高考数学难点之三个“二次”及关系
高考数学中的二次函数问题解析
高考数学中的二次函数问题解析高考数学是很多学生最为担心的科目之一,其中涉及到的二次函数问题更是令学生头疼不已。
二次函数在高中数学中的重要性不言而喻,其解题方法多种多样,需要学生有一定的数学基础和逻辑思维能力。
在本文中,将着重解析高考数学中的二次函数问题,让学生能够更好地应对考试。
一、二次函数的基本形式二次函数是高中数学的一个重要概念,也是高考的重点内容之一。
二次函数的一般式为:y = ax² + bx + c其中,a、b、c 分别为实数,二次函数的图像为开口朝上或开口朝下的抛物线。
a 的取值决定了二次函数的开口方向和大小,当a > 0 时,抛物线开口朝上,当 a < 0 时,抛物线开口朝下;而 b 和c 的取值则分别影响抛物线的位置和与坐标轴的交点。
二、二次函数的求根公式在解决二次函数的问题时,一个常见的问题是求解方程ax² + bx + c = 0其中,a、b、c 分别为实数。
由于一般的二次方程不易直接求解,因此需要使用二次函数的求根公式:x1,2 = (-b ± √(b² - 4ac)) / 2a其中,+/- 代表正负号取两种情况,√ 表示开方,a、b、c 分别代表一般式中的系数。
需要注意的是,在运用此公式求解时,首先应该对给定方程进行分类讨论,判断它的解的数量与情况。
三、二次函数的最值问题另一个常见的二次函数问题是求取最值。
通过对一般式 y = ax²+ bx + c 的求导,我们可以得到其导函数为:y' = 2ax + b当 y' = 0 时,可以求得此时的 x 值,即为二次函数的极值点。
根据抛物线的开口方向,可以推断出该点是函数的最大值或最小值。
此外,需要注意的是,当 a > 0 时,抛物线开口朝上,其最小值为 y = c - b² / 4a;而当 a < 0 时,抛物线开口朝下,其最大值为y = c - b² / 4a。
高考数学中的二次函数与相关题型分析
高考数学中的二次函数与相关题型分析高考数学是考生们最为担心的科目之一,而其中涉及到的二次函数和相关题型更是让人头疼。
二次函数是高中数学的重点和难点,因此在备战高考时务必要重视和复习。
本文将着重分析高考数学中的二次函数和相关题型,并介绍备考中的一些技巧和方法。
一、二次函数的基本概念二次函数是形如 y = ax^2 + bx + c 的一类函数,其中 a、b、c都是实数,且a ≠ 0。
二次函数的图像为一个开口向上或向下的抛物线。
二次函数的一些基本概念包括:1. 零点:指函数图象与 x 轴的交点,也就是方程 ax^2 + bx + c= 0 的解。
2. 判别式:指二次方程 ax^2 + bx + c = 0 的 b^2-4ac 部分,用于判断此方程的解的数量和类型。
3. 对称轴:指函数图象中抛物线的对称轴,其方程为x = -b/2a。
4. 单调性和极值:指函数图象的凹凸性和最值点。
二、高考中的二次函数题型在高考数学中,二次函数的考察主要分为以下几个方面:1. 二次函数的图像及性质该题型主要考查二次函数的开口方向、顶点坐标、对称轴等性质,需要通过化式子、配方法、求导等方法计算。
例如:已知二次函数 f(x) = 2x^2 - 4x + 1,求出它的零点、对称轴和顶点坐标。
2. 二次函数的解析式以及单调性和极值该题型主要考查对二次函数解析式的把握和对单调性和极值的理解,需要通过求导、解方程等方法计算。
例如:已知二次函数 f(x) = x^2 - 2x + 3,求出它的解析式和单调性和极值。
3. 二次函数与其他函数的关系该题型主要考查二次函数与指数函数、对数函数、三角函数等其他函数的关系,需要掌握函数的基本性质和变换。
例如:已知二次函数 y = x^2 + 2x + 1 和指数函数 y = e^x,求出它们的交点坐标。
4. 实际问题中的二次函数该题型主要考查将二次函数应用于实际问题中的能力,需要理解问题背景和建立模型。
高考数学二轮复习 第03课时 三个“二次”及关系
第03课时 三个“二次”及关系【考点点悟】传道解惑,高屋建瓴三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本课时主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.1.二次函数的三种表示法:y =ax 2+bx +c ; y =a (x -x 1)(x -x 2); y =a (x -x 0)2+n .2.当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m , f (q )=M ; 若p ≤-a b 2<x 0, 则f (-a b2)=m , f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M , f (-a b2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m .3.二次函数2()f x ax bx c =++,由(0)f c =,(1)f a b c =++,(1)f a b c -=-+可得,11(1)(1)(0)22a f f f =+--、11(1)(1)22b f f =--、(0)c f = .从而有21111()[(1)(1)(0)][(1)(1)](0)2222f x f f f x f f x f =+--+--+ .4.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+ab 2|,当a <0时,f (α)<f (β) ⇔|α+a b 2|>|β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p ab a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 【小题热身】明确考点,自省反思1. 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________.2.已知32()f x x ax bx c =+++,过曲线()y f x =上一点(1,(1))P f 的切线方程是31y x =+,如()y f x =在[]2,1-上为增函数,则实数b 的取值范围为 .3.二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.4.若函数32321y x x =+-在区间(,0)m 上是减函数,则 m 的取值范围是 .【考题点评】分析原因,醍醐灌顶例1. 已知32()f x x ax b =-++,若曲线()y f x =在[]0,1x ∈这一段上任一点处切线的斜率都在区间[]0,1上.求实数a 的取值范围.思路透析: 曲线()y f x =在点(,())x f x 处的切线斜率为2()32f x x ax '=-+,由题意可知,20321x ax ≤-+≤在区间[]0,1上恒成立.(1)0x =时,a 可取一切实数.(2)(]0,1x ∈时,由2320x ax -+≥恒成立,32a x ∴≥在(]0,1上恒成立. 而32x 在(]0,1上最大值为32 32a ∴≥. 由2321x ax -+≤在(]0,1上恒成立,11(3)2a x x∴≤+在(]0,1上恒成立.由11(3)2x x +≥x =时取“=”)(]0,1x ∴∈时11(3)2x x +的最小值a ∴≤综上所述,所求实数a 的取值范围为32a ≤≤. 点评: 三次函数的导数是二次函数,这样就出现了以三次函数的导数为载体考查二次函数、一元二次方程、及一元二次不等式的所谓“三个二次”问题 ,这些问题,灵活性大,综合性强.例 2.已知函数2()2,()1f x x a g x x =-=+,()()()H x f x g x =⋅. 设方程2310x ax -+=的两实根为,()αβαβ<,且函数()H x 在区间[,]αβ上的最大值比最小值大8,求a 的值.思路透析:由232()(2)(1)22H x x a x x ax x a=-+=-+-得2()2(31)H x x ax '=-+,即 ,αβ是方程()H x '0=的两实根,故当(,)x αβ∈时,有()0H x '<,从而()H x 在[,]αβ上是减函数, 故maxmin()(),()()H x H H x H αβ==,由题意,()()8H H αβ-=,由韦达定理得,1,33a αβαβ+==, 而()()H H αβ-=2()[2()2()2]a αβαβαβαβ-+--++2232[2()2]333a a =--+==8,解得a =±点评:本题的关键是利用二次方程的根与二次不等式的关系,得出函数()H x 为减函数,再利用韦达定理,从而使问题求解.例 3. 已知函数()32,[1,g x a x b x =+∈-单调递增,有最大值2,函数32()f x ax bx cx d =+++([1,1]x ∈-)图象的任一切线都不会与双曲线221y x -=的两支都相交,且()f x . (1)求证|()|2g x ≤; (2)求()f x .思路透析: (1)函数()32,[1,1]g x ax b x =+∈-单调递增,有最大值2,故322(0)a b a +=> 又32()f x ax bx cx d =+++的任一切线都不会与双曲线221y x -=的两支都相交,|()|1f x '≤,|(1)||32|1,|(0)|||1f a b c f c ''-=-+≤=≤.故|(1)||32||32|g a b a b c c -=-+=-+-|32|||2a b c c ≤-++≤,故|()|2g x ≤.(2)|(1)||32||2|1f a b c c '=++=+≤,31c -≤≤-,又11c -≤≤,故1c =-,而()f x '为二次函数,故()f x '的最小值为1-,得0b =,从而23a =,由2()210f x x '=-=得,2x =-时取最大值3,即(03f -=,解得0d =,因此32()3f x x x =-. 点评:熟练利用二次函数、方程的有关知识来解决三次问题应是理所当然之事.例4. 若2()f x ax bx c =++,a 、b 、c 为实数,在区间[0,1]上恒有|()|f x ≤1 .(1)对所有这样的()f x ,求||||||a b c ++的最大值;(2)试给出一个这样的()f x ,使||||||a b c ++确实取到上述最大值.思路透析: (1)由题意得|(1)|||f a b c =++≤1,1|()|||242a bf c =++≤1, |(0)|||f c =≤1 .于是 |||(1)(0)|a b f f +=-≤|(1)||(0)|f f +≤2 ,1|||3()58()||3(1)5(0)8()|422a b a b a b c c c f f f -=+++-++=+-≤3+5+8=16 .∴当ab ≥0时, ||||||||||a b c a b c ++=++≤2+1=3 ; 当ab <0时,∴max (||||||)17a b c ++= .(2)当8,8,1a b c ==-=时, 221()8818()12f x x x x =-+=-- ,当[0,1]x ∈时,有221|()||881||8()1|2f x x x x =-+=--≤1成立 ,此时有|||||a b c ++=17 .点评:解决此类问题的关键是抓住(0)f 、(1)f 、(1)f -、1()2f 等这些特殊的函数值,找出它们与二次函数系数的关系,代入后并进行转化,最后利用不等式的放缩法求解.例 5.已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围.思路透析: (1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2] ∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-a b 2,x 1x 2=ac . |A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=a c a c a c f 的对称轴方程是21-=a c .ac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).点评:本题主要考查考生对函数中函数与方程思想的运用能力,熟练应用方程的知识来解决问题及数与形的完美结合.例6.已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围. 思路透析: (1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过)点评:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 本题重点考查方程的根的分布问题,解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.【即时测评】学以致用,小试牛刀 1.函数321()2f x x x bx =-+的图象有与x 轴平行的切线,则实数b 的取值范围为( ) A.112b ≥ B. 112b < C.112b ≤ D. 112b >2. 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A.(-∞,2] B.[-2,2] C.(-2,2] D.(-∞,-2)3. 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为()A.正数B.负数C.非负数D.正数、负数和零都有可能4.已知函数()f x 32(6)1x ax a x =++++有极大值和极小值,则实数a 的取值范围是 A .12a -<< B .36a -<< C .3a <-或6a > D .1a <-或2a >5.已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,则关于x 的方程2+a x=|a -1|+2的根的取值范围为( ) A. 49≤x ≤425 B. 6≤x ≤12 C. 49≤x ≤6 D. 49≤x ≤12.【课后作业】学练结合,融会贯通一、填空题:1.设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.则实数a 的取值范围为 .2.函数32()(6)2f x x ax a x =++++有极大值和极小值,则实数a 的取值范围为 .3.已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有零点,则a 的取值范围 .4.已知三次函数()(1)()f x x x x a b =-++,若()f x 在(1,)+∞上是增函数,则a 的取值范围为 .5.如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,则m 的取值范围为 .6.已知a ∈R ,二次函数.22)(2a x ax x f --=设不等式()f x >0的解集为A ,又知集合B={x |1<x <3}.若A B ⋂≠∅,则a 的取值范围为 .7.设函数()f x =-cos 2x -4tsin 2x cos 2x +4t 3+t 2-3t+4,x ∈R,将()f x 的最小值记为g(t).则g(t)= .二、解答题: 8. 已知函数3211()(1)(,32f x x b x cx b c =+-+是常数). (1)()f x 在12(,),(,)x x -∞+∞内为增函数,在12(,)x x 内为减函数, 又211x x ->,求证:224b b c >+.(2)在(1)的条件下,如1t x <,比较2t bt c ++与1x 的大小.9.已知函数2()f x ax bx c =++,对任何[1,1x ∈-,都有|()|f x ≤1.设432222()|()()g x acx b a c x a b c x =+++++()|b a c x ac +++,[1,1]x ∈-,求函数()g x 的最大值.10.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证: (1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.第03课时 三个“二次”及关系参考答案【小题热身】1. (-3,23) 2. 0b ≥ 3. (-2,0) 4. 4[,0)9-【即时测评】1. C2. C3. A4. C5.D【课后作业】一、填空题:1.(03-, 2. 36a a <->或 3. 2731--≤≥a a 或 4. 1a ≥- 5. {m |m ≤1且m ≠0} 6. .276-<>a a 或 7. ⎪⎩⎪⎨⎧+∞∈+-+-∈+---∞∈+-+=),1(,454]1,1[,334)1,(,44)(23323t t t t t t t t t t t t g二、解答题:8. 解析:(1)证明:2()(1)f x x b x c '=+-+ 由题意知,12,x x 为()0f x '=的两个不相等的实根,12121,x x b x x c ∴+=-⋅= 224b b c ∴--()()21212121214x x x x x x =-+--+-⎡⎤⎡⎤⎣⎦⎣⎦221()1x x =-- 211x x ->221()1x x ∴-> 224b b c ∴-->0 ∴224b b c >+。
高考数学复习知识点讲解教案第5讲 一元二次方程、不等式
[解析] 由 + 1 2 − ≥ 0,得 + 1)( − 2 ≤ 0,
故原不等式的解集为{| − 1 ≤ ≤ 2}.
2
若关于的不等式
6.
−∞, 1
+ 2 + 1 < 0有实数解,则的取值范围是___________.
[解析] 当 = 0时,不等式为2 + 1 < 0,有实数解,满足题意;
≤ 0,即 3 − 2 − 3 ≤ 0,且 − 3 ≠ 0,
2
3
≤<3 .
(2)
不等式组0 <
2
[−2, −1) ∪ (2,3]
− − 2 ≤ 4的解集为___________________.
[思路点拨](2)解两个一元二次不等式0 <
2
−−
2
2和
− − 2 ≤ 4,
然后求交集.
例4
是(
对任意的 ∈ 1,4
D
A.[1, +∞)
2
,不等式
− 2 + 2 > 0恒成立,则实数的取值范围
)
B.
1
,1
2
[思路点拨] 分离参数得 >
1,4 上的最大值即可.
1
C.[ , +∞)
2
2−2
对任意的
2
∈ 1,4
D.
1
, +∞
2
2−2
恒成立,则求出 2 在区间
[解析] ∵ 对任意的 ∈ 1,4
数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.
②若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次
高中数学高三第六章不等式一元二次不等式及其解法(教案)
高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
【重点难点】1。
教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。
由常见问题的解决和总结,使学。
2019届高考数学二轮复习专题三不等式第1讲三个“二次”的问题学案
第1讲 三个“二次”的问题1. “三个二次”在历年高考中都有考查,体现出二次函数、二次方程和二次不等式之间有密不可分的联系,即函数的研究离不开方程和不等式;方程和不等式的解的讨论同样要结合函数的图象和性质.2. 主要涉及的题型有:一是求二次函数的解析式;二是求二次函数的值域或最值,考查二次函数和一元二次方程、一元二次不等式的综合应用;三是考查一元二次不等式的解法及“三个二次”间的关系问题;四是从实际情景中抽象出一元二次不等式模型;五是以函数、导数为载体,考查不等式的参数范围问题.1. 不等式(1+x)(1-x)>0的解集是________. 答案:{x|-1<x<1}解析:原式可化为(x +1)(x -1)<0,所以不等式的解集为-1<x<1.2. (2018·海安第一次学业质量测试)关于x 的不等式x +ax+b≤0(a,b ∈R )的解集为{x |3≤x ≤4},则a +b 的值为________.答案:5解析:由题意可得⎩⎪⎨⎪⎧3+a3+b =0,4+a 4+b =0,解得⎩⎪⎨⎪⎧a =12,b =-7,所以a +b =5.3. (2018·镇江期末)已知函数f(x)=x 2-kx +4,对任意的x∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.答案:4解析:由题意知x 2-kx +4≥0,x ∈[1,3],所以k≤x +4x对任意的x∈[1,3]恒成立.因为x +4x≥4(当且仅当x =2时取等号),所以k≤4,故实数k 的最大值为4.4. (2018·昆山中学月考)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是________.答案:[-1,4]解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a≤4., 一)一元二次不等式的求解, 1)已知f(x)=-3x 2+a(6-a)x +b.(1) 解关于a 的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数a ,b 的值.解:(1) f(1)=-3+a(6-a)+b =-a 2+6a +b -3.因为f(1)>0,所以a 2-6a +3-b <0.Δ=24+4b ,当Δ≤0,即b≤-6时,f(1)>0的解集为∅;当Δ>0,即b >-6时,3-b +6<a <3+b +6,所以b >-6时,f(1)>0的解集为{a|3-b +6<a <3+b +6}.(2) 因为不等式-3x 2+a(6-a)x +b >0的解集为(-1,3),所以⎩⎪⎨⎪⎧2=a (6-a )3,-3=b -3,解得⎩⎨⎧a =3±3,b =9.(2018·苏北四市一模)已知函数f(x)= ⎩⎪⎨⎪⎧2-|x +1|,x≤1,(x -1)2,x >1.若函数g(x)=f(x)+f(-x),则不等式g(x)≤2的解集为________.答案:[-2,2] 解析:f(x)=⎩⎪⎨⎪⎧3+x ,x <-1,-x +1,-1≤x≤1,(x -1)2,x>1, 所以f(-x)=⎩⎪⎨⎪⎧(x +1)2,x<-1,x +1,-1≤x≤1,-x +3,x >1,所以g(x)=f(x)+f(-x)=⎩⎪⎨⎪⎧x2+3x +4,x<-1 ①,2,-1≤x≤1 ②,x2-3x +4,x>1 ③.由不等式g(x)≤2,解得①⎩⎪⎨⎪⎧x<-1,x2+3x +4≤2⇒-2≤x<-1;②⎩⎪⎨⎪⎧-1≤x≤1,2≤2⇒-1≤x≤1;③⎩⎪⎨⎪⎧x>1,x2-3x +4≤2⇒1<x ≤2.综上所述,不等式g(x)≤2的解集为[-2,2]., 二)二次函数与二次不等式, 2)(2018·北京朝阳统考)已知函数f(x)=x 2-2ax -1+a ,a ∈R .(1) 若a =2,试求函数y =f (x )x(x >0)的最小值;(2) 对于任意的x ∈[0,2],不等式f (x )≤a 恒成立,试求a 的取值范围.解:(1) 依题意得y =f (x )x =x2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x,即x =1时,等号成立.所以y ≥-2. 所以当x =1时,y =f (x )x的最小值为-2.(2) 因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 恒成立”,只要“x 2-2ax -1≤0在[0,2]上恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34,则a 的取值范围是⎣⎢⎡⎭⎪⎫34,+∞.已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上的最大值为4,最小值为1,记f (x )=g (|x |).(1) 求实数a ,b 的值;(2) 若不等式f (log 2k )>f (2)成立,求实数k 的取值范围;(3) 定义在[p ,q ]上的一个函数m (x ),用分法T :p =x 0<x 1<…<x i -1<x i <…<x n =q 将区间[p ,q ]任意划分成n 个小区间,如果存在一个常数M >0,使得和式错误!f(x i )=f(x 1)+f(x 2)+…+f(x n ))解:(1) g(x)=a(x -1)2+1+b -a ,因为a>0,所以g(x)在区间[2,3]上是增函数,故⎩⎪⎨⎪⎧g (2)=1,g (3)=4,解得⎩⎪⎨⎪⎧a =1,b =0.(2) 由已知可得f(x)=g(|x|)=x 2-2|x|+1为偶函数,所以不等式f(log 2k )>f (2)可化为|log 2k |>2,解得k >4或0<k <14,故实数k 的取值范围是(0,14)∪(4,+∞).(3) 设函数f (x )为[1,3]上的有界变差函数.因为函数f (x )为[1,3]上的单调递增函数, 且对任意划分T :1=x 0<x 1<…<x i -1<x i <…<x n =3, 有f (1)=f (x 0)<f (x 1)<…<f (x n -1)<f (x n )=f (3),所以错误!|m(x i )-m(x i -1)|≤M 恒成立,所以M 的最小值为4., 三)二次方程与二次不等式, 3)对于函数f(x),若f(x 0)=x 0,则称x 0为函数f(x)的“不动点”;若f(f(x 0))=x 0,则称x 0为函数f(x)的“稳定点”.如果f(x)=x 2+a(a∈R )的“稳定点”恰是它的“不动点”,求实数a 的取值范围.解:(解法1)因为函数的“稳定点”恰是它的“不动点”,由f (f (x ))=x ,可得(x 2+a )2+a =x .方程可化为(x 2-x +a )(x 2+x +a +1)=0,所以方程x 2-x +a =0有解,且方程x 2+x +a +1=0无解或其解都是x 2-x +a =0的解,由方程x 2-x +a =0有解,得Δ1=1-4a ≥0,解得a ≤14.由方程x 2+x +a +1=0无解,得Δ2=1-4(a +1)<0,解得a >-34.若方程x 2+x +a +1=0有解且都是x 2-x +a =0的解.因为方程x 2-x +a =0与方程x 2+x +a +1=0不可能同解, 所以方程x 2+x +a +1=0必有两个相等的实根且是方程x 2-x +a =0的解,此时,Δ2=1-4(a +1)=0,解得a =-34,经检验,符合题意.综上,a 的取值范围是[-34,14].(解法2)显然,函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以f (x )=x 有解,但方程组⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1(x 1≠x 2)无解.由f (x )=x ,得x 2-x +a =0有解,所以1-4a ≥0,解得a ≤14.由⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1,得⎩⎪⎨⎪⎧x21+a =x 2,x 2+a =x 1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1, 代入消去x 2,得x 21+x 1+a +1=0.因为方程x 21+x 1+a +1=0无解或仅有两个相等的实根,所以1-4(a +1)≤0,解得a ≥-34,故a 的取值范围是[-34,14].定义:关于x 的两个不等式f (x )<0和g (x )<0的解集分别为(a ,b )和(1b ,1a),则称这两个不等式为对偶不等式.如果不等式x 2-43x cos θ+2<0与不等式x 2+2x sin θ+1<0为对偶不等式,且θ∈(π2,π),则θ=________.答案:2π3解析:由题意知不等式x 2-43x cos θ+2<0的解集为(a ,b ),所以a +b =43cos θ,ab =2.又不等式x 2+2x sin θ+1<0的解集为(1b ,1a),所以1b +1a=-2sin θ.又1b +1a =a +b ab =43cos θ2=-2sin θ,所以tan θ=-3. 又θ∈(π2,π),所以θ=2π3., 四)三个“二次”的综合问题, 4)设函数f(x)=ax 2+bx +c(a ,b ,c ∈R ),且f (1)=-a2,3a >2c >2b ,求证:(1) a >0且-3<b a <-34;(2) 函数f (x )在区间(0,2)内至少有一个零点;(3) 若x 1,x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1) 因为f (1)=a +b +c =-a2,所以3a +2b +2c =0.又3a >2c >2b ,所以3a >0,2b <0,所以a >0,b <0. 又2c =-3a -2b ,3a >2c >2b ,所以3a >-3a -2b >2b .因为a >0,所以-3<b a <-34.(2) 因为f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,因为a >0,所以f (1)=-a2<0,且f (0)=c >0,所以函数f (x )在区间(0,1)内至少有一个零点;②当c ≤0时,因为a >0,所以f (1)=-a2<0,且f (2)=a -c >0,所以函数f (x )在区间(1,2)内至少有一个零点. 综合①②得函数f (x )在区间(0,2)内至少有一个零点.(3) 因为x 1,x 2是函数f (x )的两个零点,则x 1,x 2是方程ax 2+bx +c =0的两根.所以|x 1-x 2|=(x1+x2)2-4x1x2=(-b a )2-4(-32-ba)=(ba+2)2+2.因为-3<b a <-34,所以2≤|x 1-x 2|<574.已知函数f (x )=2x 2+ax -1,g (log 2x )=x 2-x2a -2.(1) 求函数g (x )的解析式,并写出当a =1时,不等式g (x )<8的解集;(2) 若f (x ),g (x )同时满足下列两个条件:①∃t ∈[1,4],使f (-t 2-3)=f (4t );②∀x ∈(-∞,a ],使g (x )<8.求实数a 的取值范围.解:(1) 令t =log 2x ,则x =2t,由g (log 2x )=x 2-x 2a -2,可得g (t )=22t -2t +2-a,即g (x )=22x -2x +2-a,当a =1时,不等式g (x )<8⇔22x-2x +1<8⇔(2x +2)(2x-4)<0,即2x<4,所以x <2,即不等式g (x )<8的解集为(-∞,2).(2) 因为f (x )=2x 2+ax -1,所以由①∃t ∈[1,4],使f (-t 2-3)=f (4t ),得∃t ∈[1,4],(-t 2-3)+4t =-a 2,即∃t ∈[1,4],a =2(t -2)2-2,所以a ∈[-2,6];由②∀x ∈(-∞,a ],使g (x )<8得∀x ∈(-∞,a ],42a >2x -82x,令μ=2x ,x ∈(-∞,a ],则y =2x-82x =μ-8μ,μ∈(0,2a],易知函数y =μ-8μ在(0,2a ]上是增函数,y max =2a-82a,所以42a>2a-82a,所以2a<23,所以a <1+12log 23.综上,实数a 的取值范围是[-2,1+12log 23).1. 函数y =3-2x -x2的定义域是 ________.答案:[-3,1]解析:要使函数有意义,必须有3-2x -x 2≥0,即x 2+2x -3≤0,所以-3≤x≤1.2. 设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B=________.答案:(32,3)解析:集合A =(1,3),B =(32,+∞),所以A∩B=(32,3).3. (2017·山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .则命题p ∧綈q 的真假性为________.答案:真解析:易知命题p 为真命题,命题q 为假命题,所以綈q 为真命题,由复合命题真值表知,p ∧綈q 为真命题.4. 已知函数f (x )=⎩⎪⎨⎪⎧x2,x≤1,x +6x-6,x>1,则f (f (-2))=________,f (x )的最小值是________.答案:-1226-6解析:f (-2)=(-2)2=4,所以f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )≥0;当x >1时,f (x )≥26-6,当x =6时取等号,所以函数f (x )的最小值为26-6.5. 已知二次函数f(x)=ax 2+bx +c(a>0,c>0)的图象与x 轴有两个不同的公共点,且f(c)=0,当0<x<c 时,恒有f(x)>0. (1) 当a =13,c =2时,求不等式f(x)<0的解集;(2) 若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且ac =12,求a 的值;(3) 若f(0)=1,且f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,求正实数m 的最小值.解:(1) 当a =13,c =2时,f(x)=13x 2+bx +2,f(x)的图象与x 轴有两个不同交点.因为f(2)=0,设另一个根为x 1,则2x 1=6,x 1=3.则f(x)<0的解集为{x|2<x<3}.(2) 函数f(x)的图象与x 轴有两个交点,因为f(c)=0,设另一个根为x 2,则cx 2=c a ,于是x 2=1a.又当0<x<c 时,恒有f(x)>0,则1a >c ,则三交点分别为(c ,0),(1a,0),(0,c),以这三交点为顶点的三角形的面积为S =12(1a -c)c =8,且ac =12,解得a =18,c =4.(3) 当0<x<c 时,恒有f(x)>0,则1a>c ,所以f(x)在[0,c]上是单调递减的,且在x =0处取到最大值1,要使f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,必须f(x)max =1≤m 2-2m +1成立,即m 2-2m +1≥1,即m 2-2m ≥0,解得m ≥2或m ≤0,而m >0,所以m 的最小值为2.(本题模拟高考评分标准,满分16分)(2017·南通考前模拟)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ).(1) 当a =-6时,函数f (x )的定义域和值域都是[1,b 2],求b 的值;(2) 若函数f (x )在区间(0,1)上有两个零点,求b 2+ab +b +1的取值范围.解:(1) 当a =-6时,f (x )=x 2-6x +b ,函数的对称轴为直线x =3, 故f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.(2分)①当2<b ≤6时,f (x )在区间[1,b2]上单调递减;故⎩⎪⎨⎪⎧f (1)=b2,f (b2)=1,方程组无解;(4分)②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)≥f (b 2),故⎩⎪⎨⎪⎧f (1)=b 2,f (3)=1,解得b =10;(6分)③当b >10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)<f (b 2),故⎩⎪⎨⎪⎧f (b 2)=b 2,f (3)=1,方程组无解.所以b 的值为10.(8分)(2) 设函数f (x )=x 2+ax +b 的两个零点为x 1,x 2(0<x 1<x 2<1),则f (x )=(x -x 1)(x -x 2).又f (0)=b =x 1x 2>0,f (1)=1+a +b =(1-x 1)·(1-x 2)>0,(10分)所以b 2+ab +b +1=b (1+a +b )+1=f (0)f (1)+1,而0<f (0)f (1)=x 1x 2(1-x 1)(1-x 2)≤(x1+1-x12)2(x2+1-x22)2=116.(14分)由于x 1<x 2,故0<f (0)f (1)<116,则1<b 2+ab +b +1<1716,即b 2+ab +b +1的取值范围是(1,1716).(16分)1. 在R 上定义运算:⎝ ⎛⎭⎪⎫ab cd =ad -bc ,若不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.答案:32解析:由定义知,不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵ x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.2. 已知f(x)=-3x 2+a(6-a)x +6.(1) 解关于a 的不等式f(1)>0;(2) 若不等式f(x)>b 的解集为(-1,3),求实数a ,b 的值.解:(1) ∵ f(x)=-3x 2+a(6-a)x +6,∴ f(1)=-3+a(6-a)+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a<3+23,∴不等式的解集为{a|3-23<a<3+23}.(2) ∵ f(x)>b 的解集为(-1,3), ∴方程-3x 2+a(6-a)x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.3. 已知函数f(x)=x2+cax(x≠0,a >0,c <0),当x ∈[1,3]时,函数f(x)的取值范围是⎣⎢⎡⎦⎥⎤-32,56. (1) 求函数f(x)的解析式;(2) 若向量m =⎝ ⎛⎭⎪⎫-1x ,12,n =(k 2+k +2,3k +1)(k >-1),解关于x 的不等式f (x )<m ·n .解:(1) 因为c <0,f (x )=1a ⎝ ⎛⎭⎪⎫x +c x 在[1,3]上单调递增,所以⎩⎪⎨⎪⎧f (1)=-32,f (3)=56,解得⎩⎪⎨⎪⎧a =2,c =-4,故f (x )=x2-42x .(2) 由题意,得x2-42x <-k2+k +2x +3k +12,即x (x -2k )[x -(k +1)]<0.①当-1<k <0时,不等式的解集是(-∞,2k )∪(0,k +1); ②当0≤k <1时,不等式的解集是(-∞,0)∪(2k ,k +1);③当k =1时,不等式的解集是(-∞,0);④当k >1时,不等式的解集是(-∞,0)∪(k +1,2k ).。
二次函数的性质与高中数学的关系
二次函数的开口方向和顶点坐标是二次函数性质中的重要内容,对于函数的单调性、最值等问题 有重要影响。
二次函数的对称轴
二次函数图像的对 称轴是x=-b/2a
对称轴是二次函数 图像的垂直平分线
二次函数的对称轴 是函数图像的对称 轴
鼓励学生自主探 究,培养他们解 决实际问题的能 力和创新精神。
关注高考动态,及时调整教学重点和难点
关注高考动态:了解每年的高考数学试题,分析二次函数在其中的考查重 点和难点,为教学提供指导。
及时调整教学重点:根据高考动态,及时调整二次函数的教学重点,强调 与高考相关的知识点和解题方法。
突破教学难点:针对二次函数在高中数学中的难点问题,制定相应的教学 策略,帮助学生理解和掌握。
二次函数的对称轴 是函数图像的垂直 平分线
二次函数的单调性
二次函数开口方向由系数a决定,a>0时开口向上,a<0时开口向下 二次函数的最值出现在顶点处,顶点的x坐标为-b/2a 二次函数的单调性根据开口方向和对称轴位置确定,对称轴左侧单调递减,右侧单调递增 二次函数的对称轴为x=-b/2a
二次函数与高中数学其他知识 点的联系
价值
注重培养学生 的数学思维能 力和解决问题 的能力,提高 学生对二次函 数的理解和应
用能力
强化实践应用,培养学生解决实际问题的能力
结合生活实例, 引导学生理解二 次函数的应用价 值。
创设问题情境, 让学生在实际问 题中运用二次函 数知识。
开展数学活动, 让学生在实践中 加深对二次函数 性质的理解。
学会分析问题:通过分析二次函数的图像和性质,培养分析和解决问题的能力。
新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法
新高考数学复习知识点讲解与练习不等关系与不等式、一元二次不等式及其解法知识梳理1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b ≠0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).3.三个“二次”间的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx+c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅∅1.有关分数的性质 若a >b >0,m >0,则 (1)真分数的性质b a <b +m a +m ;b a >b -m a -m (a -m >0). (2)假分数的性质a b >a +m b +m ;a b <a -m b -m(b -m >0). 2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊断自测1.判断下列说法的正误. (1)a >b ⇔ac 2>bc2.()(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.()(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .() (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.()答案(1)×(2)√(3)×(4)×解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒/ ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 2.若a >b >0,c <d <0,则一定有() A.a d >b c B.a d <b c C.a c >b d D.a c <b d 答案B解析 因为c <d <0,所以0>1c >1d ,两边同乘-1得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1得a d <bc.故选B.3.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是() A.A ≤B B.A ≥B C.A <B D.A >B 答案B解析∵a ,b ∈[0,+∞),∴A ≥0,B ≥0,又A 2-B 2=(a +2ab +b )-(a +b )=2ab ≥0,∴A ≥B . 4.已知函数f (x )=x 3+ax 2+bx +c .且0<f (-1)=f (-2)=f (-3)≤3,则() A.c ≤3 B.3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9.5.已知角α,β满足-π2<α<β<π2,则α-β的取值范围是________.答案(-π,0)解析 因为-π2<α<β<π2,所以-π<α-β<π,且α-β<0,所以-π<α-β<0.所以α-β的取值范围是(-π,0).6.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[-(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案(-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是()A.c ≥b >aB.a >c ≥bC.c >b >aD.a >c >b(2)已知非负实数a ,b ,c 满足a +b +c =1,则(c -a )(c -b )的取值范围为________. 答案(1)A(2)⎣⎡⎦⎤-18,1 解析 (1)∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)因为a ,b ,c 为非负实数,且a +b +c =1,则a +b =1-c ,0≤c ≤1,故|(c -a )(c -b )|=|c -a ||c -b |≤1,即-1≤(c -a )(c -b )≤1;又(c -a )(c -b )=c 2-(1-c )c +ab ≥2⎝⎛⎭⎫c -142-18≥-18.综上,有-18≤(c -a )(c -b )≤1.感悟升华(1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除或特殊值法验证.【训练1】 (1)(2020·浙江卷)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则()A.a <0B.a >0C.b <0D.b >0(2)若a >b >0,且ab =1,则下列不等式成立的是() A.a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC.a +1b <log 2(a +b )<b 2aD.log 2(a +b )<a +1b <b 2a答案(1)C(2)B解析 (1)法一 由题意,知a ≠0,b ≠0,则方程 (x -a )(x -b )(x -2a -b )=0的根为a ,b ,2a +b .①a ,b ,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b ,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0, 此时(x -a )2(x +a )≥0,符合图(2).(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,符合图(3). 综合①②,可知b <0符合题意.故选C.法二(特殊值法) 当b =-1,a =1时,(x -1)(x +1)(x -1)≥0在x ≥0时恒成立;当b =-1,a =-1时,(x +1)(x +1)(x +3)≥0在x ≥0时恒成立;当b =1,a =-1时,(x +1)(x -1)(x +1)≥0在x ≥0时不一定成立.故选C.(2)令a =2,b =12,则a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),则b 2a <log 2(a +b )<a +1b .考点二 一元二次不等式的解法角度1 不含参的不等式【例2-1】求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 角度2含参不等式【例2-2】解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2a≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .感悟升华 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便正确写出解集.【训练2】 (1)(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. (2)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =() A.-3 B.1 C.-1 D.3答案(1)⎝⎛⎭⎫-1,23(2)A 解析 (1)3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝⎛⎭⎫-1,23.(2)由题意得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知a =-1,b =-2,则a +b =-3.考点三 一元二次不等式的恒成立问题角度1 在R 上恒成立【例3-1】若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为()A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0) 答案D解析一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,∴k ≠0,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解之得-3<k <0.角度2 在给定区间上恒成立【例3-2】设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m |0<m <67或m <0解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |0<m <67或m <0.角度3 给定参数范围的恒成立问题【例3-3】已知a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为() A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞) D.(1,3) 答案C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3. 感悟升华恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围就选谁当主元,求谁的范围谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是() A.[-1,4] B.(-∞,-2]∪[5,+∞) C.(-∞,-1]∪[4,+∞) D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(3)若不等式x 2+(a -6)x +9-3a >0在|a |≤1时恒成立,则x 的取值范围是________.答案(1)A(2)⎝⎛⎭⎫-22,0(3)(-∞,2)∪(4,+∞) 解析(1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.(2)二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. (3)将原不等式整理成关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 故x 的取值范围是(-∞,2)∪(4,+∞).基础巩固题组一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是()A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化答案B解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有() A.1个 B.2个 C.3个 D.4个答案C解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C.3.已知a ,b >0,且P =a +b 2,Q =a 2+b 22,则P ,Q 的大小关系是() A.P ≥Q B.P >Q C.P ≤Q D.P <Q答案C解析 因为a ,b >0,所以P 2-Q 2=(a +b )24-a 2+b 22=-(a -b )24≤0,当且仅当a =b 时取等号.故选C.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是()A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}答案D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=-x 2+ax +b 2-b +1,对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定答案C解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则()A.a +b -c 的最小值为2B.a -b +c 的最小值为-4C.a +b -c 的最大值为4D.a -b +c 的最大值为6答案A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 答案{x |x >1}解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 8.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案⎝⎛⎭⎫-1,45 解析 由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a 得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎫-1,45. 9.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为________.答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2.10.下面四个条件中,使a >b 成立的充分而不必要的条件是________.①a >b +1;②a >b -1;③a 2>b 2;④a 3>b 3答案①解析 ①中,若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;②中,当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;③中,当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;④中,a >b 是a 3>b 3的充要条件,综上所述答案为①.三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解(1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3. 所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.12.已知-1<x +y <4且2<x -y <3,求z =2x -3y 的取值范围.解 设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y ,所以⎩⎪⎨⎪⎧m +n =2,m -n =-3,所以⎩⎨⎧m =-12,n =52,由-1<x +y <4知-2<-12(x +y )<12,① 由2<x -y <3知5<52(x -y )<152,② ①+②得3<-12(x +y )+52(x -y )<8,即3<z <8. 能力提升题组13.(2021·浙江十校联盟联考)已知a >b >0,给出下列命题: ①若a -b =1,则a -b <1;②若a 3-b 3=1,则a -b <1;③若e a -e b =1,则a -b <1;④若ln a -ln b =1,则a -b <1.其中真命题的个数是()A.1B.2C.3D.4答案B解析 对于①,当a >b >0,a -b =1时,a -b =(a +b )(a -b )=(1+b +b )(1+b -b )=1+2b >1,①错误;对于②,由a 3-b 3=(a -b )(a 2+ab +b 2)=1得a -b =1a 2+ab +b 2.又因为a >b >0,a 3-b 3=1,所以a 3=1+b 3>1,即a >1,所以a 2+ab +b 2>1,a -b =1a 2+ab +b 2<1,②正确;对于③,由e a -e b =1得e a -b =e a e b =e b +1e b =1+1e b <2,所以a -b <ln 2<1,③正确;对于④,由ln a -ln b =1得a =b e ,则a -b =(e -1)b ,当b >1e -1时,a -b =(e -1)b >1,④错误.综上所述,真命题的个数为2,故选B.14.(2020·湖州期末质检)已知实数a ,b ,c 满足a 2+b 2+2c 2=1,则2ab +c 的最小值是()A.-34B.-98C.-1D.-43答案B解析 由题意得1-2c 2=a 2+b 2≥-2ab ,所以2ab +c ≥2c 2+c -1=2⎝⎛⎭⎫c +142-98≥-98,当且仅当c =-14,ab =-716时等号成立,所以2ab +c 的最小值为-98,故选B. 15.若关于x 的不等式a ≤34x 2-3x +4≤b 的解集恰好是[a ,b ],则a =________,b =________. 答案04解析 令f (x )=34x 2-3x +4=34(x -2)2+1,其图象对称轴为x =2.①若a ≥2,则a ,b 是方程f (x )=x 的两个实根,解得a =43,b =4,矛盾; ②若b ≤2,则f (a )=b ,f (b )=a ,两式相减得a +b =83,代入f (a )=b 可得a =b =43,矛盾; ③若a <2<b ,则f (x )min =1,所以a ≤1(否则在顶点处不满足a ≤f (x )),所以此时a ≤f (x )的解集是R ,所以f (x )≤b 的解集是[a ,b ],所以f (a )=f (b )=b .由⎩⎪⎨⎪⎧f (b )=b ,b >2 解得b =4,由⎩⎪⎨⎪⎧f (a )=4,a <2解得a =0. 16.若实数x ,y 满足x 2+4y 2+4xy +4x 2y 2=32,则x +2y 的最小值为________,7(x +2y )+2xy 的最大值为________.答案 -4216解析 因为x 2+4y 2+4xy +4x 2y 2=32,所以(x +2y )2+4x 2y 2=32,则(x +2y )2≤32,-42≤x +2y ≤42,即x +2y 的最小值为-4 2.由(x +2y )2+4x 2y 2=32,不妨设⎩⎨⎧x +2y =42sin θ,2xy =42cos θ,则7(x +2y )+2xy =42(7sin θ+cos θ)=16sin(θ+φ),其中tan φ=77,所以当sin(θ+φ)=1时,7(x +2y )+2xy 取得最大值16. 17.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a <0.因为方程(x -2)⎝⎛⎭⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅; 当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. 18.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34,又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。
高一数学第三讲 三个“二次”及关系
高一数学第三讲 三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助同学理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.一、基础知识1.二次函数的基本性质(1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21 (p +q ). 若-a b 2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-a b 2)=m ; 若-ab 2≥q ,则f (p )=M ,f (q )=m . (3)⑴方程0)(=x f 的解⇔使函数)(x f y =的值为0的自变量x 的值⇔方程组⎩⎨⎧==0)(y x f y 的解中的x 的值⇔函数)(x f y =的图象与x 轴的交点的横坐标。
⑵推广可得:方程)()(x g x f =的解⇔使函数)(x f y =与)(x g y =的值相等的自变量x 的值⇔方程组⎩⎨⎧==)()(x g y x f y 的解中的x 的值⇔函数)(x f y =的图象与函数)(x g y =的图象的交点的横坐标。
2.一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容。
一般侧重于二次方程根的判别式和系数的关系定理(韦达定理),有很大的局限性。
我们将主要结合二次函数图象系统介绍一元二次方程根的分布的充要条件及其应用㈠一元二次方程根的基本分布---零分布设一元二次方程ax 2+bx+c=0 的两个实根为 x 1,x 2 (x 1〈x 2)定理1 x 1>0,x 2 >0⇔ ⎪⎪⎪⎩⎪⎪⎪⎨⎧〈=>-=+≥-=∆000421212a c x x a b x x ac b 推论x 1>0,x 2 >0 ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧〉-〉=〉≥-=∆02000042a b c f a ac b )( 或⎪⎪⎪⎩⎪⎪⎪⎨⎧〉-〈=〈≥-=∆02000042ab c f a ac b )(练习1. 若一元二次方程(m-1)x 2 +2(m+1)x-m=0有两个正根,求m 的 取值范围.定理2. x 1 <0, x 2<0 ⇔ ⎪⎪⎪⎩⎪⎪⎪⎨⎧〉=〈-=+≥-=∆000421212a c x x a b x x ac b 推论 x 1〈0,x 2〈0 ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧〈-〈=〉≥-=∆02000042a b c f a ac b )(或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧〈-〈=〈≥-=∆02000042ab c f a ac b )(练习2、k 为何值时一元二次方程kx 2+3kx+k-3=0的两根都是负数。
成考数学知识点大全
成考数学知识点大全成考数学知识点11 集合思想及应用集合是高中数学的根本知识,为历年必考内容之一,主要考查对集合根本概念的认识和理解。
例:集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围。
2 充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。
例:关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件3 运用向量法解题本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。
例:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。
4 三个“二次〞及关系三个“二次〞即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。
高考试题中近一半的试题与这三个“二次〞问题有关。
例:对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。
5 求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视。
例:f(2-cosx)=cos2x+cosx,求f(x-1)。
例:(1)函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。
(2)二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式。
6 函数值域及求法函数的值域及其求法是近几年高考考查的重点内容之一。
例:设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。
高考数学(文)二轮复习专题三 不等式 第2讲 三个二次关系与恒成立问题、存在性问题 Word版含答案
第2讲三个二次关系与恒成立问题、存在性问题【课前热身】第2讲三个二次关系与恒成立问题、存在性问题(本讲对应学生用书第21~22页)1.(必修5 P69练习3改编)不等式x2+x-2<0的解集为.【答案】(-2,1)【解析】方程x2+x-2=0的根为x1=-2,x2=1,故不等式x2+x-2<0的解集为(-2,1).2.(必修5 P73习题6改编)已知不等式ax2+bx-1<0的解集为{x|x<3或x>4},则a=,b=.【答案】-112712【解析】由题意知3和4是方程ax2+bx-1=0的两根,所以a(x-3)(x-4)=0,所以a=-1 12,b=7 12.3.(必修5 P94习题11改编)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a 的取值范围是.【答案】(0,8)【解析】因为x2-ax+2a>0在R上恒成立,所以Δ=a2-4×2a<0,所以0<a<8.4.(必修5 P71练习5改编)在R上定义运算:x*y=x(1-y),若不等式(x-a)*(x+a)<1对任意实数x恒成立,则实数a的取值范围是.【答案】13 -22⎛⎫ ⎪⎝⎭,【解析】依题意知x-a-x2+a2<1恒成立,即21-2x⎛⎫⎪⎝⎭+23-4a a⎛⎫+⎪⎝⎭>0恒成立,于是a2-a-34<0恒成立,解得-12<a<32.5.(必修1 P32习题7改编)若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是.【答案】{m|0≤m≤4}【解析】由函数的对称轴为x=2,且在[0,2]上为增函数,知a<0,根据函数图象可得实数m的取值范围是{m|0≤m≤4}.【课堂导学】含参一元二次不等式的解法例1解关于x的一元二次不等式(x-2)(ax-2)>0.【解答】当a=0时,原不等式可化为x-2<0,所以x<2.当a≠0时,原不等式化为a(x-2)x-2a>0,①当a>1时,2a<2,原不等式化为(x-2)2-xa⎛⎫⎪⎝⎭>0,所以x<2a或x>2.②当a=1时,2a=2,原不等式化为(x-2)2>0,所以x∈R且x≠2.③当0<a<1时,2a>2,原不等式化为(x-2)2-xa⎛⎫⎪⎝⎭>0,则x<2或x>2a.④当a<0时,2a<2,原不等式化为(x-2)2-xa⎛⎫⎪⎝⎭<0,所以2a<x<2.综上所述,当a=0时,原不等式的解集为{x|x<2};当a>1时,原不等式的解集为2|2x x xa⎧⎫<>⎨⎬⎩⎭或;当a=1时,原不等式的解集为{x|x∈R且x≠2};当0<a<1时,原不等式的解集为22x x xa⎧⎫<>⎨⎬⎩⎭或;当a<0时,原不等式的解集为22x xa⎧⎫<<⎨⎬⎩⎭.变式解关于x的一元二次不等式ax2+(a-1)x-1>0. 【解答】由ax2+(a-1)x-1>0,得(ax-1)(x+1)>0.当a>0时,(ax-1)(x+1)>0⇔1-xa⎛⎫⎪⎝⎭(x+1)>0⇔x<-1或x>1a;当-1<a<0时,(ax-1)(x+1)>0⇔1-xa⎛⎫⎪⎝⎭(x+1)<0⇔1a<x<-1;当a=-1时,(ax-1)(x+1)>0⇔-(x+1)2>0⇔(x+1)2<0⇔x∈∅;当a<-1时,(ax-1)(x+1)>0⇔1-xa⎛⎫⎪⎝⎭(x+1)<0⇔-1<x<1a.综上所述,当a>0时,不等式的解集为1|-1x x xa⎧⎫<>⎨⎬⎩⎭或;当-1<a<0时,不等式的解集为1|-1x xa⎧⎫<<⎨⎬⎩⎭;当a=-1时,不等式的解集为∅;当a<-1时,不等式的解集为1|-1x xa⎧⎫<<⎨⎬⎩⎭.三个二次之间的关系例2 (2016·苏州调研测试)已知函数f (x )=x|x-a|,a ∈R ,g (x )=x 2-1. (1)当a=1时,解不等式f (x )≥g (x );(2)记函数f (x )在区间[0,2]上的最大值为F (a ),求F (a )的表达式. 【解答】(1)由f (x )≥g (x ),当a=1时,即解不等式x|x-1|≥x 2-1. 当x ≥1时,不等式为x 2-x ≥x 2-1,解得x ≤1,所以x=1;当x<1时,不等式为x-x 2≥x 2-1,解得-12≤x ≤1, 所以-12≤x<1.综上,不等式f (x )≥g (x )的解集为1-12⎡⎤⎢⎥⎣⎦,. (2)因为x ∈[0,2],当a ≤0时,f (x )=x 2-ax ,则f (x )在区间[0,2]上是增函数,所以F (a )=f (2)=4-2a.当0<a<2时,f (x )=22-0-2x ax x a x ax a x ⎧+≤<⎨≤≤⎩,,,,则f (x )在区间02a ⎡⎤⎢⎥⎣⎦,上是增函数,在区间2a a ⎡⎤⎢⎥⎣⎦,上是减函数,在区间[a ,2]上是增函数,所以F (a )=max (2)2a f f ⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,,而f 2a ⎛⎫ ⎪⎝⎭=24a ,f (2)=4-2a ,令f 2a ⎛⎫ ⎪⎝⎭<f (2),即24a <4-2a ,解得-4-42<a<-4+42,所以当0<a<2-4时,F (a )=4-2a ;令f 2a ⎛⎫ ⎪⎝⎭≥f (2),即24a ≥4-2a , 解得a ≤-4-42或a ≥-4+2,所以当42-4≤a<2时,F (a )=24a . 当a ≥2时,f (x )=-x 2+ax ,当1≤2a <2,即2≤a<4时,f (x )在区间02a ⎡⎤⎢⎥⎣⎦,上是增函数,在22a ⎡⎤⎢⎥⎣⎦,上是减函数,则F (a )=f 2a ⎛⎫ ⎪⎝⎭=24a ;当2a≥2,即a ≥4时,f (x )在区间[0,2]上是增函数,则F (a )=f (2)=2a-4;综上,F (a )=24-242-442-4442-4 4.a a aa a a ⎧<⎪⎪≤<⎨⎪≥⎪⎩,,,,,变式 (2016·苏锡常镇一调)已知函数f (x )=2x-1+a ,g (x )=bf (1-x ),其中a ,b ∈R .若关于x 的不等式f (x )≥g (x )的解的最小值为2,则实数a 的取值范围是 .【答案】(-∞,-2]∪1-4∞⎛⎫+ ⎪⎝⎭, 【解析】因为g (x )=b (2-x +a ),所以f (x )≥g (x ),即2x-1+a ≥2xb+ab ,即(2x )2-2a (b-1)2x -2b ≥0.由二次不等式与二次方程的根的关系知,关于2x 的方程(2x )2-2a (b-1)2x -2b=0的2x 的值分别为4,-2b .因为2x 取正值,要想2x 最小为4,所以-2b≤0,即b ≥0.又因为4-2b =2a (b-1),所以b=4(2)41a a ++≥0,解得a ≤-2或a>-14.恒成立问题与存在性问题例3已知函数f(x)=x2+2ax-a+2.(1)若对于任意的x∈R,f(x)≥0恒成立,求实数a的取值范围;(2)若对于任意的x∈[-1,1],f(x)≥0恒成立,求实数a的取值范围;(3)若对于任意的a∈[-1,1],x2+2ax-a+2>0恒成立,求实数x的取值范围. 【点拨】恒成立问题中注意变更主元法的运用.【解答】(1)若对于任意的x∈R,f(x)≥0恒成立,需满足Δ=4a2-4(-a+2)≤0,解得-2≤a≤1.故实数a的取值范围是[-2,1].(2)由题知对称轴方程为x=-a,当-a<-1,即a>1时,f(x)min=f(-1)=3-3a≥0,解得a≤1,与已知矛盾,舍去;当-a>1,即a<-1时f(x)min=f(1)=3+a≥0,解得-3≤a<-1;当-1≤a≤1时,f(x)min=f(-a)=-a2-a+2≥0,解得-1≤a≤1.综上,实数a的取值范围是[-3,1].(3)对于任意的a∈[-1,1],x2+2ax-a+2>0恒成立,等价于g(a)=(2x-1)a+x2+2>0,所以222-120-2120x xx x⎧++>⎨++>⎩,,解得x≠-1,所以x的取值范围是{x|x ≠-1}.变式(2016·盐城中学)已知函数f(x)=22x x ax++,x∈[1,+∞).(1)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围;(2)若对任意的a∈[-1,1],f(x)>4恒成立,求实数x的取值范围.【解答】(1)若对任意的x∈[1,+∞),f(x)>0恒成立,即22 x xax++>0,x∈[1,+∞)恒成立,亦即x2+2x+a>0,x∈[1,+∞)恒成立,即a>-x2-2x,x∈[1,+∞)恒成立,即a>(-x2-2x)max,x∈[1,+∞),而(-x2-2x)max=-3,x∈[1,+∞),所以a>-3.所以实数a的取值范围为{a|a>-3}.(2)因为a∈[-1,1]时,f(x)>4恒成立,即22x x ax++>4,x∈[1,+∞)恒成立,所以x2-2x+a>0对a∈[-1,1]恒成立,把g(a)=a+x2-2x看成a的一次函数,则使g(a)>0对a∈[-1,1]恒成立的条件是(1)0(-1)0gg>⎧⎨>⎩,,即22-210-2-10x xx x⎧+>⎨>⎩,,解得x<1-2或x>2+1.又x≥1,所以x>2+1,故所求x的取值范围是(2+1,+∞).【课堂评价】1.(2016·全国卷Ⅰ)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=. 【答案】332⎛⎫⎪⎝⎭,【解析】因为集合A=(1,3),B=32∞⎛⎫+ ⎪⎝⎭,,所以A ∩B=332⎛⎫ ⎪⎝⎭,.2.(2016·启东调研测试)已知偶函数f (x )在[0,+∞)上单调递增,且f (3)=0,则不等式f (x 2-2x )<0的解集为 . 【答案】(-1,3)【解析】根据偶函数的性质,可得-3<x 2-2x<3,解得-1<x<3,从而不等式的解集为(-1,3).3.(2016·扬州中学)已知函数f (x )=13x 3+2x ,对任意的t ∈[-3,3],f (tx-2)+f (x )<0恒成立,则实数x 的取值范围是 .【答案】51--33⎛⎫⎪⎝⎭,【解析】易知函数f (x )=13x 3+2x 是R 上的奇函数且单调递增,f (tx-2)+f (x )<0化为f (tx-2)<f (-x ),即tx-2<-x ,问题变为g (t )=(x+1)t-2<0在t ∈[-3,3]上恒成立,故有(-3)0(3)0g g <⎧⎨<⎩,,解得-53<x<-13.4.(2016·徐州、连云港、宿迁三检)已知对满足x+y+4=2xy 的任意正实数x ,y ,都有x 2+2xy+y 2-ax-ay+1≥0,则实数a 的取值范围是 .【答案】17-4∞⎛⎤⎥⎝⎦, 【解析】对于正实数x ,y ,由x+y+4=2xy ,得x+y+4=2xy ≤2()2x y +,解得x+y ≥4.不等式x 2+2xy+y 2-ax-ay+1≥0可化为(x+y )2-a (x+y )+1≥0,令t=x+y (t ≥4),则该不等式可化为t 2-at+1≥0,即a ≤t+1t 对于任意的t ≥4恒成立,令u (t )=t+1t (t ≥4),则u'(t )=1-21t =22-1t t >0对于任意的t ≥4恒成立,从而函数u (t )=t+1t (t ≥4)为单调增函数,所以u (t )min =u (4)=4+14=174,于是a ≤174.5.(2015·宿迁一模)已知函数f (x )=x 2-2ax+a 2-1,若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 【答案】(-∞,-2]【解析】因为f (x )=[x-(a+1)][x-(a-1)],所以f (f (x ))<0等价于[f (x )-(a+1)][f (x )-(a-1)]<0,从而a-1<f (x )<a+1,要使f (f (x ))<0的解集为空集,根据函数的图象,则需y=a+1与y=f (x )至多有一个交点.又因为f (x )=(x-a )2-1≥-1,所以a+1≤-1,解得a ≤-2.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第11~12页.【检测与评估】第2讲 三个二次关系与恒成立问题、存在性问题一、 填空题1.若关于x 的不等式ax 2+2x+a>0的解集为R ,则实数a 的取值范围是 .2.(2016·安徽省六校联考)若正实数x,y满足x+y=2,且1xy≥M恒成立,则M的最大值为.3.(2016·南师附中)若当x>-3时,不等式a≤x+23x 恒成立,则实数a的取值范围是.4.若对任意实数x∈[-1,1],不等式x2+ax-3a<0恒成立,则实数a的取值范围是.5.(2016·常州中学)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是.6.(2016·启东中学)已知f(x)=x2+2x+a ln x,若f(x)在区间(0,1]上恒为单调函数,则实数a的取值范围为.7.(2016·江苏信息卷)若对任意实数x>1,y>12,不等式p≤22-1xy+24-1yx恒成立,则实数p的最大值为.8.(2016·苏大考前卷)已知不等式(ax+3)(x2-b)≤0对任意x∈(0,+∞)恒成立,其中a,b是整数,则a+b的取值集合为.二、解答题9.(2016·江苏怀仁中学)设函数f(x)=ax2+(b-2)x+3(a≠0).(1)若不等式f(x)>0的解集为(-1,3),求a,b的值;(2)若f(1)=2,a>0,b>0,求1a+4b的最小值.10.(2016·泰州中学)已知函数f(x)=ax2+2x+c(a,c∈N*)满足①f(1)=5;②6<f(2)<11.(1)求函数f(x)的表达式;(2)若对任意的x∈[1,2],都有f(x)-2mx≥0恒成立,求实数m的取值范围.11.(2015·浙江卷)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=24a+1时,求函数f(x)在区间[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在区间[-1,1]上存在零点,且0≤b-2a≤1,求实数b的取值范围.【检测与评估答案】第2讲三个二次关系与恒成立问题、存在性问题一、填空题1. (1,+∞)【解析】当a=0时,易知条件不成立;当a≠0时,要使不等式ax2+2x+a>0的解集为R,必须满足24-40aa>⎧⎨∆=<⎩,,解得a>1.2.1【解析】因为正实数x,y满足x+y=2,所以xy≤2()4x y+=224=1,所以1xy≥1.又1xy≥M恒成立,所以M≤1,即M的最大值为1.3. (-∞,-3]【解析】设f(x)=x+23x+=(x+3)+23x+-3,因为x>-3,所以x+3>0,故f(x)≥23=2-3,当且仅当-3时等号成立,所以a的取值范围是(-∞,-3].4.12∞⎛⎫+⎪⎝⎭,【解析】设f(x)=x2+ax-3a.因为对任意实数x∈[-1,1],不等式x2+ax-3a<0恒成立,所以(-1)1--30(1)1-30f a af a a=<⎧⎨=+<⎩,,解得a>12.5.(-1,2)【解析】原不等式变形为m2-m<12x⎛⎫⎪⎝⎭,因为函数y=12x⎛⎫⎪⎝⎭在(-∞,-1]上是减函数,所以12x⎛⎫⎪⎝⎭≥-112⎛⎫⎪⎝⎭=2.当x∈(-∞,-1]时,m2-m<12x⎛⎫⎪⎝⎭恒成立等价于m2-m<2,解得-1<m<2.6. (-∞,-4]∪[0,+∞)【解析】由题意知f'(x)=2x+2+ax=222x x ax++,因为f(x)在区间(0,1]上恒为单调函数,所以f'(x)在区间(0,1]上恒大于等于0或恒小于等于0,所以2x2+2x+a≥0或2x2+2x+a≤0在区间(0,1]上恒成立,即a≥-(2x2+2x)或a≤-(2x2+2x),而函数y=-2x2-2x在区间(0,1]上的值域为[-4,0),所以a≥0或a≤-4.7. 8【解析】令a=2y-1,b=x-1,则22-1xy+24-1yx=2(1)ba++2(1)ab+,问题转化为求2(1)ba++2(1)ab+的最小值.又2(1)b a ++2(1)a b +≥2×ab =2×ab =2ab ab ab ⎛++ ⎪⎭≥2×(2+2)=8,当且仅当a=b=1,即x=2,y=1时取等号.8. {8,-2} 【解析】当b ≤0时,由(ax+3)(x 2-b )≤0得ax+3≤0在x ∈(0,+∞)上恒成立,则a<0,且a ·0+3≤0,矛盾,故b>0.当b>0时,由(ax+3)(x 2-b )≤0可设f (x )=ax+3,g (x )=x 2-b ,又g (x )的大致图象如图所示,那么由题意可知03-a b a <⎧⎪⎨=⎪⎩,,再由a ,b 是整数得到-19a b =⎧⎨=⎩,或-31a b =⎧⎨=⎩,,因此a+b=8或-2.(第8题)二、 解答题9. (1) 由题意得(-1)0(3)0f f =⎧⎨=⎩,,即-5093-30a b a b +=⎧⎨+=⎩,, 解得-14.a b =⎧⎨=⎩,(2) 因为f (1)=2,所以a+b=1,所以1a +4b =(a+b )14a b ⎛⎫+ ⎪⎝⎭=5+b a +4a b ≥9,当且仅当b=2a=12时取等号.10. (1) 由题知5=a+c+2,即c=3-a.又6<4a+c+4<11,所以-13<a<43.又a∈N*,所以a=1,c=2. 所以f(x)=x2+2x+2.(2) 由已知得2(m-1)≤x+2x在x∈[1,2]上恒成立.因为当x∈[1,2]时,x+2x∈3⎡⎤⎣⎦,所以2(m-1)≤2,即m+1,所以实数m的取值范围为(-∞+1].11. (1) 当b=24a+1时,函数f(x)=22ax⎛⎫+⎪⎝⎭+1,故其图象的对称轴为直线x=-2a.当a≤-2时,g(a)=f(1)=24a+a+2;当-2<a≤2时,g(a)=f-2a⎛⎫⎪⎝⎭=1;当a>2时,g(a)=f(-1)=24a-a+2.综上,g(a)=222-2 41-22-2 2.4aa aaaa a⎧++≤⎪⎪⎪<≤⎨⎪⎪+>⎪⎩,,,,,(2) 设s,t为方程f(x)=0的解,且-1≤t≤1,则-.s t a st b+=⎧⎨=⎩,因为0≤b-2a≤1,所以-22tt+≤s≤1-22tt+(-1≤t≤1).当0≤t≤1时,2-22tt+≤st≤2-22t tt+,由于-23≤2-22tt+≤0和-13≤2-22t tt+≤9-4,所以-23≤b≤9-.当-1≤t<0时,2-22t tt+≤st≤2-22tt+,由于-2≤2-22tt+<0和-3≤2-22t tt+<0,所以-3≤b<0.故b的取值范围是-3⎡⎣,.。
2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法
第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0) 的解集 {x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aRax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的一元二次不等式;②判断一元二次不等式所对应的方程实根的个数,即讨论判别式Δ与0的关系; ③确定方程无实根或有两个相同实根时,可直接写出解集;确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集. [典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2}B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).[举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,52.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ f β>0,f α>0. (2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,fα<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( ) A .15a << B .51a -<<- C .51a -<≤-D .31a -<≤-2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)[举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<<B .10a -<≤C .10a -≤<D .10a -≤≤3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫ ⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________.8.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3B .[]0,3C .()3,0-D .(,1)(3,)-∞+∞2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21 D .26[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,)-∞-⋃+∞B .(6,--C .(6,2))--⋃+∞D .(,2)-∞-2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞-B .(],2-∞-C .(6,)-+∞D .(,6)-∞-5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b 2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0){x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aR的解集 ax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤[典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2} B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭【答案】D【解析】∵2210x x --<,∴112x -<<,∴不等式2210x x --<解集为112x x ⎧⎫-<<⎨⎬⎩⎭.故选:D.2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).【解】(1)由231x ≤-,得2301x -≤-,即5301x x -≤- 则(53)(1)0x x --≤且1x ≠,解得:5(,1)[,)3-∞+∞(2)当12a =-时,原不等式1(1)(2)02x x ⇔--+<,解的{|2}x x ≠-;当12a <-时,原不等式(1)(2)0ax x ⇔-+<,又12a >-所以解集为1(,2)(,)a -∞-+∞;当102a -<<时,因为12a <-所以解集为1(,)(2,)a-∞-+∞.综上有,12a =-时,解集为{|2}x x ≠-;12a <-时,解集为1(,2)(,)a -∞-+∞;102a -<<时,解集为1(,)(2,)a-∞-+∞. [举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5【答案】B【解析】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B2.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥【答案】B 【解析】由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R{|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤. 故选:B.3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.【解】当a +1=0即 a =-1时,原不等式变为-x +2<0,即x >2. 当a>-1时,原不等式可转化为()1201x x a ⎛⎫--< ⎪+⎝⎭, ∴方程()1201x x a ⎛⎫--= ⎪+⎝⎭的根为1,21a +. 若-1<a<12-,则11a +>2,解得2<x <11a +;若a =12-,则11a +=2,解得x ∈∅;若a >12-,则11a +<2, 解得11a +<x <2.综上,当a >12-时,原不等式的解集为{x |11a +<x <2}; 当a =12-时,原不等式的解集为∅;当-1<a <12-时,原不等式的解集为{x |2<x <11a +}. 当a =-1时,原不等式的解集为{x |x >2}.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0. 【解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根, 所以132(1)3b aa a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0, 即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-; 当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ fβ>0,f α>0.(2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,f α<0. f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( )A .15a <<B .51a -<<-C .51a -<≤-D .31a -<≤-【答案】C【解析】当10a +=,即1a =-时,()()21110a x a x +-+-<可化为10-<,即不等式10-<恒成立;当10a +≠,即1a ≠-时,因为()()21110a x a x +-+-<对一切实数x 恒成立,所以()()2101410a a a +<⎧⎪⎨+++<⎪⎩,解得51a -<<-; 综上所述,51a -<≤-. 故选:C.2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+【答案】B【解析】解:当0x =时,不等式10恒成立; 当0x >时,由题意可得12a x x-+恒成立, 由11()22f x x x x x=+⋅=,当且仅当1x =时,取得等号. 所以22a -,解得1a -.综上可得,a 的取值范围是[)1,-+∞. 故选:B .3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)【答案】C【解析】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x ∴的取值范围为()(),13,-∞⋃+∞.故选:C . [举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞ D .(),0∞-【答案】A【解析】由题意,当x ∈R 时,不等式2210x x a ---≥恒成立,故2(2)4(1)0a ∆=-++≤ 解得2a ≤-,故实数a 的取值范围是(],2-∞- 故选:A2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B【解析】当0a =时,221=10ax ax +--<,对x R ∀∈恒成立; 当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有2(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤, 故选:B3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 【答案】B【解析】∵不等式224(2)30a x a x -+-+()>的解集为R , 当a -2=0,即a =2时,不等式为3>0恒成立,故a =2符合题意; 当a ﹣2≠0,即a ≠2时,不等式224(2)30a x a x -+-+()>的解集为R , 则()()220Δ424230a a a ->⎧⎪⎨⎡⎤=---⨯<⎪⎣⎦⎩,解得1124a <<, 综合①②可得,实数a 的取值范围是1124⎡⎫⎪⎢⎣⎭,.故选:B .4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或x >12≤xx =综上,实数x 的取值范围是4x ≤-,或12x ≥. 故选:A.5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞ B .[2,)+∞ C .(,4]-∞ D .(,2]-∞【答案】A【解析】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立, 所以对任意的2[1,0],242x m x x ≥-∈--恒成立, 因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞ 故选:A6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________. 【答案】[1,4]【解析】2|()|5515f x x ax ⇔-≤--≤, ①当0x =时,a R ∈;②当0x ≠时,2|()|5515f x x ax ⇔-≤--≤64x a x x x⇔-≤≤+, min 44242x x ⎛⎫∴+=+= ⎪⎝⎭,max 6321x x ⎛⎫-=-= ⎪⎝⎭,∴14a ≤≤, 综上所述:14a ≤≤. 故答案为:[]1,4.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________. 【答案】[]0,1【解析】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥ 当()0,2x ∈,3231012x kx x x->+-得: 233210kx x x x <+--,即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立, 令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,18.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围. 【解】(1)解:由已知,210mx mx --<对于一切实数x 恒成立, 当0m =时,10-<恒成立,符合题意,当0m ≠时,只需20Δ40m m m <⎧⎨=+<⎩,解得40m -<<, 综上所述,m 的取值范围是(4-,0];(2)解:由已知,215mx mx m --<-+对[1x ∈,3]恒成立, 即2(1)6m x x -+<对[1x ∈,3]恒成立,22131()024x x x -+=-+>,∴261m x x <-+对[1x ∈,3]恒成立,令2()1g x x x =-+,则只需min6()m g x ⎡⎤<⎢⎥⎣⎦即可, 而()g x 在[1x ∈,3]上是单调递增函数,()[1g x ∴∈,7],∴66[,6]()7g x ∈,67m ∴<, 所以m 的取值范围是6(,)7-∞.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.(2)一元二次不等式ax 2+bx +c <0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,Δ=b 2—4ac >0或⎩⎪⎨⎪⎧a <0,b ,c ∈R .3.在区间内有解,可以参变分离为a >f (x )或a <f (x )的形式,转化为a >f (x )min 或a <f (x )max ;也可以通过对立命题转化为在区间内无解,从而转化为恒成立问题.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3 B .[]0,3 C .()3,0-D .(,1)(3,)-∞+∞【答案】A【解析】因为方程24=0x ax -++有两根,一个大于2,另一个小于1-,所以函数 ()24f x x ax =-++有两零点,一个大于2,另一个小于1-,由二次函数的图像可知,()()2010f f ⎧>⎪⎨->⎪⎩ ,即:()()2222401140a a ⎧-+⋅+>⎪⎨--+⋅-+>⎪⎩ 解得:0<<3a 故选:A.2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+【答案】B【解析】因为不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,所以不等式22m x x >-在1,22x ⎡∈⎤⎢⎥⎣⎦上有解, 令()22211t x x x =-=--,则min 1t =-,所以1m >-,所以实数m 的取值范围是()1,-+∞ 故选:B3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈ 所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选: C[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,25)(25,)-∞-⋃+∞B .(6,25]--C .(6,2)(25,)--⋃+∞D .(,2)-∞-【答案】B【解析】解:∵关于x 的方程2(2)60x m x m +-+-=的两根都大于2,令2()(2)6f x x m x m =+-+-,可得2(2)4(6)0222(2)42(2)60m m m f m m ⎧∆=---≥⎪-⎪->⎨⎪=+-+->⎪⎩,即252526m m m m ⎧≥≤-⎪<-⎨⎪>-⎩或, 求得625m -<≤- 故选:B.2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞【答案】A【解析】2(]0,x ∈时,不等式可化为22244x a x x x<=++;令2()4f x x x =+,则max 1()2a f x <==,当且仅当2x =时,等号成立,综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:A .3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤【答案】D【解析】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x=+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤, 所以实数a 的取值范围为52a ≤, 故选:D.4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞- B .(],2-∞-C .(6,)-+∞D .(,6)-∞-【答案】A【解析】不等式等价于存在()1,4x ∈,使242a x x <--成立,即()2max42a x x <--设()224226y x x x =--=-- 当()1,4x ∈时,[)6,2y ∈--所以2a <- . 故选:A5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______【答案】52⎛⎤-∞ ⎥⎝⎦,【解析】解:由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解, 设1()f x x x =+,则函数1()f x x x=+在[]1,2上单调递增,所以5(1)()(2)2f f x f ≤≤=,所以实数a 的取值范围为52⎛⎤-∞ ⎥⎝⎦,.6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <, 所以01a <<,综上所述:a 的取值范围是(),1-∞, 故答案为:(),1-∞.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+【解析】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.【答案】57m <【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立, 即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,当0m =时,50-<恒成立, 当0m ≠时,对称轴为12x =. 当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <. 当0m >时,有()g x 开口向上且在[]1,3上单调递增,∴在[]1,3上()()max 3750g x g m ==-<, ∴507m <<, 综上,实数m 的取值范围为57m <, 故答案为:57m <9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围. 【解】解:(1)当1a =时,2()56(2)(3)f x x x x x =-+=--, 所以函数()y f x =的零点为2,3.(2)由2()(23)60f x ax a x =-++<可得(3)(2)0ax x --<, 当302a <<时,解得32x a <<;当32a =时,x 不存在,不等式的解集为∅; 当32a >时,解得32x a <<.综上,当302a <<时,不等式的解集3{|2}x x a <<,当32a =时,不等式的解集∅, 当32a >时,不等式的解集3{2}x x a<<. (3)1a =时,()(5)3f x m x m -+++在[2,2]-有解,即230x mx m ++-在[2,2]-有解,因为23y x mx m =++-的开口向上,对称轴2m x =-, ①22m --即4m ,2x =-时,函数取得最小值4230m m -+-即73m, 4m ∴. ②222m -<-<即44m -<<时,当2m x =-取得最小值,此时2304m m -+-,解得24m <. ③当22m-即4m -时,当2x =时取得最小值,此时4230m m ++-, 解得7m -,综上,2m 或7m -。
专题12三个二次之间的关系(原卷版)
专题12 三个二次之间的关系【考点清单】“三个二次”指一元二次函数、一元二次方程、一元二次不等式,是中学数学的重要内容,具有丰富的内涵和广泛的应用,在研究有关于二次曲线的问题时,常常转化成二次方程、二次函数、二次不等式的问题解决。
”三个二次”将等与不等、数与形紧密的结合在一起,对数形结合思想、函数方程思想、等价转化思想有较高的要求。
因而在高考试题函数问题中,非常多的试题与“三个二次”问题有关。
初中阶段对函数、方程、不等式的学习都是彼此独立的,但对于“三个二次”的横向联系缺乏认识。
升入高中才真正揭开三者的内在联系,逐步形成用函数、方程、不等式“三位一体”的思考方式审视问题、解决问题。
1、二次函数①二次函数的三种形式在“三个二次”中一元二次函数是重点,它的一般形式)0(2≠++=a c bx ax y :它的配方形式: 224()(0)24b ac b y a x a a a-=++≠配方形式中充分反映了函数值y 随自变量x 的变化而变化的规律,可以容易的观察出何时取最值,也能考查出自变量x 取关于对称值时函数值的取值特点。
从而它的对称轴:2b x a=-它的顶点坐标:24(,)24b ac b a a--它的因式分解形式:12()()y a x x x x =--,其中12,x x 是一元二次方程的两根.从二次函数的因式分解形式,运用实数运算的符号法则,很容易看出函数y 值何时等于0、y 何时大于0、y何时小于0等特点。
总之一元二次函数反映y 与x 对应关系的全貌:既包括了方程的根、又包括了不等式等式的解。
②二次函数的最值设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:()()n f x f =(1)若[,]2bm n a-∈, 则max ()max{(),(),()}2b f x f m f f n a =-,min ()min{(),(),()}2bf x f m f f n a=- (2)若[,]2bm n a-∉,则max ()max{(),()}f x f m f n =,min ()min{(),()}f x f m f n = 另外,当二次函数开口向上时,自变量的取值离开x 轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开x 轴越远,则对应的函数值越小。
高考数学二轮复习考点知识与题型专题讲解与训练35 一元二次不等式及其解法
高考数学二轮复习考点知识与题型专题讲解与训练专题35一元二次不等式及其解法考点知识要点1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.基础知识融会贯通1.“三个二次”的关系2.常用结论(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法解集不等式a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b} {x|x≠a}{x|x<b或x>a}(x-a)·(x-b)<0{x|a<x<b}∅{x|b<x<a}口诀:大于取两边,小于取中间.【知识拓展】(1)f xg x>0(<0)⇔f(x)·g(x)>0(<0).(2)f xg x≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0.以上两式的核心要义是将分式不等式转化为整式不等式.重点难点突破【题型一】一元二次不等式的求解命题点1不含参的不等式【典型例题】不等式x2+5x﹣6>0的解集是()A.{x|x<﹣2或x>3}B.{x|﹣2<x<3}C.{x|x<﹣6或x>l}D.{x|﹣6<x<l}【再练一题】不等式6x2+17x+12<0的解集是.命题点2含参不等式【典型例题】设a>1,则关于x的不等式的解集是()A.B.(a,+∞)C.D.【再练一题】已知不等式ax2+bx+c>0的解集是{x|α<x<β}(α>0),则不等式cx2+bx+a>0的解集是()A.(,)B.(﹣∞,)∪(,+∞)C.{x|α<x<β}D.(﹣∞,α)∪(β,+∞)思维升华含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集.【题型二】一元二次不等式恒成立问题命题点1在R上的恒成立问题【典型例题】若不等式ax2﹣x+a>0对一切实数x都成立,则实数a的取值范围为()A.a或a B.a或a<0C.a D.【再练一题】已知关于x的不等式x2﹣x+a﹣1≥0在R上恒成立,则实数a的取值范围是.命题点2在给定区间上的恒成立问题【典型例题】已知[(m﹣1)x+1](x﹣1)>0,其中0<m<2,(1)解不等式.(2)若x>1时,不等式恒成立,求实数m的范围.【再练一题】已知关于x的不等式:x2﹣mx+m>0,其中m为参数.(1)若该不等式的解集为R,求m的取值范围;(2)当x>1时,该不等式恒成立,求m的取值范围.命题点3给定参数范围的恒成立问题【典型例题】已知不等式2x﹣1>m(x2﹣1).(1)若对于所有实数x,不等式恒成立,求m的取值范围;(2)若对于m∈[﹣2,2]不等式恒成立,求x的取值范围.【再练一题】已知不等式mx2﹣2x﹣m+1<0.(1)若对任意实数x上述不等式恒成立,求m的取值范围;(2)若对一切m∈[﹣2,2]上述不等式恒成立,求x的取值范围.思维升华(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.跟踪训练【题型三】一元二次不等式的应用如果关于x的一元二次不等式ax2+bx+c>0的解集为{x|x<﹣2或x>4},那么对于函数应有()A.f(5)<f(2)<f(﹣1)B.f(2)<f(5)<f(﹣1)C.f(﹣1)<f(2)<f(5)D.f(2)<f(﹣1)<f(5)【再练一题】已知关于x 的不等式x 2﹣4ax +3a 2<0(a <0)的解集为(x 1,x 2),则的最大值是( )A .B .C .D .思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.基础知识训练1.【贵州省铜仁市思南中学2018-2019学年高一下学期期中考试】不等式210x mx ++<的解集为空集,则m 的取值范围是( )A .(-2,2)B .[-2,2]C .(,2)(2,)-∞-⋃+∞D .(,2][2,)-∞-+∞2.【北省宜昌市部分示范高中教学协作体2018-2019学年高一下学期期中考试】不等式240ax ax +-<的解集为R ,则a 的取值范围是( ) A .160a ≤<B .16a >-C .160a -<≤D .0a <3.【安徽省安庆市第一中学2018-2019学年高一下学期期中考试】若不等式20ax x a -+>对一切实数x 都成立,则实数a 的取值范围为( ) A .12a <-或12a >B .12a >或0a < C .12a >D .1122a -<<4.【黑龙江省牡丹江市第一高级中学2018-2019学年高二下学期期中考试】不等式20ax bx c ++>的解集为(-4,1),则不等式2(1)(3)0b x a x c +-++>的解集为( )A .4(1,)3-B .4(,1)(,)3-∞-⋃+∞C .4(,1)3-D .4(,)(1,)3-∞-⋃+∞ 5.【广东省佛山市南海区桂城中学2018-2019学年第二学期高一数学第二次阶段考试】已知关于x 的不等式20x ax b --<的解集是()2,3-,则+a b 的值是( )A .11-B .11C .7D .76.【广东省深圳市四校发展联盟体2018-2019学年高二第二学期期中考试】在R 上定义运算():x y=x 1y ⊗⊗-,若对任意x 2>,不等式()x a x a 2-⊗≤+都成立,则实数a 的取值范围是( )A .(7,⎤-∞⎦B .17,⎡⎤-⎣⎦C .(3,⎤-∞⎦D .()17,,⎤⎡-∞-+∞⎦⎣7.【黑龙江省鹤岗市第一中学2018-2019学年高一下学期期中考试】在上定义运算,若存在使不等式成立,则实数的取值范围为A .B .C .D .8.【山东省济宁市2019届高三二模】已知函数,若不等式恒成立,则实数的取值范围为( ) A . B . C .D .9.【江西师范大学附属中学2018-2019学年高一下期期中考试】已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()60x y a x y +-++≥恒成立,则实数a 的最大值为( ) A .26B .7C .46D .810.【湖北省荆州市沙市中学2018-2019学年高一5月月考】若正实数x ,y 满足141x y +=,且234y x a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-11.【福建省上杭县第一中学2018-2019学年高一5月月考】若两个正实数x ,y 满足211x y+=,且不等式2220x y m m +--<有解,则实数m 的取值范围为( )A .(,2)(4,)-∞-⋃+∞B .(,4)(2,)-∞-+∞C .(2,4)-D .(4,2)-12.【河北廊坊2018-2019学年高一年级第二学期期中联合调研考试高一】已知函数,如果不等式的解集为,那么不等式的解集为( )A .B .C .D .13.【内蒙古包头市第九中学2018-2019学年高一下学期期中考试】二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值为_______.14.【贵州省凯里市第一中学2018-2019学年高一下学期期中考试】已知不等式20ax bx c ++<的解集为{x | 2<x<3},则252b c a +++的最小值为__________. 15.【内蒙古赤峰二中2018-2019学年高一下学期第二次月考】不等式()2230x a a x a -++>的解集为{|x 2x a < 或x a >},则实数a 的取值范围______.16.【江西省南昌市第十中学2018-2019学年高一下学期第二次月考】已知关于x 的不等式20ax bx c ++<的解集是1{|2,}2x x x <->-或,则20ax bx c -+>的解集为_____.17.【四川省大竹中学2018-2019学年高一第二学期5月月考考前模拟】已知函数2()45()f x x x x R =-+∈. (1)求关于x 的不等式()2f x <的解集;(2)若不等式()|3|f x m >-对任意x R ∈恒成立,求实数m 的取值范围.18.【福建省三明市三地三校2018-2019学年高一下学期期中联考】已知函数2()28f x x x =-- (1)解不等式()0f x ≥;(2)若对一切0x >,不等式()9f x mx ≥-恒成立,求实数m 的取值范围.19.【内蒙古赤峰市2018-2019学年高一下学期期中考试】已知函数2()3f x x x m =++. (1)当m=-4时,解不等式()0f x ≤; (2)若m>0,()0f x <的解集为(b ,a),求14a b+的最大値. 20.【黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校2018-2019学年高一下学期期中考试】已知函数()22f x x x a =++.(1)当2a =时,求不等式()1f x >的解集(2)若对于任意[)1,x ∈+∞,()0f x >恒成立,求实数a 的取值范围.21.【安徽省固镇县第一中学2018-2019学年高二5月月考】设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足31x -<(1)若1m =,且p q ∧为真,求实数x 的取值范围;(2)若0m >,且p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.22.【湖北省荆州市沙市中学2018-2019学年高一5月月考】设函数()24f x ax x b =++(I )若1b =,且对于[]0,1x ∈,有()0f x ≥恒成立,求a 的取值范围; (II )若4a b +=,解关于x 的不等式()0f x ≥能力提升训练1.【2019年河北省藁城市第一中学高一下学期7月月考】设1a >,则关于x 的不等式1(1)()0a x a x a ⎛⎫---< ⎪⎝⎭的解集是( )A .1(,),a a ⎛⎫-∞+∞ ⎪⎝⎭B .(),a +∞C .1,a a ⎛⎫ ⎪⎝⎭D .()1,,a a ⎛⎫-∞+∞ ⎪⎝⎭2.【河南省濮阳市2018-2019学年高二下学期升级考试】设,a b 是关于x 的一元二次方程2260x mx m -++=的两个实根,则22(1)(1)a b -+-的最小值是( )A .494-B .18C .8D .-63.【江苏省无锡市锡山区天一中学2019年高一期末】已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .k 0<或1k >D .0k ≤或1k4.【江西省南昌市东湖区第二中学2018-2019学年高二下学期期末】已知0,0x y >>,且211x y+=,若对任意的正数,x y ,不等式222x y m m +>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<5.【宁夏回族自治区银川一中2018-2019高二下学期期中考试】若存在1[,3]2x ∈,使不等式210x ax -+≥成立,则实数a 取值范围是( ) A .2a ≤B .522a ≤≤C .103a ≤D .1023a ≤≤6.【浙江省绍兴市第一中学2018-2019学年高二下学期期中考试】已知01b a <<+,若关于x 的不等式2()x b ->2()ax 的解集中的整数恰有3个,则a 的取值范围为( )A .11a -<<B .02a <<C .13a <<D .25a <<7.【安徽省淮南市第一中学2018-2019年高一年级第二学期第二次段考】已知关于x 的不等式2420ax x -+>的解集为{|}x x b ≠.(1)求实数,a b 的值; (2)解关于x 的不等式0x cax b-≥-.(c 为常数)8.【浙江省嘉兴市2018-2019学年高一下学期期末考试】已知函数2()2f x x ax =++. (Ⅰ)当3a =时,解不等式()0f x <;(Ⅱ)当[1,2]x ∈时,()0f x ≥恒成立,求a 的取值范围.9.【浙江“七彩阳光”新高考研究联盟2018-2019学年高一下学期期中考试】设函数()42,x a x f x a a R +=--∈.(Ⅰ)当2a =时,解不等式:()30f x >;(Ⅱ)当()1,1x ∈-时,()f x 存在最小值2-,求a 的值.10.【安徽省淮南市第一中学2018-2019年高一年级第二学期第二次段考】设函数2()2f x x ax a =++,2()2()g x x bx c b c =++≠.已知关于x 的不等式()55b c g x -≤≤的解集恰好为,55b c ⎡⎤-⎢⎥⎣⎦.(1)求()g x ;(2)对于0(2,)x ∈-+∞使得()()00f x g x <恒成立,求实数a 的取值范围.。
高考数学中的重难点——二次函数
高考数学中的重难点——二次函数知识梳理: 1.二次函数的解析式的三种形式: (1)一般式:f(x)=ax 2+bx+c(a ≠0)。
(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。
(3)两点式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。
2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴a b x 2-=,顶点坐标)44,2(2ab ac a b --(1)a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-ab上单调递增,a b x 2-=时,ab ac x f 44)(2min-=;(2)a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-ab上单调递减,a b x 2-=时,ab ac x f 44)(2max-=。
3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)(。
4. 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0) ,(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f5 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响6 二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞疑点一:求二次函数的解析式例1.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数。
微难点1 三个“二次”关系
第11页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
(1) 已知 x2+ax+2=0 的两个根都小于-1,求实数 a 的取值范围; 【思维引导】利用数形结合的方法,即利用一元二次方程和相应二次函数之间的 关系. 【解答】(1) 令 f(x)=x2+ax+2, 因为 x2+ax+2=0 的两个根都小于-1,
第7页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
【解答】方法一:由题知 f(x)=(x-a)2+2-a2, 所以 f(x)图象的对称轴为 x=a. ①当 a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增, 所以 f(x)min=f(-1)=2a+3. 要使 f(x)≥a 恒成立,只需 f(x)min≥a, 即 2a+3≥a,解得 a≥-3,即-3≤a<-1. ②当 a∈[-1,+∞)时,f(x)min=f(a)=2-a2. 要使 f(x)≥a 恒成立,只需 f(x)min≥a, 即 2-a2≥a,解得-2≤a≤1,即-1≤a≤1.
又 f(x)图象的对称轴为 x=2,且开口向下, 所以当 x=2∈[-1,5]时,f(x)取得最大值-4a,所以-4a=12,解得 a=-3, 所以 f(x)的解析式为 f(x)=-3(x-2)2+12.
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
已知函数 f(x)=x2-2ax+2,当 x∈[-1,+∞)时,f(x)≥a 恒成立,求 a 的取值范围.
综上,实数 a 的取值范围为[-3,1].
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
高考数学中的二次函数及其应用
高考数学中的二次函数及其应用二次函数是高中数学中的重要内容,也是高考必考的内容。
在高考中,有不少数学难题涉及到了二次函数的应用。
关于二次函数,其实它是一种形如$f(x)=ax^2+bx+c$的函数,其中$a,b,c$均为实数且$a\neq0$。
本文主要介绍二次函数的基本定义及其应用,帮助读者了解和掌握二次函数。
一、二次函数的基本定义二次函数的基本形式就是$f(x)=ax^2+bx+c$。
需要注意的是,$a,b,c$是实数,而 $a\neq 0$。
如果 $a=0$,那么这个函数就是线性函数,不再是二次函数了。
对于二次函数,其特点是图像呈现为一条平滑的曲线(即抛物线)。
抛物线的开口方向与 $a$ 的正负值有关。
- 当 $a>0$ 时,抛物线开口向上;- 当 $a<0$ 时,抛物线开口向下。
二次函数最基本的应用是求图像的开口方向及顶点坐标。
一般情况下,二次函数的顶点就是其图像的最高点或最低点。
求最高点或最低点的坐标直接使用公式即可。
假设二次函数表达式为$f(x)=ax^2+bx+c$,那么其最高点或最低点的坐标分别为:$$\begin{cases}x=-\frac{b}{2a} \\y=f(-\frac{b}{2a})=-\frac{\Delta}{4a}+c\end{cases}$$其中,$\Delta=b^2-4ac$ 称为二次函数的判别式。
如果$\Delta>0$,则二次函数对于 $x$ 有两个不同的解;如果$\Delta=0$,则二次函数对于 $x$ 有且仅有一个解;如果 $\Delta <0$,则二次函数对于 $x$ 没有实数解。
二、二次函数在物理问题中的应用二次函数在物理问题中也有广泛的应用。
下面,我们就以抛物线运动为例,深入地剖析一下二次函数在物理问题中的应用。
假设某物体从某个高度自由落下,则它的下落轨迹为一条抛物线(忽略空气阻力)。
接着,我们假设这个物体从高度 $H$ 自由落下,并落到地面上,我们就可以用二次函数来表示这个物体在下落过程中与时间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学难点之三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x=|a -1|+2的根的取值X 围. ●案例探究[例1]已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值X 围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab 2,x 1x 2=ac .|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得a c ∈(-2,-21) ∵]1)[(4)(2++=a c ac a cf 的对称轴方程是21-=a c . a c ∈(-2,-21)时,为减函数 ∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的X 围. (2)若方程两根均在区间(0,1)内,求m 的X 围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-ab2)=m ; 若-ab2≥q ,则f (p )=M ,f (q )=m . 2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0; (2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0; (2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+a b 2|,当a <0时,f (α)<f (β)⇔|α+ab2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练 一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值X 围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A.正数B.负数C.非负数D.正数、负数和零都有可能 二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值X 围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值X 围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log aya t a a= (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值X 围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2 (1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a -21)2+425. ∴a =-23时,x mi n =49,a =21时,x max =425. ∴49≤x ≤425. (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12.综上所述,49≤x ≤12. 歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的X 围是-2<a ≤2. 答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0.答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3,23). 答案:(-3,23) 4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0三、5.解:(1)由log a 33log aya t t =得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=xx y a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43(x ≠0),则y =a u ①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值. ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值 ∴当x =23时,u mi n =43,y mi n =43a由43a=8得a =16.∴所求a =16,x =23. 6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1综上所述,m 的取值X 围是{m |m ≤1且m ≠0}. 7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m)内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mrm p -+2>0, 又f (1+m m )<0,所以f (x )=0在(1+m m,1)内有解. ②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元.(2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。