程、不等式

高中数学必修一 (教案)二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。

2.使学生能够运用二次函数及其图像,性质解决实际问题。

3.渗透数形结合思想,进一步培养学生综合解题能力。

数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。

【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。

类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察。

研探。

二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。

2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。

“三个二次”之间的关系(二次函数)

“三个二次”之间的关系(二次函数)

“三个二次”之间的关系注:上表中a>0,若a<0转化后再解不等式。

二次不等式的知识:1、概念:我们把只含有一个未知数,并且未知数的最高次数为2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2、一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其所有解的形成的范围,称为这个一元二次不等式的解集.3、解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零;(2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根;(4)根据函数图象与x 轴的相关位置写出不等式的解集.其他方法:十字相乘法(二次函数、不等式、方程)1. 解关于x 的不等式: x 2-(a +1)x +a <0,.2.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.3.已知二次函数y =x 2+px +q ,当y <0时,有-21<x <31,解x 的不等式qx 2+px +1>0.4.若不等式012>++p qx x p的范围为42<<x ,求实数p 与q 的值.5. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.6. 如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.7. 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.8. 为何值时,关于的方程的两根:(1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间。

三个“二次”及关系

三个“二次”及关系

三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)x=|a-1|+2的根的取值范围. 的值都是非负的,求关于x的方程2a●案例探究[例1]已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R).(1)求证:两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值范围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目.知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合.错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点.(2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab2,x 1x 2=a c.|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a ac c a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0 ∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=ac ac ac f 的对称轴方程是21-=ac .ac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m .(2)据抛物线与x轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ).若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M ,f (-ab 2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m .2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b2|<|β+ab 2|,当a <0时,f (α)<f (β)⇔|α+ab2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p ab或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p ab a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练 一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( )A.正数B.负数C.非负数D.正数、负数和零都有可能二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log ay a t a a= (a >0且a≠1)(1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m )<0;(2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2(1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a-21)2+425.∴a =-23时,x mi n =49,a =21时,x max =425.∴49≤x ≤425.(2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12. 综上所述,49≤x ≤12.歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-02a ,解得-2<a <2,所以a 的范围是-2<a ≤2.答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0. 答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3, 23).答案:(-3,23)4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小,∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0 三、5.解:(1)由log a33log a y a t t =得log a t -3=log t y -3log t a由t =a x 知x =log a t ,代入上式得x -3=xxy a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43 (x ≠0),则y =a u①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值.②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值∴当x =23时,u mi n =43,y mi n =43a 由43a =8得a =16.∴所求a =16,x =23.6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm解得0<m ≤1综上所述,m 的取值范围是{m |m ≤1且m ≠0}. 7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m)<0,所以f (x )=0在(0,1+m m)内有解;若r ≤0,则f (1)=p +q +r =p +(m +1)=(-mrm p -+2)+r =mrm p -+2>0,又f (1+m m)<0,所以f (x )=0在(1+m m,1)内有解. ②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得y =(160-2x )x -(500+30x )=-2x 2+130x -500由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元. (2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。

一次经营及二次经营三次经营

一次经营及二次经营三次经营

“一次经营”与“二次经营”“三次经营”的关系及结合的探讨工作一、“一次经营”、“二次经营”、“三次经营”的概念1、“一次经营”就是企业为了获取工程项目所发生的一切经营行为。

它的最终目的是在固化的条件下获取合同。

2、“二次经营”就是指甲乙双方履行合同时所发生的一切经营行为。

它的最终目的是在合同履行过程过降本增效获取最好的管理效益。

3、“三次经营”就是指在项目完工后,售后服务、竣工结算、审计和清欠过程所发生的一切行经营行为。

它的最终目的有两点:(1) 根据合同约定提供最好的售后服务,为承接后续工程提供强有力的保证,力争与业主“第二次握手”、“第三次握手”,建立起长期的战略合作伙伴关系。

(2) 在结算、审计、清欠过程中采取各种有效的手段获取最佳的结算效益和及时回收工程款。

二、一次经营与二次经营、三次经营的关系界定三者的界定关系就是市场营销、合同签约;施工管理、设计变更、现场签证、索赔和反索赔;结算、审计和清欠一次经营:投标与签约二次经营:施工准备、施工、收尾三次经营:竣工结算、用后服务阶段1、一次经营、二次经营、三次经营互为因果,紧密联系、相互促进、相互制约。

2、“一次经营”是建筑企业的“生命”,是基础;是“二次经营”的前提;“二次经营”是建筑企业的“灵魂”,是关键和核心;是“一次经营”的重要延续,又为以后的“一次经营”创造条件,通过“二次经营”可以促进甲乙双方的关系,提升履约质量,为承接后续工程创造更有利的条件。

“三次经营”是“一、二次经营”的综合集中,是企业经济效益的最终体现。

3、一次经营的最终目的是获取合同;二次经营和三次经营的目的是在确保企业信誉、品牌的同时实现合同增值,获取最佳的经济效益,三者的根本目的是为了企业的利益,促进企业的良性、高速的发展。

三、“一次经营”、“二次经营”、“三次经营”之间的区别阶段目标不一致,营销主体不一致,营销对象不一致,营销职责不一致。

1、营销目标(1)“一次经营”的目标,通过项目投标和合同谈判赢得有一定利润的合同。

2024年人教版高一上册数学教学工作计划(三篇)

2024年人教版高一上册数学教学工作计划(三篇)

2024年人教版高一上册数学教学工作计划一、学习状况评估(知识、技能、学习习惯等)总体来看,我班学生的基础知识稍显薄弱,学生间的学习差异较大。

虽然有部分学生表现出色,思维敏捷,但也有个别学生存在作业拖延、自主学习能力不足的情况。

在教学过程中,我注意到一些学生在数学学习上遇到困难,但他们仍然保持着积极的学习态度。

因此,本学期的教学工作将继续以改善学生的学习习惯为重心,并加强对后进生的个别辅导,以期提升这些学生的学习成绩,为后续的总复习打下坚实的基础。

二、教材分析本教材涵盖的科目包括:分数乘法、位置与方向、分数除法、圆、百分数、统计、数学广角和数学实践活动等。

其中,分数乘法和除法、圆的理论以及百分数是本教材的重点教学内容。

而设计的两个数学实践应用环节,旨在让学生更深入地体验探索的乐趣和数学的实际应用,提升他们的数学实践能力和问题解决能力。

在数与代数领域,教材设置了分数乘法、分数除法和百分数三个单元。

这些内容的教授旨在在学生已有的整数和小数计算基础上,培养他们的分数四则运算技能,以及解决相关分数实际问题的能力。

掌握简单的百分数实际问题的解决方法,是小学生必须具备的基本数学技能。

在空间与图形部分,教材涵盖了位置和圆两个单元。

通过丰富的实际数学活动,使学生经历初步的数学化过程,理解并学会用数对表示位置,初步掌握研究曲线图形的基本方法,以促进他们空间观念的进一步发展。

在统计部分,教材安排了扇形统计图的学习。

这将进一步让学生体验到统计在生活和解决问题中的作用,发展他们的统计观念。

在数学问题解决方面,学生将体验到解决问题策略的多样性,以及运用假设方法解决问题的有效性,感受用代数方法解决问题的优越性,从而提升他们解决问题的能力,感受数学的魅力。

三、教学目标1、理解分数乘除法的含义,掌握分数乘除法的计算方法,能熟练进行简单的分数四则运算,会进行基本的分数混合运算。

2、理解倒数的概念,掌握求倒数的技巧。

3、理解比的意义和性质,能求比值和化简比,能解决与比相关的实际问题。

从函数观点看一元二次方程和一元二次不等式(解析版)

从函数观点看一元二次方程和一元二次不等式(解析版)

3.3 从函数观点看一元二次方程和一元二次不等式【知识点梳理】知识点一:一元二次不等式的概念一般地,我们把只含有一个末知数,并且末知数的最高次数是2的不等式,称为一元二次不等式,即形如20(0)ax bx c ++>≥或20(0)ax bx c ++<≤(其中a ,b ,c 均为常数,)0a ≠的不等式都是一元二次不等式.知识点二:二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.知识点三:一元二次不等式的解集的概念使一元二次不等式成立的所有未知数的值组成的集合叫做这个一元二次不等式的解集. 知识点四:二次函数与一元二次方程、不等式的解的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设24b ac ∆=-,它的解按照0∆>,0∆=,0∆<可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集. 24b ac ∆=-0∆> 0∆= 0∆<二次函数 2y ax bx c=++(0a >)的图象20(0)ax bx c a ++=>的根有两相异实根 1212,()x x x x <有两相等实根122bx x a ==-无实根20(0)ax bx c a ++>>的解集{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20(0)ax bx c a ++<>的解集{}12x xx x <<∅ ∅(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.知识点五:利用不等式解决实际问题的一般步骤 (1)选取合适的字母表示题中的未知数;(2)由题中给出的不等关系,列出关于未知数的不等式(组); (3)求解所列出的不等式(组); (4)结合题目的实际意义确定答案. 知识点六:一元二次不等式恒成立问题(1)转化为一元二次不等式解集为R 的情况,即20(0)ax bx c a ++>≠恒成立00a >⎧⇔⎨∆<⎩恒成立20(0)ax bx c a ++<≠00.a <⎧⇔⎨∆<⎩(2)分离参数,将恒成立问题转化为求最值问题. 知识点七:简单的分式不等式的解法 系数化为正,大于取“两端”,小于取“中间”【题型归纳目录】题型一:解不含参数的一元二次不等式 题型二:一元二次不等式与根与系数关系的交汇 题型三:含有参数的一元二次不等式的解法 题型四:一次分式不等式的解法题型五:实际问题中的一元二次不等式问题 题型六:不等式的恒成立问题 【典型例题】题型一:解不含参数的一元二次不等式例1.(2022·全国·高一课时练习)不等式()273x x +≥-的解集为( )A .(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭B .13,2⎡⎤--⎢⎥⎣⎦C .(]1,2,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭D .12,3⎡⎤--⎢⎥⎣⎦【答案】A【解析】()273x x +≥-可变形为22730x x ++≥, 令22730x x ++=,得13x =-,212x =-,所以3x ≤-或21x ≥-,即不等式的解集为(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭.故选:A.【方法技巧与总结】解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集.例2.(多选题)(2022·湖南·株洲二中高一开学考试)与不等式220x x -+>的解集相同的不等式有( ) A .220x x --<+ B .22320x x -+> C .230x x -+≥ D .220x x +->【答案】ABC【解析】因为2(1)4270∆=--⨯=-<,二次函数的图象开口朝上,所以不等式220x x -+>的解集为R ,A.14(1)(2)70∆=-⨯--=-<,二次函数的图象开口朝下,所以220x x --<+的解集为R ;B.2(3)42270∆=--⨯⨯=-<,二次函数的图象开口朝上,所以不等式22320x x -+>的解集为R ;C.2(1)413110∆=--⨯⨯=-<,二次函数的图象开口朝上,所以不等式230x x -+≥的解集为R ;D. 220x x +->,所以(2)(1)0,1x x x +->∴>或2x <-,与已知不符. 故选:ABC例3.(2022·全国·高一课时练习)解下列不等式: (1)262318x x x -≤-<;(2)1232x x +≥-; (3)2320x x -+>.【解析】(1)原不等式等价于22623318x x x x x ⎧-≤-⎨-<⎩,即22603180x x x x ⎧--≥⎨--<⎩,即()()()()320630x x x x ⎧-+≥⎪⎨-+<⎪⎩,所以2336x x x ≤-≥⎧⎨-<<⎩或,所以32x -<≤-或36x <≤,所以原不等式的解集{32x x -<≤-或}36x ≤<; (2)由1232x x +≥-,可得155203232x x x x +-+-=≥--, 所以()()55320320x x x ⎧--≤⎨-≠⎩,解得213x <≤,所以原不等式的解集为213x x ⎧⎫<≤⎨⎬⎩⎭;(3)原不等式等价于23200x x x ⎧-+>⎨≥⎩或23200x x x ⎧-+>⎨<⎩,分别解这两个不等式组,得01x ≤<或2x >或10x -<<或2x <-, 故原不等式的解集为{2x x <-或11x -<<或}2x >.题型二:一元二次不等式与根与系数关系的交汇例4.(2022·全国·高一专题练习)若不等式220ax bx +-<的解集为{}|21x x -<<,则a b +=( ) A .2- B .0 C .1 D .2【答案】D【解析】不等式220ax bx +-<的解集为{}|21x x -<<,则方程220ax bx +-=根为2-、1, 则21221ba a⎧-=-+⎪⎪⎨⎪-=-⨯⎪⎩,解得1,1a b ==,2a b ∴+=,故选:D【方法技巧与总结】 三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:例5.(2022·全国·高一课时练习)若关于x 的不等式2260ax x a -+>的解集为{|1}x m x <<,则=a ______,m =______. 【答案】 3- 3-【解析】由题意知,0a <,且1,x x m ==是关于x 的方程2260ax x a -+=的两个根,∴61m a m a ⎧+=⎪⎨⎪=⎩,解得33a m =-⎧⎨=-⎩或22a m =⎧⎨=⎩, 又因为0a <,∴33a m =-⎧⎨=-⎩. 故答案为:-3,-3.例6.(2022·江苏·高一专题练习)若不等式20ax bx c ++>的解集为{}12x x -<<,则不等式()21(1)2a x b x c ax ++-+>的解集是( )A .{}03x x <<B .{0x x <或}3x >C .{}13x x <<D .{}13x x -<<【答案】A【解析】由()()2112a x b x c ax ++-+>,整理得()()220ax b a x a c b +-++-> ①.又不等式20ax bx c ++>的解集为{}12x x -<<, 所以0a <,且(1)2(1)2b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即12b ac a⎧=-⎪⎪⎨⎪=-⎪⎩②.将①两边同除以a 得:2210b c b x x a a a ⎛⎫⎛⎫+-++-< ⎪ ⎪⎝⎭⎝⎭③.将②代入③得:230x x -<,解得03x <<. 故选:A例7.(2022·浙江·磐安县第二中学高一开学考试)已知不等式20ax bx c ++>的解集为()2,3,则20cx bx a ++>的解集为( ) A .11,32⎛⎫⎪⎝⎭B .11,,32⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,23⎛⎫-- ⎪⎝⎭D .11,,23∞∞⎛⎫⎛⎫--⋃-+ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】∵不等式20ax bx c ++>的解集为()2,3, ∴2和3是方程20ax bx c ++=的两个根.∴02323a ba ca⎧⎪<⎪⎪-=+⎨⎪⎪=⨯⎪⎩,可得5,6b a c a =-=. 20cx bx a ++>可化为2650ax ax a -+>,即26510x x -+<,即()()31210x x --<,解得1132x <<.故选:A.例8.(2022·全国·高一专题练习)设集合{}|1A x x =≥,{}2|0B x x mx =-≤,若{}|14A B x x ⋂=≤≤,则m 的值为_________.【答案】4【解析】当0m =时,{}{}2|00B x x =≤=,显然A B =∅,不符合题意;当0m >时,{}2|0[0,]B x x mx m =-≤=,因为{}|14A B x x ⋂=≤≤,所以必有4m =; 当0m <时,{}2|0[,0]B x x mx m =-≤=,显然A B =∅,不符合题意.故答案为:4m =.例9.(2022·江苏·高一专题练习)已知不等式20ax bx c ++>的解集是{|}x x αβ<<,0α>,则不等式20cx bx a ++>的解集是____________.【答案】11βα⎛⎫⎪⎝⎭,【解析】由不等式20ax bx c ++>的解集是{|}0x x αβα<<>(),可知:α,β是一元二次方程20ax bx c ++=的实数根,且0a <; 由根与系数的关系可得:b a αβ+=-,caαβ⋅= , 所以不等式20cx bx a ++>化为 210c bx x a a++<,即:()210x x αβαβ-++<; 化为()()110x x αβ--<; 又,0αβα,110αβ∴>>;∴不等式20cx bx a ++<的解集为:{x |11x βα<<},故答案为:11βα⎛⎫⎪⎝⎭,例10.(2022·全国·高一单元测试)已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.【答案】{13x x >-或}1x <-【解析】因为关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<, 所以0a >,且方程20ax bx c ++=得解为121,3x x ==, 则4,3b ca a-==, 所以4,3b a c a =-=,则不等式20cx bx a -+>,即为2340ax ax a ++>, 即23410x x ++>,解得13x >-或1x <-,所以20cx bx a -+>的解集是{13x x >-或}1x <-.故答案为:{13x x >-或}1x <-.题型三:含有参数的一元二次不等式的解法例11.(2022·全国·高一课时练习)不等式()()222240a x a x -+--≥的解集为∅,则实数a的取值范围是( ) A .{2|a a <-或2}a ≥ B .{}22a a -<< C .{}22a a -<≤ D .{}2a a <【答案】C【解析】因为不等式()()222240a x a x -+--≥的解集为∅, 所以不等式()()222240a x a x -+--<的解集为R .当20a -=,即2a =时,40-<,符合题意.当20a -<,即2a <时,()()2224420a a ⎡⎤∆=-+⨯⨯-<⎣⎦,解得22a -<<. 综上,实数a 的取值范围是{}22a a -<≤. 故选:C【方法技巧与总结】解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.例12.(2022·江苏·盐城市田家炳中学高一期中)已知不等式220ax bx -+>的解集为{}12x x x 或.(1)求实数a ,b 的值;(2)解关于x 的不等式()20x ac b x bx -++>(其中c 为实数).【解析】(1)由题意,121,2x x ==为一元二次方程220ax bx -+=, 由韦达定理,可得12212b aa ⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得13a b =⎧⎨=⎩. (2)由(1),不等式()20x ac b x bx -++>,可得()2330x c x x -++>,整理可得:()0x x c ->,当0c 时,不等式的解集为{}0x x ≠; 当0c >时,不等式的解集为{}0x x x c 或; 当0c <时,不等式的解集为{}0x x c x 或.例13.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.【解析】(1)当a =2时,不等式2x 2﹣x ﹣1<0可化为:(2x +1)(x ﹣1)<0, ∴不等式的解集为1{|1}2x x -<<;(2)不等式ax 2﹣x +1﹣a <0可化为:(x ﹣1)(ax +a ﹣1)<0, 当a >0时,()1110x x a ⎛⎫-+- ⎪⎝⎭<,()1110x x a ⎛⎫-+-= ⎪⎝⎭的根为:12111x x a==-,, ①当102a <<时,111a -<,∴不等式解集为1{|11}x x a-<<,②当12a =时,111a=-,不等式解集为∅,③当12a >时,111a->,∴不等式解集为{x |11a -<x <1},综上,当102a <<时,不等式解集为1{|11}x x a-<<,当a 12=时,不等式解集为∅, 当12a >时,不等式解集为{x |11a-<x <1}..例14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>. 【解析】方程220x x a ++=中()4441a a =-=-, ①当10a -<即1a >时,不等式的解集是R ,②当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R , ③当10a ->即1a <时,由220x x a ++=解得:121111x a x a =--=--,1a ∴<时,不等式的解集是{|11>-+-x x a 11}<--x a , 综上,1a >时,不等式的解集是R , 1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|11>-+-x x a 11}<--x a ,例15.(2022·全国·高一专题练习)解关于x 的不等式2110x a x a ⎛⎫-++< ⎪⎝⎭.【解析】原不等式可化为:()10x a x a ⎛⎫--< ⎪⎝⎭ ,令1a a = 可得:1a =±∴当1a <-或01a <<时,1a a <, 1aa x ∴<< ; 当1a =或1a =-时,1a a=,不等式无解; 当10a -<<或1a > 时,1a a>,1x a a ∴<<综上所述,当1a =或1a =-时,不等式解集为∅; 当1a <-或01a <<时,不等式的解集为1|x a x a ⎧⎫<<⎨⎬⎩⎭; 当10a -<<或1a >时,不等式解集为1|x x a a ⎧⎫<<⎨⎬⎩⎭.例16.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.【解析】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>,当0a <时,1()(1)0x x a ++<,解得11x a -<<-,当0a >时,1()(1)0x x a++>,若1a =,则1x ≠-,若01a <<,则1x a<-或1x >-,若1a >,则1x <-或1x a >-,所以当0a <时,原不等式的解集是{}|11x x a -<<-;当0a =时,原不等式的解集是{|1}x x >-;当01a <≤时,原不等式的解集是1{|x x a<-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-.例17.(2022·全国·高一专题练习)若关于x 的不等式2220x m x m -++<()的解集中恰有4个正整数,求实数m 的取值范围. 【解析】原不等式可化为(2)()0x x m --<,若2m <,则不等式的解是2m x <<;若2m =,则不等式无解; 即不等式的解集中均不可能有4个正整数,所以2m >; 此时不等式的解是2x m <<;所以不等式的解集中4个正整数分别是3456,,,; 则m 的取值范围是{|67}m m <≤.例18.(2022·陕西·长安一中高一期中)已知关于x 的不等式()()230a b x a b +-<+的解集为34x x ⎧⎫>-⎨⎬⎩⎭.(1)写出a 和b 满足的关系;(2)解关于x 的不等式()()()222120a b x a b x a ---->++.【解析】(1)因为()()230a b x a b <++-,所以()32a b x b a +<-,因为不等式的解集为34x x ⎧⎫>-⎨⎬⎩⎭,所以0a b +<,且3234b a a b -=-+,解得3a b =. (2)由(1)得30a b =<则不等式()()()222120a b x a b x a -+--+->等价为()()242320bx b x b +-+->,即222430x x b b +-⎛⎫⎛⎫ ⎪ +⎪⎝⎭⎝⎭-<,即()2130x x b ⎛⎫+ ⎝-⎪⎭+<.因为231b -+<-,所以不等式的解为231x b-+<<-. 即所求不等式的解集为231x x b ⎧⎫-+<<-⎨⎬⎩⎭.(说明:解集也可以用a 表示)题型四:一次分式不等式的解法例19.(2022·全国·高一课时练习)不等式()()232101xx x x -++≤-的解集为( )A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-. 故选:D.【方法技巧与总结】分式不等式转化为整式不等式的基本类型有哪些? (1)()()00cx dax b cx d ax b+>⇔++>+ (2)()()00cx dax b cx d ax b+<⇔++<+ (3)()()00cx dax b cx d ax b+≥⇔++>+且0ax b +≠ (4)()()00cx dax b cx d ax b+≤⇔++≤+且0ax b +≠ 例20.(2022·湖南·株洲二中高一开学考试)已知不等式210ax bx ++>的解集为1123xx ⎧⎫-<<⎨⎬⎩⎭∣,求不等式30ax x b +≤-的解集. 【解析】依题意,12-和13是方程210ax bx ++=的两根,法1:由韦达定理,11111,2323b a a ∴-+=--⨯=,解得6,1a b =-=-,法2:直接代入方程得,22111022111033a b a b ⎧⎛⎫⎛⎫⨯-+⨯-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪⨯+⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得6,1a b =-=-, ∴不等式30ax x b +≤-为6301x x -+≤+,即:()()631010x x x ⎧-+≥⎨+≠⎩,解得:1x <-或12x ≥, ∴不等式30ax x b +≤-的解集为{1xx <-∣或1}2x ≥.例21.(2022·陕西·长安一中高一期末)不等式22301x x x +-≥+的解集为__________.【答案】[3,1)[1,)--+∞【解析】原不等式等价于223010x x x ⎧+-≥⎨+>⎩或223010x x x ⎧+-≤⎨+<⎩,解得1≥x 或31x -≤<- , 故答案为:[3,1)[1,)--+∞例22.(2022·全国·高一课时练习)不等式301x x +>-的解集为______________. 【答案】{3x x <-或1}x > 【解析】由301x x +>-,得(1)(3)0x x -+>, 所以3x <-或1x >,故不等式得解集为{3x x <-或1}x >. 故答案为:{3x x <-或1}x >.例23.(2022·宁夏·灵武市第一中学高一期末)不等式201xx->+的解集为___________. 【答案】(1,2)- 【解析】20(2)(1)01xx x x->⇔-+<+,解得12x -<<,故解集为(1,2)-, 故答案为(1,2)-.例24.(2022·全国·高一课时练习)不等式21131x x ->+的解集是____________. 【答案】1{2}3xx -<<-∣ 【解析】21131x x ->+可化为211031x x -->+, 2031x x +<+,等价于()()2310x x ++<, 解得123x -<<-,所以不等式21131x x ->+的解集是1{2}3x x -<<-∣, 故答案为:1{2}3xx -<<-∣. 例25.(2022·全国·高一课时练习)关于x 的不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >,(1)求关于x 的不等式220x bx a +-<的解集 (2)求关于x 的不等式11x ax b->-的解集. 【解析】(1)不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >, 所以0513a ab >⎧⎪⎪-=-⎨⎪-=⎪⎩,解得5a =,3b =-;所以不等式220x bx a +-<化为23100x x --<,解得25x -<<; 所求不等式的解集为{|25}x x -<<; (2)1153x x ->+化为11053x x -->+即44053x x -->+,()()1530x x ∴++< 所求不等式的解集为31,5⎛⎫-- ⎪⎝⎭.题型五:实际问题中的一元二次不等式问题例26.(2022·贵州黔东南·高一期末)黔东南某地有一座水库,设计最大容量为128000m 3.根据预测,汛期时水库的进水量n S (单位:m 3)与天数()*n n N ∈的关系是5000()(10)n S n n t n =+≤,水库原有水量为80000m 3,若水闸开闸泄水,则每天可泄水4000m 3;水库水量差最大容量23000m 3时系统就会自动报警提醒,水库水量超过最大容量时,堤坝就会发生危险;如果汛期来临水库不泄洪,1天后就会出现系统自动报警. (1)求t 的值;(2)当汛期来临第一天,水库就开始泄洪,估计汛期将持续10天,问:此期间堤坝会发生危险吗?请说明理由.【解析】(1)由题意得: 1280008000050001(1)23000t --⨯+, 即24t =(2)由(1)得5000(24)(10)n S n n n =+≤设第n 天发生危险,由题意得 5000(24)400012800080000n n n +>-,即2242560n n +->,得8n >.所以汛期的第9天会有危险【方法技巧与总结】利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论. 例27.(2022·全国·高一课时练习)某旅店有200张床位.若每张床位一晚上的租金为50元,则可全部租出;若将出租收费标准每晚提高10x 元(x 为正整数),则租出的床位会相应减少10x 张.若要使该旅店某晚的收入超过12600元,则每张床位的出租价格可定在什么范围内?【解析】设该旅店某晚的收入为y 元,则 *(5010)(20010),y x x x N =+-∈由题意12600y >,则(5010)(20010)12600x x +-> 即210000150010012600x x +->,即215260x x -+<, 解得:213x <<,且*x ∈N所以每个床位的出租价格应定在70元到180元之间(不包括70元,180元)例28.(2022·湖南·高一课时练习)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.刹车距离是分析交通事故的一个重要指标.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离()m s 与车速()km/h x 分别有如下关系式:210.10.01s v v =+,220.050.005s v v =+.问:甲、乙两辆汽车是否有超速现象?【解析】因为甲种车型的刹车距离()m s 与车速()km/h x 的关系式:210.10.01s v v =+, 所以由题意可得:2210.10.0112101200030s v v v v v =+>⇒+->⇒>,或40v <-舍去,即30v >,当40v =时,10.1400.0116002012s =⨯+⨯=>,显然甲种车型没有超速现象;因为乙种车型的刹车距离()m s 与车速()km/h x 的关系式:220.050.005s v v =+,所以由题意可得:2220.050.005102000040s v v v v v =+>⇒+->⇒>,或50v <-舍去,即40v >,因此乙种车型有超速现象.例29.(2022·湖北十堰·高一期中)某学校欲在广场旁的一块矩形空地上进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均种满宽度相同的鲜花.已知两块绿草坪的面积均为200平方米.(1)若矩形草坪的长比宽至少多10米,求草坪宽的最大值; (2)若草坪四周及中间的宽度均为2米,求整个绿化面积的最小值. 【解析】(1)设草坪的宽为x 米,长为y 米,由面积均为200平方米,得200y x=, 因为矩形草坪的长比宽至少多10米, 所以20010x x≥+,又0x >, 所以2102000x x +-≤,解得010x <≤, 所以宽的最大值为10米;(2)记整个绿化面积为S 平方米,由题意得,200150(26)(4)(26)442484246S x y x x x x ⎛⎫⎛⎫=++=++=++≥+ ⎪ ⎪⎝⎭⎝⎭56x =时,等号成立,所以整个绿化面积的最小值为(424806)+平方米题型六:不等式的恒成立问题例30.(2022·全国·高一单元测试)对任意实数x ,不等式2230kx kx +-<恒成立,则实数k 的取值范围是( ) A .()0,24 B .(]24,0-C .(]0,24D .[)24,∞+【答案】B【解析】由题意,对任意实数x ,不等式2230kx kx +-<恒成立, 当0k =时,不等式即为30-<,不等式恒成立; 当0k ≠时,若不等式2230kx kx +-<恒成立,则满足2Δ240k k k <⎧⎨=+<⎩,解得240k -<<, 综上,实数k 的取值范围为(24,0]-. 故选:B .【方法技巧与总结】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数.例31.(2022·全国·高一课时练习)若0a >,且关于x 的不等式22334ax ax a -+-<在R 上有解,求实数a 的取值范围.【解析】方法一(判别式法)关于x 的不等式22334ax ax a -+-<可变形为22370ax ax a -+-<,由题可得()()223470a a a ∆=--->,解得744a -<<,又0a >,所以实数a 的取值范围为()0,4;方法二(分离变量法)因为0a >,所以关于x 的不等式22334ax ax a -+-<可变形为2273a x x a--<,因为223993244x x x ⎛⎫-=--≥- ⎪⎝⎭,所以2974a a--<,解得744a -<<,又0a >,所以实数a 的取值范围为()0,4.例32.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________. 【答案】315a -<≤【解析】根据题意,当210a -≠时,可得()()222Δ141010a a a ⎧=-+-<⎪⎨-<⎪⎩,解得315a -<<,当1a =时,不等式()()221110a x a x ----<显然成立. 综上可得,315a -<≤,故答案为:315a -<≤.例33.(2022·江苏·盐城市田家炳中学高一期中)已知命题p :x R ∃∈,210x ax -+<,若命题p 是假命题,则实数a 的取值范围为_________.【答案】[]22-,【解析】若命题p 是假命题,则210x ax -+≥恒成立, 则2Δ40a =-≤,解得22a -≤≤.故答案为:[]22-,. 例34.(2022·全国·高一专题练习)不等式 2(2)4(2)120a x a x -+--<的解集为R ,则实数a 的取值范围是( )A .{}|12a a -≤<B .{}|12a a -<≤C .{}|12a a -<<D .{}|12a a -≤≤【答案】B【解析】当2a =时,原不等式为120-<满足解集为R ;当a ≠2时,根据题意得20a -<,且216(2)4(2)(12)0a a ∆=---⨯-<,解得1a 2-<<. 综上,a 的取值范围为{}|12a a -<≤. 故选:B .例35.(2022·全国·高一课时练习)已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是( )A .6,7⎛⎫+∞ ⎪⎝⎭B .1515∞∞⎛⎫-+-⋃+ ⎪ ⎪⎝⎭⎝⎭ C .6,7⎛⎫-∞ ⎪⎝⎭D .1515-+⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立, 所以对任意[]1,3m ∈,261x x m-+<恒成立, 所以对任意[]1,3m ∈,2min12x x m ⎛-+<= ⎝,所以212x x -+<1515x -+<<故实数x 的取值范围是1515-+⎝⎭.故选:D .例36.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【解析】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.例37.(2022·全国·高一课时练习)在x ∃∈R ①,2220x x a ++-=,②存在集合{24}A x x =<<,非空集合{}3B x a x a =<<,使得A B =∅这两个条件中任选一个,补充在下面问题中,并解答.问题:求解实数a ,使得命题{}:12p x x x ∀∈≤≤,20x a -≥,命题q :______都是真命题. 注:如果选择多个条件分别解答,按第一个解答计分.【解析】若选条件①,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为12{|}x x x ∈≤≤,所以214x ≤≤,所以1a ≤. 由命题q 为真,则方程2220x x a ++-=有解. 所以()4420a ∆=--≥,所以1a ≥.又因为,p q 都为真命题,所以11a a ≤⎧⎨≥⎩,所以1a =.所以实数a 的值为1.若选条件②,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为{}12x x x ∈≤≤,所以214x ≤≤.所以1a ≤.由命题q 为真,可得4a ≥或32a ≤,因为非空集合{|3}B x a x a =<<,所以必有0a >, 所以203a <≤或4a ≥, 又因为,p q 都为真命题,所以12043a a a ≤⎧⎪⎨<≤≥⎪⎩或,解得203a <≤. 所以实数a 的取值范围是2|03a a ⎧⎫<≤⎨⎬⎩⎭. 【同步练习】一、单选题 1.(2022·全国·高一课时练习)不等式23180x x -++<的解集为( ) A .{6x x >或3}x <- B .{}36x x -<< C .{3x x >或6}x <- D .{}63x x -<<【答案】A【解析】23180x x -++<可化为23180x x -->, 即()()630x x -+>,即6x >或3x <-. 所以不等式的解集为{6x x >或3}x <-.故选:A2.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥【答案】A【解析】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A3.(2022·全国·高一课时练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9 B .8 C .6 D .4【答案】D【解析】∵函数2y x ax b =++(,R a b ∈)的最小值为0, ∴2404b a -=,∴24a b =, ∴函数222224a y x ax b x ax x a ⎛⎫=++=++=+ ⎪⎝⎭,其图像的对称轴为2a x =-.∵不等式2x ax b c 的解集为{}|4x m x m <<+, ∴方程2204a c x ax ++-=的根为m ,4m +,∴4m m a ++=-,解得42a m --=,22am ∴+=-, 又∵2204a m am c ++-=,∴222442a a c m am m ⎛⎫=++=+= ⎪⎝⎭.故A ,B ,C 错误.故选:D .4.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( ) A .{}1a a >- B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-【答案】B【解析】因为不等式10x -≤的解集为{}1x x ≤,由题意得不等式()2220x a x a +++≤的解集是{}1x x ≤的子集, 不等式()2220x a x a +++≤,即()()20x x a ++≤,①当2a =时,不等式的解集为{}2-,满足{}{}21x x -⊆≤; ②当2a <时,不等式的解集为{}2x x a -≤≤-, 若{}{}21x x a x x -≤≤-⊆≤,则1a -≤, 所以12a -≤<;③当2a >时,不等式的解集为{}2x a x -≤≤-,满足{}{}21x a x x x -≤≤-⊆≤; 综上所述,实数a 的取值范围为{}1a a ≥-. 故选:B .5.(2022·全国·高一课时练习)已知()()()2022y x m x n n m =--+<,且(),αβαβ<是方程0y =的两实数根,则α,β,m ,n 的大小关系是( )A .m n αβ<<<B .m n αβ<<<C .m n αβ<<<D .m n αβ<<<【答案】C【解析】∵α,β为方程0y =的两实数根,∴α,β为函数()()2022y x m x n =--+的图像与x 轴交点的横坐标,令()()1y x m x n =--,∴m ,n 为函数()()1y x m x n =--的图像与x 轴交点的横坐标,易知函数()()2022y x m x n =--+的图像可由()()1y x m x n =--的图像向上平移2022个单位长度得到,所以m n αβ<<<. 故选:C.6.(2022·湖南·长沙一中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D7.(2022·全国·高一单元测试)已知 0,0x y >>且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是( ) A . 1|2x x ⎧⎫≥⎨⎬⎩⎭B .{}|3x x ≤-}C .{}|1x x ≥D .{}|91x x -<<【答案】D【解析】∵0,0x y >>,且141x y+=,∴1444()()5259y x y xx y x y x y x y x y+=++=++≥⋅=, 当且仅当3,6x y ==时取等号,∴min ()9x y +=,由28x y m m +>+恒成立可得2min 8()9m m x y +<+=,解得:91m -<<, 故选:D.8.(2022·全国·高一课时练习)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为( )A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A. 二、多选题9.(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥【答案】ACD【解析】22x bx c x b ++≥+可整理为()220x b x c b +-+-≥,则()()2224440b c b b c ∆=---=-+≤,故A 正确. 当1b =,2c =时,满足0∆≤,即原不等式成立.B 错误; 由0∆≤,得214b c ≥+,所以1c ≥.C 正确;2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭.D 正确.故选:ACD .10.(2022·江苏·高一)已知关于x 的一元二次不等式()22120ax a x --->,其中0a <,则该不等式的解集可能是( ) A .∅ B .12,a ⎛⎫- ⎪⎝⎭C .()1,2,a ⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,2a ⎛⎫- ⎪⎝⎭【答案】ABD【解析】不等式变形为(2)(1)0x ax -+>,又0a <,所以1(2)()0x x a-+<,12a =-时,不等式解集为空集;12a <-,12x a -<<,102a -<<时,12x a <<-,因此解集可能为ABD . 故选:ABD .11.(2022·福建省龙岩第一中学高一开学考试)已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤或}4x ≥,则下列结论中,正确结论的序号是( )A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭ D .0a b c ++>【答案】AD【解析】对于A ,由不等式的解集可知:0a >且3473412bac a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,7b a ∴=-,12c a =,A 正确;对于B ,7120bx c ax a +=-+>,又0a >,127x ∴<,B 错误; 对于C ,221270cx bx a ax ax a -+=++<,即212710x x ++<,解得:1134x -<<-,C 错误; 对于D ,71260a b c a a a a ++=-+=>,D 正确. 故选:AD.12.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( ) A .5- B .3-C .πD .5【答案】ABD【解析】解不等式2280x x -->,得4x >或2x <- 解方程22(27)70x k x k +++=,得127,2x x k =-=-(1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤;(2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数,则需满足:35k -<-≤,即53k -≤<; 所以k 的取值范围为[5,3)(4,5]-. 故选:ABD. 三、填空题13.(2022·全国·高一专题练习)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为__________. 【答案】1,6⎛⎫-∞- ⎪⎝⎭【解析】不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则根据对应方程的韦达定理得到:112311223ba a⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅= ⎪⎪⎝⎭⎩,解得122a b =-⎧⎨=-⎩,则1220x -->的解集为1,6⎛⎫-∞- ⎪⎝⎭.故答案为:1,6⎛⎫-∞- ⎪⎝⎭.14.(2022·陕西·千阳县中学高一开学考试)不等式517x ≥--的解集为__________. 【答案】{|7x x >或2}x ≤ 【解析】因为517x ≥--,所以5107x +≥-,即207x x -≥-, 等价于(2)(7)070x x x --≥⎧⎨-≠⎩,解得7x >或2x ≤,所以不等式的解集为{|7x x >或2}x ≤. 故答案为:{|7x x >或2}x ≤15.(2022·全国·高一专题练习)关于x 的不等式()210x a x a -++<的解集中恰有1个整数,则实数a 的取值范围是_________. 【答案】[)(]1,02,3-⋃【解析】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解;若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤;若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]1,02,3-⋃. 故答案为:[)(]1,02,3-⋃.16.(2022·全国·高一课时练习)知关于x 的不等式2240ax bx ++<的解集为4(,)m m,其中0m <,则44b a b+的最小值为______. 【答案】2【解析】∵2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,∴0a >,且方程2240ax bx ++=的两根为m ,4m, ∴42bm m a +=-,44m m a ⋅=,∴1a =,∵0m <,∴424b m m=-+≥-, 即2b ≥,当且仅当2m =-时取“=”. ∴44244b b a b b +=+≥,当且仅当4b =时取“=”, ∴44b a b+的最小值为2. 故答案为:2 四、解答题17.(2022·全国·高一专题练习)解下列不等式: (1)22530x x +->; (2)220x x +-≤; (3)4220x x --≥; (4)21x x >.【解析】(1)由22530x x +->,得()()3210x x +->,解得3x <-或12x >, 所以不等式的解集为{3x x <-或12x ⎫>⎬⎭.(2)由220x x +-≤,得220x x --≥,()()120x x +-≥, 解得1x ≤-或2x ≥,所以不等式的解集为{1x x ≤-或}2x ≥.(3)由4220x x --≥,得()()22120x x +-≥,解得21x ≤-(舍去)或22x ≥,得2x ≤-2x ≥,所以不等式的解集为{2x x ≤-}2x ≥. (4)由21x x ,得2210xx >,1x >12x -(舍去),所以1x >,所以不等式的解集为{}1x x >.18.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈.(1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.【解析】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b ab a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->, 当a =0,不等式为10x -<,不等式的解集为{}1x x <;当0a <时,不等式化为3()(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为:3,1a.当3a =时,两根相等,故不等式的解集为{|1}x x ≠; 当3a >时,31a <,不等式的解集为3{|x x a<或1}x >; 当0<<3a 时,31a>,不等式的解集为{|1x x <或3}x a >,.综上:当0a <时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a >.当3a =时,不等式的解集为{|1}x x ≠; 当3a >时,不等式的解集为3{|x x a<或1}x >; 19.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数) (1)220x x a ++< (2)102ax x ->-. 【解析】(1)原不等式对应的一元二次方程为:220x x a ++=, Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<--。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结二次函数知识点总结二次函数是形如y=ax²+bx+c(a≠0)的函数。

与一元二次方程类似,二次项系数a≠0,而b和c可以为零。

二次函数的定义域是全体实数。

二次函数的根本形式是y=ax²。

a的绝对值越大,抛物线的开口越小。

a的符号决定开口方向。

当a>0时,开口向上;当a<0时,开口向下。

顶点坐标是(0,0),对称轴是y轴。

当x增大时,y随之增大,当x减小时,y随之减小,当x=0时,y有最小值。

当二次函数的形式为y=ax²+c时,顶点坐标是(0,c),对称轴是y轴。

其他性质与y=ax²相同。

当二次函数的形式为y=a(x-h)²时,顶点坐标是(h,0),对称轴是以顶点为中心的垂直于x轴的直线。

当x增大时,y随之增大,当x减小时,y随之减小,当x=h时,y有最小值。

当二次函数的形式为y=a(x-h)²+k时,顶点坐标是(h,k),对称轴是以顶点为中心的垂直于x轴的直线。

其他性质与y=a(x-h)²相同。

平移二次函数的图像,可以将抛物线的顶点平移到(h,k)处。

具体方法是保持抛物线形状不变,将其顶点平移到(h,k)处。

如果k>0,则向上平移|k|个单位;如果k<0,则向下平移|k|个单位。

y=ax^2+k向右移动h个单位(h>0)或向左移动|h|个单位(h0)或向下移动|k|个单位(k<0)。

y=a(x-h)^2向上移动k个单位(k>0)或向下移动|k|个单位(k<0),平移规律为“左加右减,上加下减”,概括为八个字。

另一种方法是对于y=ax^2+bx+c,沿y轴平移m个单位向上(下)为y=ax^2+bx+c+m(或y=ax^2+bx+c-m),沿轴平移m个单位向左(右)为y=a(x+m)^2+b(x+m)+c(或y=a(x-m)^2+b(x-m)+c)。

对于二次函数y=a(x-h)^2+k和y=ax+bx+c,两者是不同的表达形式,通过配方可以得到y=ax^2+bx+c,其中h=-b/2a,k=a(h^2)+b(h)+c。

人教版高中数学必修一《2.3 第一课时 一元二次不等式及其解法》课件

人教版高中数学必修一《2.3 第一课时 一元二次不等式及其解法》课件
2.3 二次函数与一元二次方程、不等式
明确目标
发展素养
1.掌握一元二次不等式的解法. 2.能根据“三个二次”之间的
关系解决简单问题. 3.掌握一元二次不等式的实际
应用. 4.会解一元二次不等式中的恒
成立问题.
1.通过解一元二次不等式,培养数学运算 素养.
2.通过“三个二次”关系的应用,提高数 学运算和逻辑推理素养.
3.通过分式不等式的解法及不等式的恒成 立问题的学习,培养数学运算素养.
4.借助一元二次不等式的应用,培养数学 建模素养.
第一课时 一元二次不等式及其解法
(一)教材梳理填空 1.一元二次不等式:
只含有 一个 未知数,并且未知数的最高次数是__2_ 定义
的不等式,称为一元二次不等式 一般 ax2+bx+c>0或ax2+bx+c<0,其中a,b,c均为常 形式 数,a≠0
[典例3] 已知关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},求关于x的 不等式cx2+bx+a<0的解集.
[解] 法一:由不等式 ax2+bx+c>0 的解集为{x|2<x<3}可知 a<0,且 2 和 3 是方程 ax2+bx+c=0 的两根,由根与系数的关系可知ba=-5,ac=6.
故不等式的解集为x12≤x≤2 .
(2)x2-a+1ax+1≤0⇔x-1a(x-a)≤0,
①当 0<a<1 时,a<1a,不等式的解集为xa≤x≤1a

②当 a=1 时,a=1a=1,不等式的解集为{1}; ③当 a>1 时,a>1a,不等式的解集为x1a≤x≤a . 综上,当 0<a<1 时,不等式的解集为xa≤x≤1a ; 当 a=1 时,不等式的解集为{1}; 当 a>1 时,不等式的解集为x1a≤x≤a .

二次函数图象和性质知识点总结

二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。

③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。

2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。

②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。

然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。

a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。

三个二次之间的关系

三个二次之间的关系

三个二次之间的关系作者:董中枝来源:《新课程学习·下》2015年第01期三个二次是指一元二次方程、一元二次不等式和二次函数。

这三个二次都是中学数学的重要内容,它们之间相互联系,相互渗透,其中二次函数最重要,其图象是纽带。

它将等与不等,数与形紧密结合在一起。

它既包含了方程的根,又包括了不等式的解集。

利用数形结合使一些数学问题得到很好的解决。

三个二次之间的关系表:上表告诉我们:利用函数观点认识方程和不等式。

一元二次方程的根分别对应着二次函数与x轴交点的横坐标,同时对应着一元二次不等式解集的端点。

函数的正值区间就是不等式大于0的解集对应着函数图象在x轴上方各点横坐标的集合。

函数的负值区间就是不等式小于0的解集对应着的函数图象在x轴下方各点的横坐标的集合。

下面通过例子来看这几种关系。

一、利用方程有无根与?驻之间的关系求解例1.当m为何值时,函数y=x2+2(m-1)x+3m2-11=0的图象与x轴有一个交点、两个交点、无交点?分析:函数图象与x轴有无交点,就是对应方程有无实数根。

一个交点?葑一个实根?葑?驻=0两个交点?葑两个实根?葑?驻>0无交点?葑无实数根?葑?驻<0而?驻=[2(m-1)]2-4×1×(3m2-11)我们来解关于m的方程或不等式可以使问题得以求解解:?驻=[2(m-1)]2-4×1(3m2-11)=-8(m2+m-6)当?驻>0时:m2+m-6<0 解得-3<m<2即:当-3<m<2时图象与x轴两个交点。

当?驻=0时:m2+m-6=0 解得m=-3或m=2即:当m=-3或m=2时图象与x轴一个交点。

当?驻<0时:m2+m-6>0 解得m<-3或m>2即:当m<-3或m>2时图象与x轴没有交点。

二、利用方程的根和不等式解集之间的关系求解例2.已知ax2-bx-1>0的解集为(-■,-■)求x2-bx-a<0的解集。

【教案】2.3二次函数与一元二次方程、不等式 教案

【教案】2.3二次函数与一元二次方程、不等式 教案

2.3 二次函数与一元二次方程、不等式教学设计教学目标:1.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义;2.了解一元二次不等式的概念与二次函数的零点;3.借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系,体会数学的整体性;4.能够借助二次函数,求解一元二次不等式;5.通过一元二次函数、一元二次方程、不等式三者关系的探究过程,提升学生数学抽象、数学运算、直观想象的核心素养.教学重点、难点重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图象与x 轴位置关系的联系,数形结合思想的运用. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练.教学工具:多媒体.教学过程一.问题引入园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m²,则这个矩形的边长为多少米?解:设这个矩形的一条边长为m x ,则另一条边长为12)m.x -(由题意,得12)20,x x ->(其中{012}.x x x ∈<<整理得 212200,{012}.x x x x x -+<∈<< ①求得不等式①的解集,就得到了问题的答案.设计意图:由问题引入,引发学生思考,得到一元二次不等式,引入课题并出示本节教学目标 .二.新知探究问题:什么是一元二次不等式?学生总结回答,说出定义.定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一般形式是0022<++>++c bx ax c bx ax 或其中,,a b c 均为常数,0.a ≠教师引导学生解读定义,强调关键词,目的加深学生对定义的理解.在初中,我们学习了一元一次不等式的解法,以30,30x x ->-<两个不等式为例,求出3=0x -的根,进而画出函数3y x =-的图象,通过图象写出不等式的解.类比这种解法,我们能否借助二次函数的图象求解一元二次不等式呢?设计意图:教师引导学生回顾一元一次不等式的解法,体会求解步骤,通过类比,有助于探究一元二次不等式的解法.探究一:一元二次不等式212200x x -+< 的解法(1)求一元二次方程21220=0x x -+的_____ ,12____,_____.x x == (2)画一元二次函数2=1220y x x -+的图象;(3)当210x <<时,函数图象位于x 轴___方,此时0y <,即212200x x -+<. 所以,一元二次不等式的解集为{210}x x <<.从而解决了引例的问题.设计意图:通过以上三个步骤的设置,让学生自主探究具体的一元二次不等式的解法,进而推广到一般情况.问题:2和10是方程的根,是二次函数与x 轴交点的横坐标,也叫做函数的零点.引出零点的定义.一般地,对于二次函数2y ax bx c =++,我们把使2=0ax bx c ++的实数x 叫做二次函数2y ax bx c =++的零点.注:一元二次函数的零点不是点,是实数.教师强调上述方法可以推广到求一般的一元二次不等式)0(02>>++a c bx ax 和)0(02><++a c bx ax 的解集.探究二:二次函数与一元二次方程、不等式的解对应关系下面我们以表格的形式探究三者之间的关系(学生分组谈论,合作交流)讨论结束,教师提问学生,完成表格.三.典例分析、举一反三一元二次不等式的解法 例1 求不等式2560x x -+>的解集.分析:因为方程256=0x x -+的根是函数256y x x =-+的零点,所以先求出256=0x x -+的根,再根据函数图象得到2560x x -+>的解集.解:对于方程256=0x x -+,因为0,∆>所以它有两个实数根,解得12=2 3.x x =, 画出二次函数256y x x =-+的图象,结合图象得不等式2560x x -+>的解集为{2,3}.x x x <>或设计意图:教师板书步骤,规范学生作答,强调关键语句.判别式2=4b ac ∆- 0∆> =0∆ 0∆< 2,0y ax bx c a =++> 的图象2=0,0ax bx c a ++>的根 有两相异实根 1212,x x x x <,有两相等实根 没有实数根 20,0ax bx c a ++>> 的解集12{}x x x x x <>或 {}2b x x a ≠-R 20,0ax bx c a ++<>的解集12{}x x x x << φ φ例2 求不等式01692>+-x x 的解集.解:对于方程2961=0x x -+,因为=0,∆所以它有两个相等实数根,解得121=.3x x =画出二次函数2961y x x =-+的图象,结合图象得不等式01692>+-x x 的解集为1{}.3x x ≠ 教师直接利用课件展示做题步骤,比较与例1的区别与联系.例3 求不等式03-2-2>+x x 的解集.解:不等式可化为0322<+-x x .因为=-8<0,∆所以方程无实数根.画出二次函数322+-=x x y 的图象,结合图象得不等式0322<+-x x 的解集为∅ 方法总结:如何用图解法解一元二次不等式?(1)化标:将原不等式化为系数为正的标准形式(2)求根:依据2=4b ac ∆-,判定方程根的情况;(3)画图;(4)写解集.巩固练习:求不等式 2.580.2)200.1x x --⨯≥( 的解集. 设计意图:强化学生对一元二次不等式标准形式转化能力与求解能力 .四、课堂小结1.学到了哪些知识?(1)一元二次不等式的定义与二次函数的零点定义;(2)“三个二次”的关系(3)一元二次不等式解法步骤:化标、求根、画图、写解集2.运用了哪些数学思想方法?函数与方程 数形结合 类比法 特殊到一般3.提升了哪些数学素养?数学抽象 数学运算 直观想象五、板书设计六、作业布置分层训练 2.3二次函数与一元二次不等式七.教学反思本节通过画图,看图,分析图,小组讨论完善表格,深化知识,抽象概括进行教学,让每个学生动手,动口,动脑,积极参与,提高教学效率和教学质量,使学生进一步理解数形结合和从特殊到一般的思想方法.。

2.3二次函数与一元二次方程、不等式(学生版)

2.3二次函数与一元二次方程、不等式(学生版)

2.3.1二次函数与一元二次方程、不等式例1 求不等式2560x x -+>的解集.【变式】解下列不等式.(1)2450x x -->; (2)22570x x -++≥.例2 求不等式29610x x -+>的解集.【变式2】已知关于x 的不等式221x x a -->,R a ∈. (1)当2a =时,求不等式221x x a -->的解集;(2)若“不等式221x x a -->的解集为R ”为假命题,求a 的取值范围.例3 求不等式2230x x -+->的解集.【变式3】已知关于x 的不等式()220R x x a a a -+++>∈.(1)若此不等式的解集是()1,2-,求a 的值; (2)讨论此不等式的解集.选择性拔高题型一:不含参一元二次不等式的解法 【练习1】 解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0.题型二:含参一元二次不等式的解法【练习2】 已知a ∈R ,关于x 的不等式2322(2)x a a a a x +-<+- (1)当3a =时,求x 的解集.(2)当a ∈R 时,求x 的解集(用a 来表示).题型三:三个“二次”之间对应关系的应用【练习3】 二次函数y =ax 2+bx +c (x ∈R )的部分对应值如表所示:则关于x 的不等式ax 2+bx +c >0的解集是________.2.3.2一元二次不等式的应用例4 一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间有如下的关系:2202200y x x =-+.若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?【变式】某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式.(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?例5 某种汽车在水泥路面上的刹车距离s (单位:m )和汽车刹车前的车速v (单位:km /h )之间有如下关系:21120180s v v =+. 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的车速至少为多少(精确到1 km /h )?【变式】某种牌号的汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m和汽车刹车前的车速x km/h有如下关系:s=-2x+118x2.在一次交通事故中,测得这种车的刹车距离不小于22.5 m,那么这辆汽车刹车前的车速至少为多少?选择性拔高题型一:简单方式不等式的解法【练习1】解下列不等式:(1)x+1x-3≥0;(2)5x+1x+1<3.题型二:二次函数与一元二次方程、不等式间的关系及应用【练习2】已知关于x的不等式x2+ax+b<0的解集为{x|1<x<2},求关于x的不等式bx2+ax+1>0的解集.题型三:一元二次不等式的实际应用【练习3】某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点. (1)写出降税后税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调整后,不少于原计划税收的83.2%,试确定x 的取值范围.题型四:一元二次不等式恒成立问题【练习4】(1). 如果方程20ax bx c ++=的两根为2-和3且0a <,那么不等式20ax bx c ++>的解集为____________.(2).已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .k 0<或1k > D .0k ≤或1k >跟踪练习:已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤B .01k <≤C .k 0<或1k >D .0k ≤或1k >。

一元二次不等式教案

一元二次不等式教案

一元二次不等式教案一元二次不等式教案1教学目标:(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

教学重点:一元二次不等式的解法(图象法)教学难点:(1)一元二次方程、一元二次不等式与二次函数的关系;(2)数形结合思想的渗透教学方法与教学手段:尝试探索教学法、归纳概括。

教学过程:一、复习引入1.复习一元一次方程、一元一次不等式与一次函数的关系[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。

(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。

首先请同学们画出 y=2x-7[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:填表:当x 时,y = 0,即 2x-7 0;当x 时,y < 0,即 2x-7 0;当x 时,y > 0,即 2x-7 0;注:(1)引导学生由图象得出结论(数形结合)(2)由学生填空(一边演示y<0,y>0部分图象)从上例的特殊情形,你能得出什么结论?注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

2.新课导入[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?二、讲解新课1、一元二次不等式解法的探索[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下: 填表:方程x2-4x+3=0(即y=0)的解是不等式x2-4x+3>0(即y>0)的解集是不等式x2-4x+3<0(即y<0)的解集是注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。

双曲线中abc的关系式

双曲线中abc的关系式

双曲线中abc的关系式简介双曲线是一种常见的二次曲线,具有许多重要的性质和应用。

在数学中,双曲线可以用方程表示,其中包含三个参数a、b、c。

本文将深入探讨双曲线中这三个参数之间的关系。

双曲线的定义与性质1.定义:双曲线是一个平面上的曲线,定义为到两个给定点的距离之差等于常数的点集。

这两个给定点称为焦点,和连接焦点的直线称为主轴。

2.式子表示:双曲线的方程可以表示为(x-h)²/a² - (y-k)²/b² = 1,其中(h,k)为双曲线的中心点。

3.对称性:双曲线具有关于x轴和y轴的对称性。

4.渐近线:双曲线的两个分支与一条或两条直线(称为渐近线)无限地靠近但永远不相交。

双曲线参数的含义1.参数a:双曲线的半焦距。

半焦距是指焦点到曲线的距离。

当a增大时,双曲线的形状变扁平;当a减小时,双曲线的形状变尖锐。

2.参数b:双曲线的半轴。

半轴是指主轴到曲线的距离。

当b增大时,双曲线的形状变宽;当b减小时,双曲线的形状变窄。

3.参数c:双曲线的焦距。

焦距是指焦点到中心点的距离。

焦距的大小与双曲线形状的变化有关。

双曲线参数之间的关系1.参数a和b的关系:根据双曲线的方程,可以得到a² + b² = c²。

这个关系式表明了在双曲线中,参数a和b之间存在固定的关系,即它们的平方和等于焦距的平方。

2.参数a和c的关系:由参数a和b的关系可知,c² = a² + b²,即c² =2a²。

这表明参数c与参数a的关系是二次的,且倍数为2。

3.参数b和c的关系:由参数a和b的关系可知,c² = a² + b²,即b² = c²- a²。

这表明参数b与参数c和a之间存在二次关系。

双曲线参数的变化对图像的影响1.参数a的变化对图像的影响:当a增大时,双曲线的形状变扁平;当a减小时,双曲线的形状变尖锐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档