水泥基复合材料
水泥基复合材料的制备及应用研究
水泥基复合材料的制备及应用研究水泥基复合材料是一种由水泥、细骨料和一种或多种纤维增强材料组成的复合材料。
它具有较高的强度、耐久性和抗裂性能,被广泛用于建筑、道路、桥梁等工程结构中。
本文将探讨水泥基复合材料的制备方法及其在各个领域中的应用。
首先,水泥基复合材料的制备需要选择合适的原料。
水泥是主要成分,常见的有普通硅酸盐水泥和高性能水泥,细骨料可以使用砂石、河砂等,而纤维增强材料可以选择钢纤维、玻璃纤维、碳纤维等。
这些原料需要经过混合、搅拌、均匀分散等步骤,制备成均匀的复合材料糊状物。
其次,水泥基复合材料可以通过不同的加工方法得到不同形式的制品。
最常见的是浇注成型,即将复合材料糊状物倒入模具中,经过充实和振实等处理后,使其固化成所需形状。
还可以采用挤出法、喷涂法等技术制备出管材、板材等特殊形状的制品。
水泥基复合材料在建筑领域中有着广泛的应用。
首先,在高层建筑中可以使用水泥基复合材料制作轻质隔墙板,提高结构的抗震性能。
其次,它也可以用来制作防水层、隔热层等功能性材料,提高建筑的使用寿命。
此外,水泥基复合材料还可以用于修补和增强老化、破损的混凝土结构,延长其使用寿命。
在道路和桥梁领域中,水泥基复合材料也有着广泛应用。
它可以用于制作高性能混凝土路面,提高道路的耐久性和承载能力。
同时,它还可以用于制作桥梁的预应力构件、减振设备等,增强桥梁的结构强度和抗震性能。
总之,水泥基复合材料具有广泛的应用前景。
通过选择不同的原料和加工方法,可以制备出形状各异的复合材料制品。
在建筑、道路、桥梁等领域中,它能够提高结构的强度和耐久性,延长使用寿命。
随着技术的不断发展,水泥基复合材料的制备方法和应用领域也将进一步推广和完善。
水泥基复合材料
水泥基复合材料水泥基复合材料是以硅酸盐水泥为基体,以耐碱玻璃纤维、通用合成纤维、各种陶瓷纤维、碳和芳纶等高性能纤维、金属丝以及天然植物纤维和矿物纤维为增强体,加入填料、化学助剂和水经复合工艺构成的复合材料。
水泥基复合材料可以分为水泥基和增强体两部分,目前比较热门的水泥基复合材料是纤维水泥基复合材料,它通常是指以水泥净浆,砂浆为基体,以非连续短纤维或连续长纤维为增强材料所组成的复合材料,也叫纤维混泥土。
在混泥土中加入纤维,可以强化水泥砂浆,提高水泥基复合材料拉伸、弯曲及冲击强度,控制裂纹的扩展,改善失效模式和成型时材料的流动性,是改善其性能的最有效途径。
纤维在水泥基体中至少有以下三个主要的作用:1,提高基体开裂的应力水平,即使水泥基体能承受更高的应力;2,改善基体的应变能力或延展性,从而增加它吸收能量的能力或提高它的韧性,纤维对基体韧性的改善往往比较显著,甚至在它对基体的增强作用小的情况下也是如此;3,能够阻止裂纹的扩展或改变裂纹前进的方向,减少裂纹的宽度和平均断裂空间。
其次纳米水泥基复合材料,水泥硬化浆体是由众多的纳米级粒子和众多的纳米级孔和毛细孔以及尺寸较大的结晶型水化产物所组成的。
采用纳米技术改善水泥硬化浆体的结构,可望在纳米矿粉---超细矿粉---高效减水剂---水溶性聚合物---水泥系统中,制的性能优异,高性能的水泥硬化--纳米复合水泥结构材料,并广泛应用于高性能或超高性能的水泥基涂料、砂浆和混泥土材料中,在不远的将来,继超细矿粉之后,纳米矿粉将有可能成为高性能混泥土材料的又一重要组分,这也是传统水泥材料的改进和又一次革命。
水泥基复合吸波材料,隐形技术是一种通过控制和降低武器系统和其他军事目标的特征信号,使其难以发现、识别、跟踪和攻击的综合性技术,通过对水泥基复合材料进行改性,使其能够吸收电磁波,从而达到对雷达的隐身性能,既得到所谓的水泥基复合吸波材料。
水泥基吸波材料是在水泥或混泥土中移入吸波剂而具有吸收电磁波功能的一类新型材料。
复合材料-第七章水泥基复合材料
1.3 制备高强度水泥混凝土的技术路线
优质的水泥
(低水灰比)
浇筑捣实
优质的骨料 高流动性 (高效率)
养护
(温、湿度)
硬化混凝土
超细矿粉
掺合料 高效减水剂
坍落度损 失的控制
强度 耐久性
1.4 高强混凝土配合比设计原则
(1)水灰比宜小于0.35,对于80~100MPa混凝 土宜小于0.30,对于100MPa以上混凝土宜小于 0.26,更高强度时取0.22左右。
玻璃纤维增强水泥可做雕塑、门窗、花盆等
3.聚合物水泥基复合材料的成型
(1)、聚合物浸渍混凝土的制备方法
使混凝土中空隙和裂缝被填充,是原来的多孔体系 变成较密实的整体,提高了强度和各项性能。
聚合物浸渍混凝土
聚合物浸渍混凝土由于良好的力学性能、 耐久性及抗腐蚀能力,主要用于受力的混 凝土及钢筋混凝土结构构件。
按照增强体的种类分类:
混凝土、 纤维增强水泥基复合材料、 聚合物水泥基复合材料。
1、混凝土
混凝土是以水泥为基体,加入水、粗细骨料、 钢筋,按适当比例拌和均匀,经搅拌振捣成 型,在一定条件下养护而成的复合材料;
原料丰富,价格低廉,生产工艺简单;
抗压强度高,耐久性好,强度等级范围宽;
使用范围广泛,如土木工程、造船业、机械 工业、海洋的开发、地热工程等。
(2)、聚合物混凝土的制备方法
聚合物混凝土(PC) 以聚合物(或单体)全部代 替水泥,作为胶结材料的聚合物混凝土。
常用一种或几种有机物及其固化剂、天然或人工 集料(石英粉、辉绿岩粉等)混合、成型、固化而 成。 聚合物在此种混凝土中的含量为重量的8~25%。 与水泥混凝土相比,它具有快硬、高强和显著改善 抗渗、耐蚀、耐磨、抗冻融以及粘结等性能。
水泥基复合材料
《水泥基复合材料》总结无机非09-1班赵学伟23水泥基复合材料是以硅酸盐水泥为基体,以耐碱玻璃纤维、通用合成纤维、各种陶瓷纤维、碳和芳纶等高性能纤维、金属丝以及天然植物纤维和矿物纤维为增强体,加入填料、化学助剂和水经复合工艺构成的复合材料。
它比一般混凝土性能有所提高。
以短切的耐碱玻璃纤维约3%~10%含量的复合材料为例,其密度为1600~2500kg/m3,抗冲强度8.0~24.5N·mm/mm2,压缩强度48~83MPa,热膨胀系数为(11~16)×10-6K-1。
性能随所用原材料、配比、工艺和养护条件而异。
水泥基复合材料基本上用于制造建筑构件,如内、外墙板、天花板等。
主要分为混凝土,纤维增强水泥基复合材料及聚合物改性混凝土三大类。
今天主要介绍下纤维增强水泥基复合材料和聚合物改性混凝土材料。
一纤维增强水泥基复合材料国际上对碳纤维、聚丙烯腈纤维混凝土结构的研究日趋活跃,有关论文明显增多。
由于碳纤维是高科技纤维中发展最快的品种之一,它具有高强度、高弹模、高抗腐蚀的众多优点,因此把碳纤维应用于土木工程及建筑工程是许多科技人员长久的梦想。
决定碳纤维能否推广使用于土木工程的关键是其价格。
随着工业技术的进步,最近几年碳纤维价格逐年下降,为推广使用提供了条件。
国外将高性能纤维材料用于土木工程的领域己非常广阔,主要有以下几个途径:1)将短碳纤维、聚丙烯腈纤维加入新混凝土中,制成高性能纤维混凝土新结构,现已有一定的工程实例,目前主要用于薄壳结构、耐腐蚀结构、喷射混凝土及道路工程等。
2)将碳纤维长丝制成棒材,在新混凝土结构中替代钢筋或预应力钢筋,用于新建混凝土结构,主要用于海洋工程、大跨度桥梁及需电磁透过的工程结构,或将棒材用于结构加固,国外的工程实例已较多。
3)将碳纤维加工成束状或绳状,用于大跨度桥梁的拉素或大跨度空间结构的悬索、拉索等。
4)将碳纤维棒材与混凝土一起制成预制混凝土梁、板、屋架,或用纤维棒制作网架等,这些新结构具有质量轻、强度高和耐腐蚀等优点。
水泥基复合材料的力学与结构性能分析
水泥基复合材料的力学与结构性能分析随着科技的不断发展,新材料的出现不断挑战着传统材料的地位。
在建筑行业中,水泥基复合材料因其优异的力学和结构性能得到不少关注。
本文将从不同角度来分析水泥基复合材料的力学和结构性能。
一、水泥基复合材料的种类和成分水泥基复合材料是一种由无机材料和有机材料,包括水泥、纤维、钢筋、高分子材料等构成的新型复合材料。
水泥基复合材料的成分和种类十分复杂,以下是一些常见的水泥基复合材料及其组成:1. 钢筋混凝土:由水泥砂浆和钢筋构成,钢筋是主要受力构件,水泥砂浆是钢筋保护层和传递荷载的介质。
2. 玻璃纤维增强水泥基复合材料:由水泥、玻璃纤维、添加剂等构成。
这种材料具有较好的抗拉强度和耐久性。
3. 碳纤维增强水泥基复合材料:由水泥、碳纤维、添加剂等组成,具有优异的抗拉性能和高温稳定性。
二、水泥基复合材料的力学性能分析在建筑行业中,材料的力学性能至关重要。
水泥基复合材料具有一些卓越的力学性能,如抗拉强度、抗压强度、弹性模量等。
1. 抗拉强度水泥基复合材料的抗拉强度一般较低,但加入纤维增强剂可以有效提高材料的抗拉性能。
碳纤维增强剂是目前较为常用的增强材料,研究表明,使用碳纤维增强剂可以有效提高水泥基复合材料的抗拉强度,提高其耐久性。
2. 抗压强度水泥基复合材料的抗压强度是其重要的力学性能之一,它主要取决于水泥的品种、浆料的掺合比和固化方式等因素。
钢筋混凝土具有很高的抗压强度,大约为50~100MPa,而纤维增强水泥基复合材料的抗压强度一般在20~40MPa之间。
3. 弹性模量弹性模量是评价材料强度和刚度的指标之一,它反映了材料受力时的变形能力。
水泥基复合材料的弹性模量一般在30~50GPa之间,而高性能纤维增强水泥基复合材料的弹性模量一般可达到100GPa。
三、水泥基复合材料的结构性能分析在建筑行业中,材料的结构性能是十分关键的。
水泥基复合材料的结构性能需考虑其耐久性、抗冻性、耐久性和防水性。
水泥基复合材料
水泥基复合材料一:凡是细磨成粉末状,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石等散粒或纤维材料牢固的交接在一起的水硬性胶凝材料,通称为水泥。
由于水泥具有高抗压强度、低廉的价格、使用方便、耐久性良好等优点,故水泥是目前地球上使用最广泛、最大宗的结构材料,但其脆性是制约水泥无限应用的致命弱点,如何通过复合改性提高水泥的韧性成为水泥基复合材料研究的重要方向之一。
二:(1)材料背景开始利用材料复合的方式来解决水泥基材料的脆性问题,钢筋混凝土就是很好的例子,钢筋混凝土已具备现代材料复合工艺的雏形。
大体看来,水泥基复合材料的增韧措施主要可以分为三大类:一是对水泥自身进行调节来增强水泥基体的韧性,这类方法主要有加入聚合物,制得聚合物水泥,调节水泥的矿物组成,减少脆性矿相含量,加入外加剂来改善界面、提高抗拉强度等;另一类是引入高抗拉强度的增强体,如引入钢筋、秸杆、纤维等,这类方法能显著改善水泥基复合材料的韧性,这也是目前研究的热点;还有一类就是通过适当工艺处理来增强水泥基复合材料的韧性,用的较多的就是预应力法;各种方法相互渗透,在实际工程中往往是多种方法同时使用以达到最佳的增韧效果。
(2)加工工艺1 喷射法是目前最常用的成型方法,将水泥、砂子、水搅拌成砂浆,与耐碱短切玻璃纤维短时间混合后形成预混料,振动模浇铸成型后养护。
[2] 喷射脱水法:砂浆和玻璃纤维同时往模具上喷射的机理与直接喷射法相同。
但它是把玻璃纤维增强水泥喷射到一个常有减压装置的开孔台上,开孔台铺有滤布。
喷射完后进行减压,通过滤纸或滤布,把玻璃纤维增强水泥的剩余水分脱掉。
这种方法是成型水灰比低的高强度板状玻璃纤维增强水泥的方法。
[3] 预混料浇铸法:水泥、砂子、水、外加剂和切成适当长度的耐碱玻璃纤维(短切纤维)在搅拌机中混合成预混料,然后不断地注入到振动着的模具里进行成型。
[4] 压力法:预混料注入到模具里后,加压除去剩余水分,即使脱模,可以提高生产率,并能获得良好的表面尺寸精度。
水泥基复合材料的制备及应用研究
水泥基复合材料的制备及应用研究正文:一、引言水泥基复合材料作为一种新型复合材料,具有广阔的应用前景。
水泥基复合材料以水泥为基础材料,通过添加一定的填料、增强材料和化学添加剂等,在保证微观结构稳定的前提下,兼具多种优良性能,具有低成本、高性价比等特点。
目前,水泥基复合材料在建筑、道路、桥梁、地下综合管廊、墙面装饰以及有色冶金、化工等领域都有广泛应用。
二、制备水泥基复合材料1.基本原料水泥基复合材料的基本原料包括:水泥、填料、增强材料、化学添加剂以及水。
其中,水泥是基础材料,填料用于降低成本,增强材料用于增强强度,化学添加剂用于改善水泥基复合材料的性能。
2.材料配比水泥基复合材料的材料配比至关重要。
一般来说,材料配比应充分考虑各种材料的性质和溶液体系,杜绝出现杂质、沉淀、相分离等情况。
具体配比方法可采用试验法和计算法,先确定填加的含量,再按照要求的配比比例进行混合。
3.制备过程在制备水泥基复合材料时,首先将填料、增强材料、化学添加剂等加入水泥浆中,然后加入适量的水进行搅拌,形成均匀的混合物。
接下来,将混合物进行振动、压实、震动等工艺,使其形成密实的结构。
最后,将其进行酸洗、清洗等过程,得到完整的水泥基复合材料。
三、水泥基复合材料的应用研究1.建筑领域水泥基复合材料在建筑领域的应用十分广泛。
其优点在于施工简单、防火、抗震、耐久等。
目前,水泥基复合材料已被应用在墙体、地面、屋顶、隔墙等方面。
同时,水泥基复合材料还能作为地下综合管廊和防渗堤坝的砌块。
2.道路、桥梁领域水泥基复合材料在道路、桥梁等领域的应用也越来越广泛。
其特点在于耐久、防水、抗热、防剥落等。
目前,水泥基复合材料主要被用于路面面层、桥墩、桥面铺装等方面。
3.有色冶金、化工领域水泥基复合材料在有色冶金、化工领域的应用也比较广泛。
其特点在于耐腐蚀、渗漏性小、承重能力强等。
目前,水泥基复合材料主要被用于化工管道、水池、表面处理以及地下储罐等方面。
四、总结水泥基复合材料具有广泛的应用前景,其制备过程相对简单,价格低廉。
水泥基复合材料结构及性能评估
水泥基复合材料结构及性能评估近年来,随着工程建设的不断发展和人们对建筑材料品质要求的提高,水泥基复合材料正逐渐成为建筑材料的主流。
水泥基复合材料具有密实性强、耐久性高以及使用寿命长等优点,广泛应用于建筑、道路、桥梁等领域。
因此,对水泥基复合材料进行结构及性能评估成为关键。
一、水泥基复合材料的结构水泥基复合材料是以水泥为基础材料,通过添加不同的掺合料和增强材料而形成的复合材料。
它可以分为无机水泥基复合材料和有机水泥基复合材料两类。
无机水泥基复合材料主要是指水泥、矿渣、粉煤灰等无机物质的共同粉碎,并在适当的比例下加水,通过合理的施工工艺而形成的一种复合材料。
它具有强度高、抗渗性强、热稳定性好等优点。
有机水泥基复合材料则是由水泥和有机聚合物或有机纤维增强材料组成。
这种材料具有高强度、耐久性好等特点,同时可大幅减少砌体厚度。
因此,在一些建筑用途上,有机水泥基复合材料使用范围较为广泛。
二、水泥基复合材料的性能评估水泥基复合材料的性能评估主要包括强度、抗渗性、导热系数等多个方面。
1. 强度评估水泥基复合材料的强度评估是评判其使用性能的关键之一。
强度包括抗压强度、抗拉强度等指标。
抗压强度是指材料在受到垂直荷载作用下的反抗能力。
一般来说,抗压强度越高,则耐久性越好,该材料在使用过程中能够更加稳定地承受荷载。
而抗拉强度则代表了材料在受到拉力作用下的反抗能力。
若使用环境中存在拉伸应力,则需要着重对抗拉强度进行测试。
2. 抗渗性评估对于需要长期受到水、潮湿等因素影响的建筑物来说,为了保证建筑物的稳定性,选择具有较好抗渗性的水泥基复合材料十分关键。
抗渗性一般包含埋深渗透试验、硬度测量等多个方面,用于评价材料的渗透性能。
3. 导热系数评估水泥基复合材料在使用场合中,可能会受到温度影响。
而高导热系数的材料则难以在高温环境中长期使用。
因此,在材料性能评估中,鉴定其导热系数也是必不可少的一项指标。
三、结论综上所述,水泥基复合材料的结构及性能评估是十分重要的。
水泥基复合材料在混凝土中的应用技术规程
水泥基复合材料在混凝土中的应用技术规程一、引言水泥基复合材料是指利用水泥、矿渣、石灰石粉等多种材料与纤维、颗粒等复合材料组分进行混合而成的材料。
该材料具有高强度、高韧性、高耐久性等优点,在混凝土中的应用越来越广泛。
本文将详细介绍水泥基复合材料在混凝土中的应用技术规程。
二、水泥基复合材料的材料组成及特性1.材料组成水泥基复合材料的组成包括水泥、矿渣、石灰石粉等多种材料,同时还需要添加纤维、颗粒等复合材料组分。
其中纤维材料主要包括玻璃纤维、碳纤维、聚丙烯纤维等,颗粒材料主要包括硅灰石、膨胀珍珠岩等。
不同的组分配比将直接影响水泥基复合材料的性能。
2.特性水泥基复合材料具有以下几个特性:(1)高强度:水泥基复合材料的强度比普通混凝土高,可以达到80MPa以上。
(2)高韧性:水泥基复合材料具有较好的韧性,可以有效抵抗裂纹的扩展。
(3)高耐久性:水泥基复合材料具有较好的耐久性,能够抵抗酸碱腐蚀、氯离子侵蚀等。
(4)施工性好:水泥基复合材料的施工性能好,可以采用现场拌合或预制构件等方式进行施工。
三、水泥基复合材料在混凝土中的应用技术规程1.材料配合比水泥基复合材料的配合比需要根据实际情况进行设计。
针对不同的工程要求,可以通过试验确定不同的配合比方案。
一般来说,水泥基复合材料的配合比需要考虑以下几个因素:(1)水泥基复合材料组分的种类及配比;(2)混凝土的强度等级及要求;(3)混凝土的施工方式及工期等。
2.施工工艺水泥基复合材料在混凝土中的应用需要注意以下几个方面的施工工艺:(1)水泥基复合材料的拌合:水泥基复合材料的拌合需要严格按照配合比进行,同时需要掌握好拌合时间和速度,以确保水泥基复合材料的性能达到最优。
(2)混凝土的浇筑:混凝土的浇筑需要保证混凝土的均匀性和密实性,防止混凝土中出现空鼓、裂缝等问题。
(3)混凝土的保养:混凝土的保养过程需要注重控制温度和湿度,以保证混凝土的强度和耐久性。
3.应用范围水泥基复合材料在混凝土中的应用范围较广,主要包括以下几个方面:(1)桥梁工程:水泥基复合材料可以用于桥梁结构中的预应力构件、支座、墩身、梁体等部位。
水泥基复合材料
水泥基复合材料
水泥基复合材料是一种由水泥、骨料、掺合料和添加剂等原材料组成的新型建
筑材料,具有优异的力学性能、耐久性和耐腐蚀性能。
它是在水泥基体中加入特定的骨料和掺合料,经过一定的工艺方法制成的一种新型复合材料。
水泥基复合材料具有优良的抗压、抗弯、抗冻融和耐化学腐蚀等性能,广泛应用于建筑工程、道路工程、水利工程等领域。
首先,水泥基复合材料具有优异的力学性能。
由于在水泥基体中加入了特定的
骨料和掺合料,使得水泥基复合材料的力学性能得到了显著提高。
其抗压强度、抗折强度和抗冻融性能均远远优于传统的混凝土材料,可以满足各种工程的使用要求。
其次,水泥基复合材料具有优异的耐久性能。
水泥基复合材料在制备过程中,
采用了特殊的配比和工艺方法,使得其具有良好的耐久性能。
在各种恶劣的环境下,如潮湿、高温、酸碱等条件下,水泥基复合材料都能够保持稳定的性能,不易受到外界环境的影响。
此外,水泥基复合材料还具有良好的耐腐蚀性能。
传统的混凝土材料在受到化
学腐蚀时往往会出现表面起砂、龟裂等现象,影响使用寿命。
而水泥基复合材料由于添加了特定的掺合料和添加剂,使得其具有较强的抗化学腐蚀能力,能够在酸碱环境下长期稳定使用。
总的来说,水泥基复合材料作为一种新型的建筑材料,具有优异的力学性能、
耐久性和耐腐蚀性能,广泛应用于建筑工程、道路工程、水利工程等领域。
随着科技的不断进步和材料工艺的不断改进,相信水泥基复合材料将会在未来得到更广泛的应用和推广,为各种工程提供更加可靠、耐久的建筑材料。
水泥基复合材料的应用与研究
水泥基复合材料的应用与研究一、前言水泥基复合材料是指以水泥、矿物掺合料和一定比例的纤维等材料为基础,加入适量的添加剂,通过混合、浇注、压制等工艺形成的一种综合性材料。
它具有高强度、耐磨、耐腐蚀、防火等优良性能,同时还具有良好的耐久性和可持续性,因此在工程建设领域得到了广泛的应用。
二、水泥基复合材料的种类1.纤维增强水泥基复合材料纤维增强水泥基复合材料是指在水泥基材料中加入纤维,使其具有更好的抗拉强度和韧性,常见的纤维有玻璃纤维、碳纤维、钢纤维等。
这种材料广泛应用于建筑、桥梁、路面等工程领域。
2.高性能混凝土高性能混凝土是指在水泥基材料中加入微粉、氧化硅等掺合料,以及控制水灰比等技术手段,使其具有更高的强度、耐久性和抗渗性。
这种材料广泛应用于高层建筑、大型桥梁、隧道等工程领域。
3.自密实混凝土自密实混凝土是指在水泥基材料中加入一定比例的特殊掺合料和添加剂,通过控制水泥胶凝体的形成,使其具有自密实的性能,从而提高了材料的耐久性和抗渗性。
这种材料广泛应用于水利水电、海洋工程等领域。
4.轻质水泥基复合材料轻质水泥基复合材料是指在水泥基材料中加入一定比例的轻质骨料,使其具有更轻的重量和更好的保温性能,常见的轻质骨料有珍珠岩、膨胀珍珠岩、膨胀粘土等。
这种材料广泛应用于建筑、隧道、地道等领域。
三、水泥基复合材料的应用1.建筑领域水泥基复合材料在建筑领域的应用非常广泛,主要包括建筑结构、外墙保温、地面修补等方面。
例如,在建筑结构中,水泥基复合材料可以用于加固和修补混凝土结构,提高其承载能力和抗震性能;在外墙保温中,水泥基复合材料可以用于制作外墙保温板,达到节能减排的效果;在地面修补中,水泥基复合材料可以用于修复地面裂缝和磨损部位,提高地面的使用寿命。
2.交通运输领域水泥基复合材料在交通运输领域的应用也非常广泛,主要包括桥梁、隧道、地铁等方面。
例如,在桥梁中,水泥基复合材料可以用于加固和修补桥梁结构,提高其承载能力和抗震性能;在隧道中,水泥基复合材料可以用于修补和加固隧道结构,提高其使用寿命和安全性;在地铁中,水泥基复合材料可以用于修补和加固地铁隧道结构,提高其使用寿命和安全性。
水泥基复合材料
发展趋势
轻质高强 节能环保
智能化 生态化
上海的金茂大厦
设计高度:421m
大跨度桥梁
核电站
7.2 水泥基复合材料的种类及基本性能
水泥基复合材料是指以水泥净浆、砂浆或
混凝土做基体,以非连续的短纤维或连续的
长纤维做增强材所组成的复合材料的总称。
水泥基复合材料的种类
增强材料
基体
钢 玻 有 碳玄
序号 1 2 3
按纤维体积率分类
低纤维体积率纤维增强水泥基 复合材料
中纤维体积率纤维增强水泥基 复合材料
高纤维体积率纤维增强水泥基 复合材料
纤维体积率(%) 范围 0.1-1.0
>1.0-5.0
>5.0-20.0
典型的纤维增强水泥基复合材料 品种
(1)维纶纤维增强混凝土 (2)低掺率丙纶纤维增强混凝土 (3)尼龙纤维增强混凝土 (4)低掺率腈纶纤维增强混凝土 (5 )Vf=0.5%-1% 的钢纤 维增强 混凝土
(1)Vf=1.5%-2.5%的钢纤维增强 混凝土
(2)抗碱玻璃纤维增强水泥 (3)维纶纤维增强水泥 (4)碳纤维增强水泥 (5)RPC (1)石棉水泥 (2)石棉增强硅酸钙 (3)压蒸木浆纤维增强水泥 (4)木浆纤维增强硅酸钙 (5)若干混杂纤维增强水泥基复 合材料
(6)注浆(钢)纤维混凝土 (SIFCON)
内容提纲
7.1 7.1概述 7.2水泥基复合材料的种类与性能 7.3纤维增强水泥基复合材料 7.4聚合物混凝土复合材料 7.5水泥基复合材料的应用
水泥
1 水泥的定义:
凡细磨成粉末状,加入适量水后成为塑 性浆体,既能在空气中硬化,又能在水中硬化,
并能将砂、石等散粒或纤维材料牢固地胶结在
第八章 水泥基复合材料
Company Logo
2. 聚合物混凝土:以聚合物为结合料与砂石等骨料形成的混凝土,环
氧树脂,脲醛树脂等。具有良好的力学性能、耐久性及速凝,大
都用于抢修等特殊工程,但聚合物用量大(8%左右),价格贵
3. 聚合物水泥混凝土:成型过程中掺加一定量的聚合物,从而改善其 性能、提高其使用品质,使混凝土满足工程的特殊需要,又称为 聚合物改性水泥混凝土或高聚物改性混凝土。
8.2.1 钢筋混凝土的成型工艺 1886年,美国的加克松开始预应力混凝土, 即不改变混凝土的成分,用物理力来改善混 凝土自身的强度 1928年,法国的希努.弗列基诺提出这种方 法的理论,确定了技术基础 应用于高速路面、大跨度桥及建筑物的横梁
HNUST Company Logo
预应力混凝土:通过张拉钢筋(索),使
度方向上可以改变纤维量
6. 抄造法 玻纤部分取代石棉,适合成型较厚(15~40mm)的板状制品,且能大 量生产。
HNUST Company Logo
8.2.3 聚合物改性水泥混凝土的成型工艺
1. 水泥混凝土中聚合物结构形成过程 随水泥的水化,体系中的水不断地被水化水泥所
结合,乳液中的聚合颗粒会相互融合连接在一起
2. 影响纤维增强水泥基复合材料的因素 1)基体的性能:短纤维且乱向分布;基体为传递应力、受力的主体 2)增强纤维与水泥基体间的相互作用
A. 纤维间距,两倍界面层厚度
B. 纤维间距改变对界面层的影响与纤维-集料间距改变对界面层的影响 具有一致的规律性和同类性 C. 纤维间距改变对界面层性状的影响与对界面力学行为的影响具有相 同的规律性
2. 聚合物改性水泥砂桨及水泥混凝土的设计
HNUST Company Logo
弹性胶乳
水泥基复合材料
水泥基复合材料水泥基复合材料是一种以水泥为基础材料,在其中添加各种复合材料进行改性的新型材料。
由于水泥基材料的强度和耐久性相对较低,加入复合材料能够显著提高其性能,使其具备更好的力学性能、耐久性和可塑性。
水泥基复合材料主要由水泥基体和复合材料组成。
水泥基体是指水泥基材料中的主体,一般为水泥混凝土或者水泥砂浆。
而复合材料是指在水泥基体中添加的改性材料,如纤维、颗粒、胶凝材料等。
常见的复合材料有玻璃纤维增强材料、碳纤维增强材料、聚合物纳米复合材料等。
水泥基复合材料相比传统的水泥材料,具有以下优点:首先,水泥基复合材料具有更好的强度和耐久性。
由于添加了各种复合材料,水泥基体的力学性能得到了显著提升。
在应力作用下,复合材料能够有效地抵抗拉伸、压缩、弯曲等不同形式的力,从而增强了材料的整体强度。
同时,复合材料还可以提高材料的抗裂性能和抗热震性能,延长材料的使用寿命。
其次,水泥基复合材料具有更好的抗渗透性和抗化学侵蚀性。
由于复合材料具有较好的致密性和耐腐蚀性,能够有效地阻止水分和化学物质的渗透,从而减少材料的老化和腐蚀。
这使得水泥基复合材料在潮湿环境和酸碱腐蚀环境中具有更好的性能,适用于海洋工程、化工工程等特殊环境。
最后,水泥基复合材料具有更好的可塑性和施工性能。
由于复合材料的添加,水泥基材料的流动性和可塑性得到了改善,能够更好地适应各种复杂的施工要求。
同时,水泥基复合材料在施工过程中可与钢筋和其他结构材料良好结合,在工程中的适用性更广。
总之,水泥基复合材料的研发和应用,为水泥材料的改性提供了一种新的思路和方法。
通过合理选择和添加不同的复合材料,可以达到对水泥基材料性能的全面提高,增强其力学性能、耐久性和可塑性,从而拓宽了水泥材料的应用领域,也为建筑工程的可持续发展提供了新的解决方案。
水泥基复合材料的应用与研究
水泥基复合材料的应用与研究一、引言水泥基复合材料是一种由水泥、砂、骨料和一定数量的添加剂组成的复合材料,具有优异的机械性能和耐久性,可广泛应用于建筑、交通、水利等领域。
本文将详细介绍水泥基复合材料的应用与研究。
二、水泥基复合材料的特点1.机械性能好:水泥基复合材料具有较高的强度和刚度,可以承受较大的荷载。
2.耐久性好:水泥基复合材料具有较好的耐水性、耐化学性和耐磨性,能够长期保持良好的性能。
3.施工方便:水泥基复合材料可现场制备,施工简单方便,能够满足不同形状和尺寸的需求。
4.环保性好:水泥基复合材料不含有害物质,具有良好的环保性能。
三、水泥基复合材料的应用1.建筑领域水泥基复合材料在建筑领域中的应用非常广泛,可以用于地面、墙面、天花板等部位的装饰和修复。
其优点在于施工方便、外观美观、耐久性好等。
2.交通领域水泥基复合材料在交通领域中的应用主要是用于路面、桥梁、隧道等的修复和加固。
其优点在于耐久性好、施工方便、成本低等。
3.水利领域水泥基复合材料在水利领域中的应用主要是用于水坝、堤防、渠道等的加固和修复。
其优点在于耐久性好、施工方便、抗水性强等。
四、水泥基复合材料的研究1.添加剂的研究添加剂是影响水泥基复合材料性能的重要因素之一,研究添加剂的种类和比例可以改善水泥基复合材料的性能。
目前,研究添加剂的种类和比例已成为水泥基复合材料研究的热点。
2.微观结构的研究水泥基复合材料的性能与其微观结构密切相关,因此研究水泥基复合材料的微观结构对于改善其性能具有重要意义。
目前,扫描电镜、X射线衍射等技术已经成为研究水泥基复合材料微观结构的主要手段。
3.生产工艺的研究生产工艺是影响水泥基复合材料性能的重要因素之一,研究生产工艺可以提高水泥基复合材料的生产效率和质量。
目前,研究水泥基复合材料的生产工艺已成为水泥基复合材料研究的热点。
五、结论水泥基复合材料具有优异的机械性能和耐久性,可以广泛应用于建筑、交通、水利等领域。
水泥基复合材料的性能研究与应用
水泥基复合材料的性能研究与应用水泥是一种常见的建筑材料,但单纯的水泥材料在力学性能和耐久性方面有一定的限制。
水泥基复合材料则通过与其他材料的复合,实现了优异的性能提升和更广泛的应用范围。
本文将从水泥基复合材料的来源、结构、性能和应用等方面进行探讨。
一、来源和分类水泥基复合材料是指水泥作为基础材料,与其他材料进行复合而成的材料。
常见的复合材料有纤维增强水泥基复合材料、矿物质增强水泥基复合材料和高性能混凝土等。
其中,纤维增强水泥基复合材料是最常见的形式。
纤维增强水泥基复合材料(FRC)是以水泥为基础材料,加入高强度、高模量的玻璃纤维、碳纤维等纤维增强材料组成的复合材料。
根据纤维长度,FRC又可分为短纤维FRC和长纤维FRC两类。
短纤维FRC一般采用纤维长度小于25mm的纤维,常用于钢筋混凝土结构界面处理、自修复材料等领域;而长纤维FRC则采用长度大于25mm的纤维,具有很高的拉伸、屈服和断裂韧性,广泛应用于隧道、桥梁、航道、机场跑道等重载交通设施。
二、结构和性能FRC的主要结构包括水泥基体、纤维及其界面结合层。
其中,水泥基体主要是水泥、砂和粉煤灰等混合材料,其作用是提供FRC的黏结、凝固和硬化功能;纤维则承担FRC的拉伸、扭转、剪切和挤压等力学功能;界面结合层则承担着水泥基体和纤维之间的结合作用。
FRC的主要性能包括拉伸、屈服和断裂韧性,抗压、抗弯等力学性能、耐久性能、自修复性能等。
其中,拉伸、断裂韧性和自修复性能是FRC相较于传统材料的优势所在。
拉伸和断裂韧性是指FRC在受到拉伸应力作用时,材料仍能够保持良好的强度和变形能力,具有延缓裂纹扩散、促进材料自修复的作用;自修复性能是指FRC受到部分损伤后,具有继续自我修复的能力。
这些性能使得FRC在开发高强度和高韧性的建筑材料方面起到了重要作用。
三、应用FRC已经被广泛应用在建筑工程、交通工程、水利工程、航空航天等领域,成为建筑材料中的“新宠”。
在建筑工程中,FRC可用于隔墙板、楼梯、地面等构件的制造,并可加入相应的颜料、黏合剂、填充料等,用于墙面装饰、地面美化等。
水泥基复合材料的性能研究
水泥基复合材料的性能研究水泥基复合材料是一种由水泥基体和多种复合材料组成的新型材料,具有优异的性能和广泛的应用前景。
本文将对水泥基复合材料的性能进行深入研究,包括其力学性能、耐久性能、热学性能等方面的内容,旨在全面了解该材料的特点和潜在应用领域。
一、力学性能水泥基复合材料的力学性能是衡量其抗压、抗拉、抗弯等力学性能的重要指标。
研究表明,水泥基复合材料具有较高的抗压强度和抗拉强度,能够满足不同工程领域的需求。
其强度与复合材料的种类、含量、分布状态等因素密切相关,通过合理设计配比和工艺参数,可以有效提高水泥基复合材料的力学性能,进而扩大其应用范围。
二、耐久性能水泥基复合材料的耐久性能是评价其在不同环境条件下长期稳定性的重要指标。
在潮湿、高温、冻融等恶劣环境下,水泥基复合材料能够保持较好的性能稳定性,不易发生开裂、脱落等现象。
此外,水泥基复合材料还具有较好的抗碱性和耐化学腐蚀性能,能够在酸碱环境中保持稳定的物理和化学性能,具有较长的使用寿命。
三、热学性能水泥基复合材料的热学性能是指其在高温、低温等极端温度条件下的性能表现。
研究表明,水泥基复合材料具有较好的抗高温性能,能够在高温环境下保持较好的力学性能和稳定性。
同时,在低温条件下,水泥基复合材料也表现出较好的抗冻融性能,不易受到温度变化的影响,保持较好的使用性能。
综上所述,水泥基复合材料具有优异的力学性能、耐久性能和热学性能,适用于建筑、道路、桥梁等工程领域,具有广阔的应用前景。
未来的研究方向可以进一步优化水泥基复合材料的配比设计,提高其力学性能和耐久性能,拓展其在更多领域的应用,推动该材料的发展和应用。
11.水泥基复合材料
二、纤维增强水泥复合材料
1 、复合材料的组成: 增强剂 — 短纤维
基体 —硅酸盐水泥、调凝水泥及高铝矿渣水泥等
填料 — 沙、粉煤灰等。
14
用于增强水泥基复合材料的纤维品种很多,主要有:
钢纤维、石棉纤维、天然纤维和合成纤维、玻璃 纤维。 钢纤维增强水泥基材料 石棉纤维增强水泥基材料 天然纤维增强水泥基材料 合成纤维增强水泥基材料 玻璃纤维增强水泥基材料
2) 当纤维间距小于两倍界面层厚度时,由于界面层相互交错、 搭接,产生叠加效应,不同程度地引起界面层弱谷变浅,对界
面产生强化效应;
3)当纤维间距小于两倍界面层厚度时,界面诸力学性能均有不 同程度的提高。
23
三、纤维增强水泥的成型工艺
1、直接喷射法
直接喷射法是目前最常用的成型方法。其关键是玻 璃纤维的均匀分布以及喷射砂浆的脱泡和厚度的均 匀性。 砂浆配比: W/C = 0.3~0.4 S/C =0.5~1 耐碱短切纤维: 12~50mm 含量约3~5%
42
性能:与普通混凝土相比,树脂混凝土具有强度高, 耐化学腐蚀、耐磨、抗冻性好等有点,但硬化时收 缩大,耐久性差。 用途: 由于树脂成本高,目前仅用于特殊工程,如耐腐蚀 性工程,修补混凝土构件及堵漏材料等(抢修)。 此外树脂混凝土因其美观的外表,又称人造大理石, 可以制成桌面、地面砖、浴缸等。
直接喷射法示意图
24
1、直接喷射法
用这种方法,纤维在二维方向无规配向。因此,
在制造时制品的形状、大小、厚度等自由度最大,
通用性也最大,设备费用较便宜。
25
2、喷射脱水法
这种方法是将玻璃纤维增强水泥喷射到一个带有 减压装置的铺有滤布的开孔台上。 喷射完后进行减压,通过滤布将玻璃纤维增强水 泥的剩余水分脱掉。
水泥基复合材料的制备工艺及其力学性能研究
水泥基复合材料的制备工艺及其力学性能研究水泥基复合材料是一种由水泥矩阵和一定比例的增强材料混合而成的复合材料。
它具有优良的力学性能和较高的耐久性,广泛应用于建筑工程、道路、桥梁等工程领域。
本文将介绍水泥基复合材料的制备工艺及其力学性能研究,以期为相关领域的研究提供参考。
1. 水泥基复合材料的制备工艺水泥基复合材料制备的主要过程包括混合、形成、养护等步骤。
其中,混合过程是制备水泥基复合材料的关键环节。
一般情况下,水泥基复合材料的混合比例为水泥:砂石:增强材料=1:2:2,具体比例可根据实际需要进行调整。
同时,强度等级、耐久性等要求也是影响混合比例及施工工艺的因素。
在制备过程中,水泥、砂石和增强材料需经过预处理,以减少杂质、增加比表面积和表面活性,提高混凝土的力学性能和耐久性。
水泥预处理的方法常见的有烧碱预处理法和球磨预处理法;砂石的预处理方法有洗涤预处理法和筛分预处理法等;增强材料的预处理方法有打散法和表面改性法等。
制备好的混合物需要被充分搅拌以排除气泡和获得均匀的混合状态。
混合好的水泥基复合材料应按照设计要求铺装成型,外观应光滑、整洁,同时需要进行养护,确保其达到预期的强度和耐久性。
2. 水泥基复合材料的力学性能研究水泥基复合材料具有优良的力学性能,主要表现在以下几个方面:2.1 抗压强度抗压强度是衡量混凝土材料强度的一个重要指标。
水泥基复合材料具有较高的抗压强度,随着砂石、增强材料比例的不同,抗压强度会有所变化。
通常情况下,水泥基复合材料的抗压强度在50MPa以上,高强水泥基复合材料甚至可达到150MPa以上。
2.2 抗拉强度水泥基复合材料的抗拉强度也是其力学性能之一。
由于水泥基材料在拉伸过程中出现裂纹易于扩展,因此可以采用增强剂改良的方法来提高抗拉强度。
根据研究表明,添加玻璃纤维、聚丙烯纤维等增强材料,可以显著提高水泥基复合材料的抗拉强度。
2.3 抗冻性能水泥基复合材料的抗冻性能是表征其耐久性的重要指标之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥基复合材料艾ai青摘要: 本文论述了水泥基材料改性用聚合物种类、聚合物改性机理、聚合物改性水泥基材料研究进展和发展趋势。
加入了聚合物材料后,水泥基材料的性能,如强度、变形能力、粘结性能、防水性能、耐久性能等都会有所改善,改善的程度与聚灰比、聚合物的品种和性能有很大关系。
但也存在不足之处,如抗压强度提高不大,有时还降低,最高使用温度不如普通混凝土等。
笔者认为,研究如何大幅度提高聚合物改性水泥基材料的抗压强度和最高使用温度很有意义。
关键词: 关键词聚合物改性水泥基材料进展机理性能1.引言普通混凝土因抗压比低,干缩变形大,抗渗性、抗裂性、耐腐蚀性差,密度大,其使用范围受到很大限制。
随着工业的发展,出现了钢筋混凝土、自应力混凝土和纤维混凝土。
但在这些改进中,胶结材料水泥的性能没有发生改变,因此也限制了混凝土性能的提高。
水泥混凝土(砂浆)的一个新动向就是水泥混凝土(砂浆)与有机高分子材料复合,这样可以有效地改善混凝土(砂浆)的性能。
因为有机高分子聚合物的长分子链结构以及大分子中的键节或链段的自旋转性,决定其具有与无机非金属材料不同的性质—弹性和塑性[1]。
所以在水泥混凝土(砂浆)中加入少量有机高分子聚合物,既可以使混凝土获得高密实度,又不至于使混凝土(砂浆)的脆性加大,这样便可制得高强度、高抗渗和高耐腐蚀性的混凝土。
如今,聚合物改性砂浆和混凝土不仅在混凝土结构的修补和维护方面成为一种非常重要的材料,就是在新的建筑中也获得越来越广泛的应用,尤其是在桥面、停车场、码头、瓷砖和石材粘结、建筑防水、防腐等工程领域。
2. 聚合物改性水泥基复合材料1.1. 改性用聚合物种类聚合物改性水泥基复合材料是指在水泥混合时加入了分散在水中或者可以在水中分散的聚合物材料,包括掺和不掺骨料的复合材料、水泥浆、砂浆和混凝土。
用于水泥混凝土(砂浆)改性的聚合物有四类,即水溶性聚合物、聚合物乳液(或分散体)、可再分散的粉料和液体聚合物。
聚合物乳液通常是将可聚合单体在水中进行乳液聚合而获得的,但也有一些聚合物乳液不是通过单体乳液聚合而获得的,如天然橡胶胶乳是直接从橡胶树上获得,再经适当浓缩制成的;环氧乳液则一般是用乳化剂将环氧树脂乳化而成的。
可再分散的聚合物粉料一般是由聚合物乳液经喷雾干燥而成的,聚合物粉末与聚合物乳液就像是奶粉与牛奶一样。
它对水泥砂浆和混凝土的改性机理与聚合物乳液是相同的,只不过它往往是先与水泥和骨料进行干混,再加水湿拌才重新乳化成乳液。
水溶性聚合物品种很多,可以分为三大类:天然水溶性、半合成水溶性和合成水溶性。
一般说,水溶性聚合物的用量非常小,通常在水泥质量的0。
5%以下,对硬化砂浆和混凝土的强度没有大的影响[2]。
因此,水溶性聚合物主要用来改善水泥砂浆和混凝土的工作特性,有时候也可以把其归类为增黏剂。
用于水泥改性用的液体聚合物有环氧树脂和不饱和聚脂,在与水泥混合时还要加入固化剂。
与聚合物乳液改性相比,使用液体聚合物时聚合物用量要更多,因为聚合物不亲水,分散不是很容易,所以用液体聚合物改性混凝土的情形要比其他类型聚合物少得多。
聚合物水泥砂浆的配比一般为,水泥∶砂=1∶2~3(质量比);聚灰比=5%~20%;水灰比W/C=0.30~0.60。
1.2. 聚合物改性水泥基材料机理关于聚合物改性水泥砂浆和混凝土的机理,主要从以下几个方面进行分析: (1)由于聚合物的加入引起了水泥石结构形态的改变,从而对水泥及水泥混凝土的性能起到改善作用。
(2)聚合物与水泥或水泥水化产物相互发生了化学作用,从而对水泥混凝土的性能有改善作用。
(3)聚合物的掺入会对水泥的水化及凝结硬化过程有影响,从而改变水泥混凝土的性能。
(4)聚合物的掺入改变了混凝土的孔结构,改善了水泥浆体与骨料的粘结,减少了硬化水泥浆体中的微裂纹,从而改善了水泥混凝土物理力学性能。
(5)由于聚合物的掺入,可改善水泥混凝土或水泥砂浆的工作性能,其减水作用可降低水灰比,从而改善了水泥混凝土的物理力学性能。
聚合物对水泥混凝土的改性作用可能是上述几种原因之一,也可能是兼而有之。
关于聚合物乳液对水泥砂浆和混凝土的改性作用,目前比较一致的看法是,改善作用是通过聚合物在水泥物在水泥浆与骨料间形成具有较高粘结力的膜,并堵塞砂浆内的孔隙来实现的。
水泥水化与聚合物成膜同时进行,最后形成水泥浆与聚合物膜相互交织在一起的互穿网络结构[3]。
具有可反应基团的聚合物可能会与固体氢氧化钙表面或集料表面的硅酸盐发生化学反应,这种化学反应可望改进水泥水化产物与骨料之间的粘结,从而改善混凝土和砂浆的性能[2]。
3. 聚合物改性砂浆和混凝土的性能由于聚合物掺入,改善效果最显著的是流变性、保水性、和韧性和粘结性能,对水泥砂浆和混凝土抗拉、抗折强度,耐磨性、抗渗性亦有较大幅度的提高。
1.3. 强度聚合物改性砂浆和混凝土的抗拉强度和抗折强度比普通水泥混凝土和砂浆有明显提高。
而抗压强度则没有明显改善,甚至有所降低。
抗拉和抗折强度的提高主要归因于聚合物本身较高的抗拉强度和水泥水化产物与骨料之间的粘结的改善。
以及聚合物减少了水泥砂浆和混凝土微裂纹和大孔隙数量。
聚合物改性砂浆和混凝土的强度性能主要受到聚合物本身的性能、配合比(聚灰比、水灰比、胶砂比等)、养护方法、测试方法等因素影响,且这些因素往往相互光联。
聚合物本身的性能对改性混凝土本身的性能对改性混凝土强度有重要影响。
橡胶胶乳有使抗压强度下降的趋势,而热塑性树脂乳液有使抗压强度提高的倾向。
随着聚灰比的提高,乳液改性砂浆和混凝土的抗拉抗折强度一般先提高,然后再下降。
而养护条件对强度亦有一定影响,对乳液改性水泥砂浆和混凝土,最佳养护条件是早期湿养护,以促进水泥水化到一定程度,而后进行干养护,以利于聚合物成膜。
1.4. 粘结性能水泥砂浆和混凝土加入乳液后可显著提高与其他材料的粘附强度,且粘结强度随聚灰比增大而提高,这种规律与聚合物的品种无关。
添加少量聚合物就可使粘结强度提高30%以上,当聚合物含量达到水泥含量20%时,粘结强度可提高10 倍[4]。
1.5. 韧性在相同流动度条件下,聚合物改性砂浆韧性比普通水泥砂浆要好得多,断裂能是水泥砂浆的二倍以上[5],这主要是因为聚合物本身韧性好且增强了与水泥凝胶及骨料界面粘结,从而能抑制或延缓裂纹发展。
乳液改性砂浆和混凝土的冲击韧性随聚灰比提高而增大,且橡胶胶乳改性优于热塑性树脂乳液改性。
另外,受聚合物玻璃化温度的影响,聚合物改性混凝土的变形能力与测试温度有关,尤其是聚合物掺量较多的改性混凝土,低于玻璃化温度时,表现为脆性增强,温度较高时,聚合物易软化失去支撑能力,降低了应力,所以,在利用聚合物改性混凝土韧性和变形能力的时候,还必须考虑聚合物含量和温度对其应力——应变行为的影响。
1.6. 耐磨性聚合物改性水泥基复合材料与普通水泥砂浆和混凝土相比,耐磨性增加,这主要是由于在磨损表面上有一定数量的有机聚合物存在之故,以及聚合物与水泥水化产物形成互穿网络结构,增大了粘结作用,防止水泥材料颗粒从表面脱落。
乳液改性混凝土的耐磨性与聚合物种类、聚灰比以及磨损条件有关。
一般说,聚灰比提高,改性混凝土耐磨性提高。
当聚合物掺加量为水泥质量的20%时,聚合物改性砂浆的耐磨性提高数十倍[4]。
3.聚合物改性水泥基复合材料存在问题聚合物改性水泥基复合材料具有上述独特的性能,也有如下缺点:(1)由于聚合物掺加量多,因此聚合物改性砂浆和混凝土价格昂贵,聚合物的最佳掺量为固体水泥质量的10%~20%,目前我国聚合物价格一般为每吨数千元至上万元,按每立方混凝土水泥用量为300kg 计,聚合物掺加量以10%计,则需要聚合物30kg,增加成本上百元,使得聚合物改性水泥基复合材料较难大规模应用于普通建筑领域。
(2)抗压强度提高不大,甚至有时还降低,这也限制了聚合物改性砂浆和混凝土在结构工程中的应用。
(3)热稳定性差聚合物是一种对温度敏感的材料,聚合物改性混凝土热稳定性要比普通混凝土差,一般其最高使用温度为50~80℃,而普通水泥混凝土最高使用温度可达250℃[1]。
5. 聚合物改性砂浆和混凝土的应用胶黏剂聚合物改性砂浆作为胶黏剂广泛用于瓷砖、石材等饰面材料以及外墙保温系统的粘结,在光滑的混凝土,加气混凝土、轻质砌块以及保温材料等基层界面的处理抹灰,翻新装修旧墙面、玻璃等光滑表面的粘结处理等方面的应用,可以成倍地提高基层与灰浆的粘结力,有效得解决用普通水泥砂浆抹面时因基层吸水率大或表面光滑所引起的界面粘结不牢以及抹灰层出现空鼓、开裂、剥落现象[6]。
另外,使用聚合物改性砂浆界面处理剂,只需要对基面进行适当清洁处理,而传统工艺必须进行凿毛处理,这样既不会污染环境,而且减轻劳动强度,加快施工速度,确保工程质量。
由于聚合物改性砂浆和混凝土有更好的耐磨性、抗渗性、耐腐蚀性及抗冲击性等特性,已广泛应用于桥面、机场跑道、防腐、表面装饰和保护等工程领域。
4 聚合物改性水泥基复合材料研究进展和发展趋势目前,聚合物改性水泥基复合材料的研究在国内外都很重视。
除了传统测试方法对其进行强度、抗氯离子渗透性、耐磨性、冲击韧性等研究,人们还采用新的实验手段对其微观界面、改性机理进行研究。
如钟世云[7]等采用交流阻抗谱技术跟踪研究了聚合物改性砂浆的硬化过程,测定了不同砂子粒径和不同砂子体积分数的聚合物改性砂浆在不同龄期的表现。
研究发现水泥水化初期,砂子体积分数和粒径大小对聚合物乳液凝聚和干燥成膜有关。
在水泥水化后期,干燥砂子吸收了一部分水分,从而促进了乳液干燥成膜。
Sakai[8]等用扫描电镜观察聚合物改性水泥砂浆不同龄期形貌结构。
他们使用聚合物为EV A,研究发现聚合物除了均匀分布在水泥浆体中,在骨料表面富含更多聚合物,这种聚合物对水泥浆体和骨料的粘结是聚合物改性砂浆抗折强度提高的重要因素。
聚合物改性水泥基复合材料的发展趋势主要表现在以下几个方面:⑴宏观无缺陷的聚合物改性水泥基复合材料,1981 年,美国ICI 公司用聚丙烯酰胺与水泥一起在极低水灰比条件下制成的有机无机复合材料,因其结构十分紧密、孔隙率低、孔径小而被称为无宏观缺陷的水泥材料,简称MDF,其聚合物用量仅为水泥质量5%,而强度则比普通水泥混凝土高了一个数量级。
⑵经济环保的聚合物改性水泥基复合材料,严昊南[4]等已用廉价的乳化石油沥青配置PMC,同样可提高普通混凝土的抗化学腐蚀,抗水性等性能;如采用适宜的(低)聚灰比,并加入少量有机超细活性掺合料,可得高强PMC,Palos[11]把聚合物固体废料用于砂浆改性,将ABS 回收料磨碎成粉末再用马来酸酐对ABS 预处理,掺入到水泥砂浆中也得到了较好的效果。
⑶研究聚合物改性水泥基复合材料合理配方,改善单体和聚合物的物化性能,使PMC 具有与聚合物浸渍混凝土相近的物理力学性能。