--初三第一学期期末考试
【初三上科学】浙江省杭州市上城区2023-2024学年九年级上学期期末考试科学试题(原卷版)
浙江省杭州市上城区2023-2024学年九年级第一学期科学学业水平监测一、选择题(每小题3分,共45分,每小题只有一个选项符合题意)1.奥司他韦(化学式为162824C H N O )对治疗甲流、乙流等病毒性流感有很好的功效,其成分为白色粉末,易溶于水。
有关奥司他韦描述正确的是()A.结构上:分子由四种原子构成B.分类上:属于无机物C.性质上:易溶于水是化学性质D.用途上:能治疗各类疾病2.在一定条件下,下列物质间的转化能一步实现的是()A.()2H O2CuO Cu OH −−−→ B.Zn2AgCl ZnCl −−→C.CO23Fe O Fe −−→ D.2H O23CO H CO −−−→3.《中国居民膳食指南(2023)》宣传标语“均衡营养,点亮健康之路”。
下列有关食物与营养的描述正确的是()A.蛋白质一般占人体细胞干重的50%以下B.无机盐被人体吸收后,能提供大量的能量C.糖类、脂肪和蛋白质都能为人体提供能量D.维生素在人体内都不能合成,必须从食物中获得4.山楂是一种常见的水果,它不仅美味,还含有糖类、蛋白质、多种维生素、矿物质元素及膳食纤维。
结合图片,分析正确的是()A.②是消化吸收山楂的主要场所B.④不能吸收山楂中的膳食纤维C.①分泌的胆汁能初步消化山楂中的糖类D.③分泌的胰液不能促进山楂中蛋白质的分解5.下列估算最接近实际的是()A.汽油机的效率大约是80%B.教室里1个节能灯的功率约为1kWC.把地上的科学书捡到课桌上约做功2JD.一个健康成年人安静时的心率约为120次/分6.在观察“小金鱼尾鳍的血液流动”实验时,同学绘制相关图像,有关实验及图像描述错误..的是()A.血管②是毛细血管B.血管①中流动的血液是静脉血C.用低倍镜观察鱼尾鳍血管内血液流动情况D.湿纱布包裹鱼鳃盖有利于鱼的正常呼吸7.水盐平衡对维持人体的健康有着重要的意义,下列有关说法正确的是()A.调节水分平衡需神经系统参与B.细胞的呼吸作用会造成水分流失C.皮肤不会影响体内的水盐平衡D.饮用海水不会超出人体肾脏的调节能力8.美国医学科研小组采用遗传工程的方法,用一种特殊的“内切酶”,可以全部或部分切割红细胞表面的凝集原,从而实现血型的转化。
2023-2024学年九年级语文第一学期期末考试卷(含答案)
2023-2024学年九年级语文第一学期期末考试卷(含答案)温馨提示:亲爱的同学们,你拿到的这份试卷总分为150分,其中卷面书写占5分,你要在150分钟内完成答题。
相信你一定会有出色的表现,祝你成功。
一、语文积累与运用。
(35分)1.古诗文默写。
(10分)天地无私,草木有情。
看“(1),(2)”的飘洒明丽(温庭筠《商山早行》),“(3),(4)”的孤旷空寂(刘长卿《长沙过贾谊宅》),“(5),(6)”的茂盛青翠(范仲淹《岳阳楼记》);听“(7),(8)”的荒芜沧桑(许浑《咸阳城东楼》),悟“(9),(10)”的新旧更迭之理(刘禹锡《酬乐天扬州初逢席上见赠》)。
2.阅读下面文字,回答后面的问题。
(8分)清晨,薄雾还没有完全散去,太阳便升起来了,横卧在山坡上的小山村,在金色的朝晖里醒来了,雄鸡嘹亮的报晓声,“吱呀”打开大门声,小孩追逐(xī)闹声,大人互相问候声,都依次地响起。
随着袅袅的炊.烟渐渐散去,小山村里飘来饭菜的香味和大人吆喝孩子回家吃饭的声音。
之后,勤劳的老农戴着斗笠,牵着(wēn)顺的老牛,在熹微的晨光中走向广袤.的田野,开始一天的劳作。
他们就是这样,日复一日,年复一年,在希望的田野上,耕耘着美好的未来。
(1)根据文段中的拼音写出相应的词语。
(2分)①xī()闹②wēn()顺(2)给文段中加着重号的词语注音。
(2分)①炊.烟②广袤.(3)文段中的“熹”字,使用《现代汉语词典》(第7版)中部首检字法检索,应先查部,再查画。
(2分)(4)下面是《现代汉语词典》(第7版)中“袅袅”作形容词的三个义项。
文段中“袅袅的炊烟”的“袅袅”意思是(2分)【袅袅】niǎo niǎo形①形容烟气缭绕上升:炊烟~|~腾腾的烟雾。
②形容细长柔软的东西随风摆动:垂杨~。
③形容声音绵长不绝:余音~。
3.阅读《水浒传》中的两个片段,回答问题。
(6分)①宋江听罢,吃了一惊,肚里寻思道:“晁盖是我心腹弟兄。
他如今犯了迷天之罪,我不救他时,捕获将去,性命便休了。
2023-2024厦门期末质检考试卷-初三语文-原卷+答案
2023-2024学年第一学期初中毕业班期末考试语文(试卷满分:150分考试时间:120分钟)考生注意:1.全卷共6页,共21题;2.答案一律写在答题卡上,否则不能得分。
一、积累与运用(25分)1.补写古代诗文名句。
(10分)(1)蒹葭萋萋,。
(《诗经·蒹葭》)(2),天涯若比邻。
(王勃《送杜少府之任蜀州》)(3),直挂云帆济沧海。
(李白《行路难(其一)》)(4)春蚕到死丝方尽,。
(李商隐《无题》)(5)浮光跃金,。
(范仲淹《岳阳楼记》)(6)是故学然后知不足,。
(《礼记·虽有嘉肴》)(7)望月思亲,苏轼抒发美好祝愿:“①,②”(《水调歌头》);思归难归,范仲淹喟叹:“③,④”。
(《渔家傲·秋思》)2.阅读下面的文字,按要求作答。
(9分)“嘉庚瓦、燕尾脊、红砖墙、坡屋顶”,巍①(é)俊秀、端庄典雅的嘉庚建筑是厦门的一张城市名片。
橙红鲜亮的嘉庚瓦是其具有代表性的特色之一。
陈加俊祖祖辈辈都居住在龙海榜山镇,以烧瓦为生。
嘉庚瓦制作工艺,是他的家族几代人努力守护百年。
在创办集美小学前,陈嘉庚到龙海考察,()遇到陈加俊的爷爷陈元盛。
两人相谈甚欢,决定由陈元盛为陈嘉庚()一种美观、坚固、耐用的瓦片。
历经百年风雨,集美学村和厦门大学屋顶的那一②(mǒ)橙红,依旧鲜亮。
每一片嘉庚瓦,都体现了嘉庚先生③(ruì)意革新、精益求精的()。
(1)根据拼音,依次写出①②③处相应的汉字(正楷字或行楷字)。
(3分)(2)依次填入文中括号内的词语,全都恰当的一项是()(3分)A.偶然冶炼精神B.偶然烧制精神C.偶尔冶炼风骨D.偶尔烧制风骨(3)文中画横线的句子有语病,请修改。
(3分)3.名著阅读。
(6分)(1)鲁达一直走在救人的路上,可见其侠肝义胆。
请仿照以下示例,再简要概括一个鲁达救人的情节。
(2分)示例:救刘太公女儿,大闹桃花村。
(2)宋江在“及时雨会神行太保黑旋风斗浪里白跳”一回中评价李逵:“壮哉,真好汉也!”你认同宋江这一评价吗?请结合具体情节简要说明理由。
金山区2023学年第一学期期末考试九年级语文试卷
2023学年第一学期期末学情诊断初三语文试卷(考试时间100分钟,满分150分)考生注意:1.本试卷共23题。
2.请将所有答案做在答卷上,做在试卷上一律不计分。
2024.1一、古诗文(36分)(一)默写(13分)1.夜阑卧听风吹雨,。
(《十一月四日风雨大作》)2.,水村山郭酒旗风。
(《江南春》)3.月下飞天镜,。
(《渡荆门送别》)4.无论是顺境还是逆境,我们都应做到“,”(《岳阳楼记》),保持恒定淡然的心态。
(二)阅读下面的诗文,完成第5—11题(23分)【甲】酬乐天扬州初逢席上见赠巴山楚水凄凉地,二十三年弃置身。
怀旧空吟闻笛赋,到乡翻似烂柯人。
沉舟侧畔千帆过,病树前头万木春。
今日听君歌一曲,暂凭杯酒长精神。
【乙】①环滁皆山也。
其西南诸峰,林壑尤美,望之蔚然而深秀者,琅琊也。
山行六七里,渐闻水声潺潺,而泻出于两峰之间者,酿泉也。
峰回路转,有亭翼然临.于泉上者,醉翁亭也。
作亭者谁?山之僧智仙也。
名之者谁?太守自谓也。
太守与客来饮于此,饮少辄醉,而年又最高,故自号曰醉翁也。
醉翁之意不在酒,在乎山水之间也。
山水之乐,得之心而寓之酒也。
②若夫日出而林霏开,云归而岩穴暝,晦明变化者,山间之朝暮也。
野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。
朝而往,暮而归,四时之景不同,而乐亦无穷也。
(选自《醉翁亭记》)【丙】余为夷陵①令时,得琴一张于河南刘几,盖常琴也。
后做舍人②,又得琴一张,乃越琴也。
后做学士,又得琴一张,则雷琴也。
官愈高,琴愈贵,而意愈不乐。
在夷陵时,青山绿水,日在目前,无复俗累,琴虽不佳,意则萧然③自释。
及.做舍人、学士,日奔走于尘土中,声利扰扰盈前,无复清思,琴虽佳,意则昏杂,何由有乐?乃知在人不在器,若有以自适,无弦可也。
(选自《书琴阮记后》)【注释】①夷陵:地名。
②舍人:官名。
③萧然:悠闲,潇洒。
5.甲诗是刘禹锡写给(人名)的酬答诗,乙、丙两文的作者是欧阳修,其中乙文是作者被贬到时所作。
2023-2024学年北京市朝阳区九年级上学期期末考英语试卷含答案
北京市朝阳区2023~2024学年度第一学期期末检测九年级英语试卷(选用)(考试时间90分钟满分60分)第一部分本部分共33题,共40分。
在每题列出的四个选项中,选出最符合题目要求的一项。
一、单项填空(每题0.5分,共6分)从下面各题所给的A、B、C、D四个选项中,选择可以填入空白处的最佳选项。
1.My mother is very kind.is always ready to help others.A.SheB.HeC.ID.You2.Many tourists go to Tian'anmen Square1st October to celebrate our National Day.A.atB.inC.onD.to3.—Must I return the book before Friday,Miss Li?No,you.You can keep it for three weeks.A.can'tB.needn'tC.mustn'tD.shouldn't4.The new gym is much than the old one.rgergerrgestD.the largest5.do you have the basketball training?—Twice a week.A.How oftenB.How longC.How muchD.How soon6.Running is a good way to keep healthy,many people love it.A.orB.butC.becauseD.so7.Be quiet!Your father an online meeting now.——OK,mum.A.hadB.was havingC.will haveD.is having8.—How was your weekend?Great!I the National Museum with my friends.A.visitB.visitedC.will visitD.have visited9.We football if it doesn't snow tomorrow.A.will playB.playC.playedD.have played10.John Chinese since he came to live in China.He is good at it now.A.learnsB.was learningC.has learnedD.will learn11.These great books by people all over the world today.A.readB.is readC.are readD.were read12.Do you know?I'm looking forward to it.——Next Monday.A.when do we have the Science FestivalB.when we have the Science FestivalC.when will we have the Science FestivalD.when we will have the Science Festival二、完形填空(每题1分,共8分)阅读下面的短文,掌握其大意,然后从短文后各题所给的A、B、C、D四个选项中,选择最佳选项。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)
2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C .某彩票中奖率为,说明买100张彩票,有36张中奖。
D .打开电视,中央一套正在播放新闻联播。
4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。
闵行区2023学年第一学期期末考试九年级语文试卷答案
2023学年第一学期初三年级学业质量调研语文学科参考答案一、文言文(35分)(一)默写与运用(13分)1.(3分)心忧炭贱愿天寒2.(3分)静影沉璧3.(3分)无可奈何花落去4.(4分)佁然不动,俶尔远逝(二)阅读下面诗文,完成第5—9题(22分)5.(1分)宋(1分)欧阳修6.(2分)来到(2分)看7.(3分)D8.(2分)心远(2分)超脱世俗(2分)与民同乐9.(2分)有意(2分)无心(3分)顺其自然/凡事不必刻意二、现代文(35分)(一)阅读下文,完成10—12题(15分)10.(2分)(1)以文润心,提升文化的育人功能;(2分)(2)用好中华优秀传统文化,要坚持融会贯通;(2分)(3)提升文化的育人功能,还应强化内外联动。
11.(3分)B12. 示例:(1分)放在第3段。
(2分)阳明中学举办了“阳明文化周”活动,不仅学习了儒家思想,加强了阳明学子践行儒家思想。
(1分)作为事实论据或者举例论证;(2分)论证了通过以行践知,外化于行的方式,达到了知行合一的观点。
(二)阅读下文,完成第13—17题(20分)13.(1)(2分)“我”在书桌前删改文章、想象文章发表、画插图等(2)(2分)书桌带给“我”温馨、享受、安全感14.(3分)A (2分)B15.(2分)让人心灵舒适的书16.“释放”好,(3分)“释放”这个动词,写出了“美好与忧伤”先是积蓄在内心里,然后通过写作表达出来的过程,(1分)表现了写作带给作者的酣畅与惬意。
(1分)点明了在书桌前写作对“我”的意义。
“流淌”好,(3分)“流淌”这个动词,将“美好与忧伤”有形象化,写出了在写作中情绪表达的舒缓与轻柔,(1分)写出了写作带给作者的美好感受,(1分)点明了在书桌前写作对“我”的意义。
17.(1分)用“迷人”修饰“书桌”,新颖别致;(1分)“迷人的书桌”概括本文的主要内容,指“我”在书桌前读书写作的日子;(2分)书桌之所以“迷人”,是因为了我在书桌前的阅读,能让我思绪纷飞,进行无尽的文学想象,与作者与书中人物相遇,在做梦中去向远方等,我在书桌前的写作,能让我表达内心的感受,书桌见证了我内心最柔软的地方;(2分)用“迷人的书桌”为题,蕴含了阅读与写作对“我”人生的意义与价值,揭示了本文的主旨。
第一学期初三期末考试数学试卷及答案
A第一学期初三期末考试数学试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“答题卡”上 对应题目答案的相应字母处涂黑. 1. 已知:2:3,a b = 那么下列等式中成立的是A .32a b =B .23a b =C .52a b b += D .13a b b -= 2.如图,点A 、B 、C 都在O ⊙上,若∠AOB =72°,则∠ACB 的度数为 A .18°B .30°C .36°D .72°3. 已知⊙O 的半径为5,点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =6,BD =2,AE =9,则EC 的长是A .8B .6C .4D .35. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC =20°, AD DC=,则∠DAC 的度数是 A .30° B .35° C .45° D .70°6. 桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是 A .12 B .13 C .14 D . 167. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则AB DE新抛物线的解析式是A .23(2)1y x =++ B .23(2)1y x =+- C .23(2)1y x =-+ D .23(2)1y x =-- 8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x , BE =y ,则能反映y 与x 之间函数关系的图象大致是A .B .C .D .二、填空题(共4道小题,每题4分,共16分)9. 如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 . 10. 如图,在Rt △ABC 中,∠C =90°,AB = 5,AC = 4,则cos A = .11. 已知抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围是 . 12. 如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A B C ˝˝˝的 位置.若BC =1,AC =3,则顶点A 运动到点A ˝的 位置时,点A 经过的路线的长是 .三、解答题(共4 道小题,共20分)13. (本小题满分5分)计算: tan 60sin30tan 45cos60.︒-︒⨯︒+︒14. (本小题满分5分)已知:如图,在ABC △中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB .A BCA BCDP E(1)求证:△ABD ∽△ACB ;(2)若AD =5,AB = 7,求AC 的长.15. (本小题满分5分)已知二次函数245y x x =-+.(1)将245y x x =-+化成y =a (x -h ) 2 + k 的形式; (2)指出该二次函数图象的对称轴和顶点坐标; (3)当x 取何值时,y 随x 的增大而增大?16.(本小题满分5分)已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦, 且AB ⊥CD ,垂足为E ,联结OC ,OC =5.(1)若CD =8,求BE 的长;(2)若∠AOC =150°, 求扇形OAC 的面积.四、解答题(共2道小题,共12分)17. (本小题满分6分)已知反比例函数ky x=的图象经过点A (1,3). (1)试确定此反比例函数的解析式; (2)当x =2时, 求y 的值;(3)当自变量x 从5增大到8时,函数值y 是怎样变化的?18.(本小题满分6分)已知二次函数2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为(-1,0),与y 轴的交点坐标为(0,-3). (1)求此二次函数的解析式;(2)求此二次函数的图象与x 轴的另一个交点的坐标;(3)根据图象回答:当x 取何值时,y <0?五、解答题(共2道小题,共10分) 19. (本小题满分5分)已知:如图,在△ABC 中,∠A =30°, tan B =34,AC =18,求BC 、AB 的长.20. (本小题满分5分)如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.六、解答题(共2道小题,共8分)21.(本小题满分4分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.22.(本小题满分4分)如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC 是一个格点三角形.(1)请你在第一象限内画出格点△AB 1C 1, 使得△AB 1C 1∽△ABC ,且△AB 1C 1与△ABC的相似比为3:1; (2)写出B 1、C 1两点的坐标.CBA A BCD45°30°PA BDCx七、解答题(本题满分7分)23. 如图,在△ABC 中,∠C =60°,BC =4,AC =P 在BC 边上运动,PD ∥AB ,交AC 于D . 设BP 的长为x ,△APD 的面积为y . (1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少? (3)点P 是否存在这样的位置,使得△ADP 的面积是△ABP 面积的23?若存在,请求出BP 的长;若不存在,请说明理由.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,反比例函数4y x=的图象与抛物线2(94)1y x m x m =+++-交于点A (3, n ).(1)求n 的值及抛物线的解析式;(2) 过点A 作直线BC ,交x 轴于点B ,交反比例函数4y x=(0x >)的图象于点C ,且AC =2AB ,求B 、C 两点的坐标;(3)在(2)的条件下,若点P 是抛物线对称轴上的一点,且点P 到x 轴和直线BC的距离相等,求点P 的坐标.x九、解答题(本题满分8分)25. 在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的对称轴是1x =,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 在此抛物线上,若要使以点P 、M 、A 、B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.一、选择题(共8道小题,共32分)1. A2. C3. C4. D5. B6. A7. B8. D二、填空题(共4道小题,共16分)9. 1:2 10. 4511. m<112. 43π⎛+⎝⎭三、解答题(共4道小题,共20分)13. (本小题满分5分)解:tan60°-sin30°×tan45°+cos 60°11122=⨯+…………………………………………………………………4分=……………………………………………………………………5分14. (本小题满分5分)(1)证明:∵∠A=∠A,∠ABD =∠ACB, ………1分∴△ABD∽△ACB.…………………2分(2)解: ∵△ABD∽△ACB,∴AB ADAC AB=. ……………………………3分∴757AC=. ………………………………4分∴495AC=. ……………………………5分15. (本小题满分5分)解:(1)24445y x x=-+-+………………………………………………1分2(2)1x=-+. ………………………………………………………2分(2)对称轴为2=x,………………………………………………………3分顶点坐标为(2,1). ……………………………………………4分(3)当x>2时,y随x的增大而增大. ………………………………5分16. (本小题满分5分)证明:(1)∵AB为直径,AB⊥CD,∴∠AEC=90°,CE=DE. ……………………1分∵CD=8,∴118422CE CD==⨯=. ………………… 2分∵OC=5,∴OE3=. …………3分∴BE=OB-OE=5-3=2. …………………………………………………4分(2)21501255.36012OACSππ=⨯⨯=扇形………………………………………5分四、解答题(共2道小题,共12分)17. (本小题满分6分)解:(1)∵反比例函数kyx=的图象过点A(1,3),ADB31k ∴=. …………………………………………………………………1分 ∴k =3. ……………………………………………………………… 2分 ∴反比例函数的解析式为3y x=. ……………………………… 3分 (2) 当2x =时,32y =. .……………………………………………4分 (3) 在第一象限内,由于k =3 >0,所以y 随x 的增大而减小.当5x =时,35y =;当8x =时,38y =. 所以当自变量x 从5增大到8时,函数值y 从35减小到38.………6分 18.(本小题满分6分)解: (1)由二次函数2y x bx c =++的图象经过(-1,0)和(0,-3)两点,得 10,3.b c c -+=⎧⎨=-⎩ …………………………………………………… 1分解这个方程组,得2,3.b c =-⎧⎨=-⎩……………………………………… 2分∴抛物线的解析式为22 3.y x x =--…………………………………3分 (2)令0y =,得2230x x --=.解这个方程,得13x =,21x =-.∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0). ………5分(3)当13x -<<时,y <0. ………………………………………… 6分五、解答题(共2道小题,共10分) 19. (本小题满分5分)解:过点C 作CD ⊥AB 于D .∴∠ADC =∠BDC =90°. ∵∠A =30°,AC =18,∴CD = 12 AC = 12 ×18=9. ……………………………………………………1分∴AD ===………………………………2分∵3tan ,4CD B BD ==∴39,4BD= ∴BD =12. ………………………………………………………………………3分D A C∴15.BC === …………………………………4分∴AB =AD +BD =9 3 +12. ………………………………………………5分 ∴BC =15, AB =9 3 +12.20. (本小题满分5分)解:设建筑物AB 的高度为x 米.在Rt △ABD 中,∠ADB =45°, ∴AB =DB =x .∴BC =DB +CD = x +60.在Rt △ABC 中,∠ACB =30°,∴tan ∠ACB =ABCB……………………………1分 ∴tan 3060x x ︒=+.………………………… 2分60x x =+. ……………………………3分 ∴x =30+30 3 . ……………………………4分 ∴建筑物AB 的高度为(30+30 3 )米. …5分六、解答题(共2道小题,共8分) 21. (本小题满分4分)解:正确画出树状图或列表 ………………………………………………………3分P (数字之和为5)= 1.3………………………………………………………4分22. (本小题满分4分)解:(1)正确画出△AB 1C 1………………………………………………………… 2分(2)点B 1(4,1), ………………………………………………………… 3分点C 1(7,7). ……………………………………………………… 4分七、解答题(本题满分7分) 23.解:(1)∵PD ∥AB ,∴.AD BPAC BC=…………………………1分 ∵BC =4,AC=BP 的长为x ,.4x = ∴.2AD x =……………………… 2分 (2)过点P 作PE ⊥AC 于E.∵sin ,PEACB PC∠=∠C =60°, ABCD45°30°ED B AP∴)sin 604.2PE PC x =⨯=-……………………………………3分∴21133).2282y AD PE x x x x =⋅⋅=-=-+ (4)分∴当2x =时,y 的值最大,最大值是3.2……………………………5分(3)点P 存在这样的位置. ∵△ADP 与△ABP 等高不等底,∴ΔΔ.ADP ABP S DPS AB= ∵△ADP 的面积是△ABP 面积的23,∴ΔΔ2.3ADP ABP SS =∴2.3DP AB = ∵PD ∥AB ,∴△CDP ∽△CAB . ∴.DP CPAB CB= ∴2.3CP CB = ∴42.43x -= ∴4.3x =∴4.3BP = …………………………………………………………… 7分八、解答题(本题满分7分)24. 解:(1)∵点A (3, n )在反比例函数4y x=的图象上,43n ∴=.……………………………………………………………………1分 ∴A (3,43).∵点A (3,43)在抛物线2(94)1y x m x m =+++-上,49(94)3 1.3m m ∴=++⨯+- ∴23m =- .∴抛物线的解析式为2523y x x =--. …………………………2分(2)分别过点A 、C 作x 轴的垂线,垂足分别为点D 、E ,∴AD ∥CE .∴△ABD ∽△CBE .∴AD ABCE CB=.∵AC=2AB,∴13 ABCB=.由题意,得AD=4 3 ,∴41 33 CE=.∴CE=4.……………………3分即点C的纵坐标为4.当y=4时,x=1,∴C(1,4) …………………4分∵1,3BD ABBE CB==DE=2,∴1.23 BDBD=+∴BD=1.∴B(4,0). ……………………………………………………………5分(3)∵抛物线25 23y x x=--的对称轴是1x=,∴P在直线CE 上.过点P作PF⊥BC于F.由题意,得PF=PE.∵∠PCF =∠BCE, ∠CFP =∠CEB =90°,∴△PCF∽△BCE.∴PF PCBE BC=.由题意,得BE=3,BC=5.①当点P在第一象限内时,设P(1,a) (a>0).则有4.35a a-=解得3.2a=∴点P的坐标为31,2⎛⎫⎪⎝⎭. ……………………………………………6分②当点P在第四象限内时,设P(1,a) (a<0)则有4.35a a--=解得 6.a=-∴点P的坐标为()1,6-.……………………………………………7分∴点P的坐标为31,2⎛⎫⎪⎝⎭或()1,6-.九、解答题(本题满分8分)25.解:(1)由题意,得1,2425,25512.ba abc a b c ⎧-=⎪⎪-+=-⎨⎪++=-⎪⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩…………………………………… 1分∴ 抛物线的解析式为y =-x 2+2x +3. ……………………………2分 (2)令0y =,得2230x x -++=.解这个方程,得1213x x =-=,. (10)(30)A B ∴-,,,. 令0x =,得3y =.(03)C ∴,.4345.AB OB OC OBC ∴===∠=,,BC ∴===过点D 作DE x ⊥轴于点E . ∵45OBC BE DE ∠=∴=,.要使BOD BAC △∽△或BDO BAC △∽△, 已有ABC OBD ∠=∠,则只需BD BO BC BA =或BO BD BC BA=成立. 若BD BOBC BA=成立,则有34BO BC BD BA ⨯⨯==在Rt BDE △22222BE DE BE BD +===∴94BE DE ==.93344OE OB BE ∴=-=-=∴点D 的坐标为3944⎛⎫⎪⎝⎭,. ……………………………………………4分若BO BDBC BA =成立,则有BO BA BD BC ⨯=== 在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===.∴2BE DE ==.321OE OB BE ∴=-=-=.∴点D 的坐标为(12),. ……………………………………………5分 ∴点D 的坐标为3944⎛⎫⎪⎝⎭,或(12),. (3)点M 的坐标为()2,3或(45),-或(421)-,-. ……………………8分。
2024年北京石景山初三上学期期末数学试题和答案
石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
第一学期期末考试试卷初三数学附答案
第一学期期末考试试卷初三数学学校 姓名 班级 考号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题目要求的. 1.如果532x =,那么x 的值是 A .152 B .215 C .103 D . 3102.如图,在Rt △ABC 中, ∠C =90︒,AB =5,AC =3,则sin B 的值是A .35 B .45 C .53 D .543.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A . 12B .13C .19D .494.已知点(1,)A m 与点B (3,)n 都在反比例函数xy 3=(0)x >的图象上,则m 与n 的关系是A .m n >B .m n <C .m n =D .不能确定 5.将抛物线23y x =向右平移2个单位后得到新的抛物线,则新抛物线的解析式是A .23(2)y x =+ B .23(2)y x =- C .232y x =- D .232y x =+6.如图,在△ABC 中,DE ∥BC ,AD =2DB ,△ABC 的面积为36,则△ADE 的面积为A .81B .54C .24D .167.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①因为a >0,所以函数y 有最大值; ②该函数图象关于直线1x =-对称; ③当2x =-时,函数y 的值大于0;④当31x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是A .1B .2C .3D .48.如图,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿线段OC CD --线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是二、填空题(本题共16分,每小题4分)9.已知tan α=α是 ︒.10.如图,将⊙O 沿着弦AB 翻折,劣弧恰好经过圆心O ,若⊙O 的半径为4,则弦AB 的长度等于__ .11.如图,⊙O 的半径为2,1C 是函数212y x =的图象,2C 是函数212y x =-的图象,3C 是函数y 的图象,则阴影部分的面积是 .12.如图,已知Rt △ABC 中,AC =6,BC = 8,过直角顶点C 作1CA ⊥AB ,垂足为1A ,再过1A 作11A C ⊥BC ,垂足为1C ,过1C 作12C A ⊥AB ,垂足为2A ,再过2A 作22A C ⊥BC ,垂足为2C ,…,这样一直做下去,得到了一组线段1CA ,11A C ,12C A ,…,则1CA = ,1n n n nC AA C +(其中n 为正整数)= .三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-.14.已知:如图,∠1=∠2,AB •AC=AD •AE .求证:∠C =∠E .15.用配方法将二次函数223y x x =--化为k h x a y +-=2)(的形式(其中k h , 为常数),写出这个二次函数图象的顶点坐标 和对称轴方程,并在直角坐标系中画出他的示意图.16.如图,⊙O 是△ABC 的外接圆,45A ∠=,BD 为⊙O 的直径, 且2BD =,连结CD .求BC 的长.17.已知:如图,在△ABC 中,DE ∥BC ,EF ∥AB .试判断AD BFDB FC=成立吗?并说明理由.18.如图,在△ABC中,∠B=90°,5cos7A=,D是AB上的一点,连结DC,若∠BDC=60°,BD=.试求AC的长.四、解答题(本题共20分,每小题5分)19.在学校秋季田径运动会4×100米接力比赛时,用抽签的方法安排跑道,初三年级(1)、(2)、(3)三个班恰好分在一组.(1)请利用树状图列举出这三个班排在第一、第二道可能出现的所有结果;(2)求(1)、(2)班恰好依次..排在第一、第二道的概率.20.如图,小磊周末到公园放风筝,风筝飞到C处时的线长为20米,此时小磊正好站在A处,牵引底端B离地面1.5米.假设测得60CBD∠=,求此时风筝离地面的大约高度(结果精确到1米,1.414≈1.732≈).21.已知:如图,⊙O的直径AB与弦CD相交于E,BC BD=,BF⊥AB与弦AD的延长线相交于点F.(1)求证:CD∥BF;(2)连结BC ,若6AD =,tan C =,求⊙O 的半径 及弦CD 的长.22.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23. 已知二次函数22(21)y x m x m m =--+-(m 是常数,且0m ≠).(1)证明:不论m 取何值时,该二次函数图象总与x 轴有两个交点;(2)设与x 轴两个交点的横坐标分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且121x x y -=,结合函数的图象回答:当自变量m 的取值满足什么条件时,y ≤2.24. 已知:如图,AB 是⊙O 的直径,点E 是OA 上任意一点,过点E 作弦CD AB ⊥,点F 是BC上任一点,连结AF 交CE 于H ,连结AC 、CF 、BD 、OD .(1)求证:ACH AFC △∽△;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并证明你的猜想;(3)试探究:当点E 位于何处时,△AEC 的面积与△BOD 的面积之比为1:2?并加以证明.25.在平面直角坐标系xoy 中,以点A (3,0)为圆心,5为半径的圆与x 轴相交于点B 、C (点B在点C 的左边),与y 轴相交于点D 、M (点D 在点M 的下方). (1)求以直线x =3为对称轴,且经过D 、C 两点的抛物线的解析式; (2)若E 为直线x =3上的任一点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平 行四边形?若存在,求出点F 的坐标;若不存在,说明理由.初三数学试卷参考答案及评分标准阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分标准参考给分.9.60; 10.; 11.53π; 12.244,55. 三、解答题(本题共30分,每小题5分)13.计算:tan 452cos30sin 60+-.解:tan 452cos30sin 60+-=1222+⨯-3分=1--------------------------------------------------------------------------- 4分=1.--------------------------------------------------------------- 5分 14.证明:在△ABE 和△ADC 中,∵ AB •AC=AD •AE∴ AB AD =AEAC ----------------------------------------------------------------2分又∵ ∠1=∠2, -------------------------------------------------------------------3分 ∴ △ABE ∽△ADC (两对应边成比例,夹角相等的两三角形相似)--4分 ∴ ∠C =∠E . ---------------------------------------------------------------------- 5分(说明:不填写理由扣1分.) 15.解:223y x x =--2(1)4x =--.------------------------------------------------------------------- 2分 顶点坐标为(1,4-). --------------------------------------------------------------- 3分对称轴方程为 1x =. --------------------------------------------------------------- 4分 图象(略).------------------------------------------------------------------------------ 5分16.解:在⊙O 中,∵45A ∠=, 45D ∠=.----------------------------------------------1分 ∵BD 为⊙O 的直径, 90BCD ∠=. ---------------------------------------------2分 ∴ △BCD 是等腰直角三角形.∴sin 45BC BD =⋅.---------------------------4分∵2BD =, ∴22BC =⨯=.---------------------------------------------5分 17.答:AD BFDB FC=成立.----------------------------------------------------------------------- 2分 理由:在△ABC 中,∵ DE ∥BC ,∴ EC AE DB AD =.--------------------------------------------------------3分∵ EF ∥AB ,∴EC AE FC BF =.--------------------------------------------------------- 4分∴ FCBF DB AD =.------------------------------------------------------------------------- 5分18.解:在△ABC 中,∠B =90°,5cos 7A =,∴57AB AC =. 设 5,7AB x AC x ==.-------------------------------------------------------------- 1分由勾股定理 得BC =.----------------------------------------------------------2分在Rt △DBC 中,∵∠BDC =60°,BD =∴tan 6042BC BD =⋅==.------------------------------------------3分∴ = .解得 2x =.-------------------------------------------------------4分 ∴ 714AC x ==.--------------------------------------------------------------------------5分四、解答题(本题共20分,每小题5分) 19.解:(1)树状图列举所有可能出现的结果:(2) ∵ 所有可能出现的结果有6个, 且每个结果发生的可能性相等,其中(1)、(2)班恰好依次..排在第一、第二道的结果只有1个, ∴ (12P 、班恰好依次排在第一、第二道)=61.------------------------------------------ 5分20.解:依题意得,90CDB BAE ABD AED ∠=∠=∠=∠=︒,∴四边形ABDE 是矩形 ,∴ 1.5.DE AB == --------------------------------- 1分 在Rt BDC △中,sin ,CDCBD BC∠=---------------------------------------------- 2分 又∵ 20BC = ,60CBD ∠=,∴ sin 6020CD BC =⋅︒== . ----------------------------------------- 3分∴ 1.517.3 1.519CE CD DE =+=≈+≈ . ------------------------------ 4分 答:此时风筝离地面的高度大约19米 . -------------------------------------------------- 5分 21.(1)证明:∵直径AB 平分CD ,∴AB ⊥CD . --------------------------------------------1分∵BF ⊥AB ,∴CD ∥BF . --------------------------------------------2分 (2)连结BD .∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,tan BDA AD=.在⊙O 中,∵ A C ∠=∠. ∴tan tan BD A C AD ===.又6AD =,∴ 6BD AD === --------------------------- 3分 在Rt △ADB 中, 由勾股定理 得8AB =.∴⊙O 的半径为 142AB =. ----------------------------------------------------- 4分 在Rt △ADB 中,∵DE AB ⊥,∴AB DE AD BD ⋅=⋅.∴68DE ⨯==.∵直径AB 平分CD ,∴2CD DE ==-------------------------------------- 5分22. 解:解法一:如图所示建立平面直角坐标系. --------------------------- 1分此时,抛物线与x 轴的交点为C (100,0)-,D (100,0).设这条抛物线的解析式为(100)(100)y a x x =-+.---------------------- 2分∵ 抛物线经过点B (50,150), 可得 150(50100)(50100)a =-+ . 解得 501-=a . ------------------------- 3分 ∴ )100)(100(501+--=x x y . 即 抛物线的解析式为 2120050y x =-+.--------------------------- 4分顶点坐标是(0,200)∴ 拱门的最大高度为200米. -------------------------------------- 5分解法二:如图所示建立平面直角坐标系. -------------------------------- 1分设这条抛物线的解析式为2ax y =.--------------------------------- 2分 设拱门的最大高度为h 米,则抛物线经过点).,100(),150,50(h D h B -+-可得 22100,15050.h a h a ⎧-=⎪⎨-+=⎪⎩ 解得,.200501⎪⎩⎪⎨⎧=-=h a .----------------------- 4分∴ 拱门的最大高度为200米.-------------------------------------- 5分五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23.解:(1)由题意有22[(21)]4()1m m m ∆=----=>0.∴ 不论m 取何值时,该二次函数图象总与x 轴有两个交点.----------2分(2)令0y =,解关于x 的一元二次方程22(21)0x m x m m --+-=,得 x m =或1x m =-.∵ 1x >2x ,∴1x m =,21x m =-.∴mm m x x y 111112=--=-=. 画出my 1=与2y =的图象.如图, 由图象可得,当m ≥21或m <0时,y ≤2.----------------------------------7分24.(1)证明:∵ 弦CD ⊥直径AB 于点E , ∴ AD AC =.∴ ∠ACD =∠AFC .又 ∵ ∠CAH =∠FAC ,∴ △ACH ∽△AFC (两角对应相等的两个三角形相似).--------------1分(2)猜想:AH ·AF =AE ·AB .证明:连结FB .∵ AB 为直径,∴ ∠AFB =90°.又∵ AB ⊥CD 于点E ,∴ ∠AEH =90°.∴AEH AFB ∠=∠. ∵ ∠EAH =∠FAB ,∴ △AHE ∽△ABF .∴ AFAB AE AH =. ∴ AH ·AF =AE ·AB .------------------------------------------------- -----3分(3)答:当点E 位于OA 的中点(或12AE OA =)时,△AEC 的面积与△BOD 的面积之比为1:2 .证明:设 △AEC 的面积为1S ,△BOD 的面积为2S .∵ 弦CD ⊥直径AB 于点E , ∴ 1S =CE AE ⋅21,2S =DE BO ⋅21. ∵E 位于OA 的中点,∴2OA AE =.又AB 是⊙O 的直径,∴ 2OB OA AE ==. ∴12121222AE CE S CE S DEAE DE ⨯⋅==⨯⋅. 又 由垂径定理知 CE =ED ,∴ 1212S S =. ∴ 当点E 位于OA 的中点时,△AEC 的面积与△BOD 的面积之比为1:2 . -------------------------------------------------7分25. 解:(1)如图,∵ 圆以点A (3,0)为圆心,5为半径,∴ 根据圆的对称性可知 B (-2,0),C (8,0).连结AD .在Rt △AOD 中,∠AOD =90°,OA =3,AD =5,∴ OD =4.∴ 点D 的坐标为(0,-4).设抛物线的解析式为24y ax bx =+-,又 ∵抛物线经过点C (8,0),且对称轴为3x =,∴ 3264840.b a a b ⎧-=⎪⎨⎪+-=⎩, 解得 1,43.2a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴所求的抛物线的解析式为 423412--=x x y .---------------------------------2分 (2)存在符合条件的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.分两种情况.Ⅰ:当BC 为平行四边形的一边时,必有 EF ∥BC ,且EF =BC =10.∴ 由抛物线的对称性可知,存在平行四边形1BCEF 和平行四边形2CBEF .如(图1).∵E 点在抛物线的对称轴上,∴设点E 为(3,e ),且e >0.则F 1(-7,t ),F 2(13,t ).将点F 1、F 2分别代入抛物线的解析式,解得 754t =. ∴F 点的坐标为)475,7(1-F 或)475,13(2F . Ⅱ:当BC 为平行四边形的对角线时,必有AE =AF ,如(图2).∵ 点F 在抛物线上,∴ 点F 必为抛物线的顶点. 由22131254(3)4244y x x x =--=--, 知抛物线的顶点坐标是(3,254-). ∴此时F 点的坐标为)425,3(3-F . ∴ 在抛物线上存在点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.满足条件的点F 的坐标分别为:)475,7(1-F ,)475,13(2F ,)425,3(3-F . ---------------------------------------------------- 8分。
大兴区2023~2024学年度第一学期期末检测初三数学试题及答案
初三数学试卷第1页(共6页)大兴区2023~2024学年度第一学期期末检测初三数学2024.01考生须知1.本试卷共6页,共三道大题,28道小题,满分100分,考试时间120分钟㊂2.在答题卡上准确填写学校名称㊁准考证号,并将条形码贴在指定区域㊂3.题目答案一律填涂或书写在答题卡上,在试卷上作答无效㊂4.在答题卡上,选择题㊁作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答㊂5.考试结束,请将答题卡交回㊂一㊁选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.2023航空航天大兴论坛于11月15日至17日在北京大兴国际机场临空经济区举办,共设置了数字民航 电动航空 商业航天 通航维修 四场专题论坛.若某位航天科研工作者随机选择一个专题论坛参与活动,则他选中 电动航空 的概率是A.1B.12C.14D.182.下列图形中,是中心对称图形而不是轴对称图形的为㊀㊀A.㊀ B.㊀C.㊀D.3.关于一元二次方程x 2-3x -1=0的根的情况,下列说法正确的是A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断4.抛物线y =(x -2)2+1的对称轴是A.x =-2B.x =2C.x =-1D.x =15.在平面直角坐标系xOy 中,将抛物线y =3x 2先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是A.y =3(x +4)2-1B.y =3(x +4)2+1C.y =3(x -4)2-1D.y =3(x -4)2+1初三数学试卷第2页(共6页)6.若圆的半径为1,则60ʎ的圆心角所对的弧长为A.π2B.πC.π6D.π37.如图,菱形OABC 的顶点A ,B ,C 在☉O 上,过点B 作☉O 的切线交OA 的延长线于点D.若☉O 的半径为2,则BD 的长为A.2 B.22C.23D.48.如图,点A ,B 在☉O 上,且点A ,O ,B 不在同一条直线上,点P 是☉O 上一个动点(点P 不与点A ,B 重合),在点P 运动的过程中,有如下四个结论:①恰好存在一点P ,使得øPAB =90ʎ;②若直线OP 垂直于AB ,则øOAP =øOBP ;③øAPB 的大小始终不变.上述结论中,所有∙∙正确结论的序号是A.①②B.①③C.②③D.①②③二㊁填空题(共16分,每题2分)9.若(a -3)x 2-3x -4=0是关于x 的一元二次方程,则a 的取值范围是.10.若关于x 的一元二次方程x 2-3x +m =0有一个根为1,则m 的值为.11.在平面直角坐标系xOy 中,若点(2,y 1),(4,y 2)在抛物线y =2(x -3)2-4上,则y 1y 2(填 > , = 或 < ).12.如图,四边形ABCD 内接于☉O ,点E 在AD 的延长线上,若øCDE =80ʎ,则øABC 的度数是ʎ.13.如图,әABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,若AD =2,BC =6,则әABC 的周长为.初三数学试卷第3页(共6页)14.写出一个过点(0,1)且当自变量x >0时,函数值y 随x 的增大而增大的二次函数的解析式.15.杭州亚运会的吉祥物 琮琮 宸宸 莲莲 组合名为 江南忆 ,出自唐朝诗人白居易的名句 江南忆,最忆是杭州 ,它融合了杭州的历史人文㊁自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.经统计,某商店吉祥物 江南忆 6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物 江南忆 6月份到8月份销售量的月平均增长率为x ,则可列方程为.16.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a(2,1).给出下面三个结论:①2a -b =0;②a +b +c >1;③关于x 的一元二次方程ax 2+bx +c -m =0(m <1)有两个异号实数根.上述结论中,所有正确结论的序号是.三㊁解答题(共68分,第17-21题每题5分,第22题6分,第23题5分,第24-26题每题6分,第27-28题,每题7分)解答应写出文字说明㊁演算步骤或证明的过程.17.解方程:x 2+8x =9.18.已知a 是方程x 2-2x -1=0的一个根,求代数式(a -1)2+a (a -2)的值.19.已知关于x 的一元二次方程x 2-x +2m -2=0有两个实数根.(1)求m 的取值范围;(2)当m 取最大整数值时,求方程的根.20.已知抛物线y =x 2+bx +c 经过点(1,0),(0,-3).(1)求抛物线的解析式;(2)求该抛物线的顶点坐标.21.如图,在әABC 中,øC =45ʎ,AB =2,☉O 为әABC 的外接圆,求☉O 的半径.22.2023年9月23日至10月8日,第19届亚运会在杭州举行.中国队以201枚金牌㊁111枚银牌㊁71枚铜牌的优异成绩,位居奖牌榜首.为弘扬体育运动精神,某校对八㊁九年级学生进行了杭州亚运会知识竞赛(测试满分为100分,得分x均为不小于80的整数),并从其中分别随机抽取了20名学生的测试成绩,整理㊁描述和分析如下(成绩得分用x表示,共分成四组:A.80ɤx<85;B.85ɤx<90;C.90ɤx<95;D.95ɤxɤ100).a.八年级20名学生的成绩是:80,82,83,83,85,85,86,87,89,90,90,91,94,95,95,95,95,96,99,100.b.九年级20名学生的成绩在C组中的数据是:90,90,91,92,92,93,93,94.c.八㊁九年级抽取的学生竞赛成绩的平均数㊁中位数㊁众数如下:年级平均数中位数众数八年级9090m九年级90n100d.九年级抽取的学生竞赛成绩扇形统计图如下:根据以上信息,解答下列问题:(1)写出表中m,n的值及九年级抽取的学生竞赛成绩在D组的人数;(2)若该校九年级共400人参加了此次知识竞赛活动,估计九年级竞赛成绩不低于90分的人数是;(3)为了进一步弘扬体育运动精神,学校决定组织学生开展亚运精神宣讲活动,准备从九年级抽取的竞赛成绩在D组的学生中,随机选取一名担任宣讲员,另一名担任主持人.若甲㊁乙是抽取的成绩在D组的两名学生,用画树状图或列表的方法,求甲㊁乙两人同时被选上的概率.初三数学试卷第4页(共6页)初三数学试卷第5页(共6页)23.在平面直角坐标系xOy 中,函数y =kx +b (k ʂ0)的图象经过点A (-1,2)和B (1,4).(1)求该函数的解析式;(2)当x >2时,对于x 的每一个值,函数y =12x +n 的值小于函数y =kx +b (k ʂ0)的值且大于5,直接写出n 的值.24.如图,AB 是☉O 的直径,点C 在☉O 上,连接AC ,BC ,过点O 作OD ʅBC 于点D ,过点C作直线CE 交OD 延长线于点E ,使得øE =øB.(1)求证:CE 为☉O 的切线;(2)若DE =6,CE =35,求OD 的长.25.如图1,某公园一个圆形喷水池,在喷水池中心O 处竖直安装一根高度为1.25m 的水管OA ,A 处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O 的最远水平距离OB 为2.5m,水流竖直高度的最高处位置C 距离喷水池中心O 的水平距离OD 为1m.(1)求喷出水流的竖直高度y (m)与距离水池中心O 的水平距离x (m)之间的关系式,并求水流最大竖直高度CD 的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若水管OA 的高度增加0.64m 时,则水流离喷水池中心O 的最远水平距离为m.初三数学试卷第6页(共6页)26.在平面直角坐标系xOy 中,点(2,m )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t.(1)当m =c 时,求t 的值;(2)点(-1,y 1),(3,y 2)在抛物线上,若c <m ,请比较y 1,y 2的大小,并说明理由.27.在әABC 中,øBAC =90ʎ,AB =AC ,点P 为BA 的延长线上一点,线段PC 顺时针旋转90ʎ得到线段PD ,连接BD.(1)依题意补全图形;(2)求证:øACP =øDPB ;(3)用等式表示线段BC ,BP ,BD 之间的数量关系,并证明.28.如图,在平面直角坐标系xOy 中,已知点M (0,t ),N (0,t +2),对于坐标平面内的一点P ,给出如下定义:若øMPN =30ʎ,则称点P 为线段MN 的 亲近点 .(1)当t =0时,①在点A (23,0),B (3,2),C (-23,2),D (-1,-3)中,线段MN 的 亲近点 的是;②点P 在直线y =1上,若点P 为线段MN 的 亲近点,则点P 的坐标为;(2)若直线y =-3x -3上总存在线段MN 的 亲近点 ,则t 的取值范围是.大兴区2023~2024学年度第一学期期末检测初三数学参考答案及评分标准一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)三、解答题(共68分,第17-21题每题5分,第22题6分,第23题5分,第24-26题每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明的过程.17. 解: x 2+8x =9.x 2+8x +16=9+16. ··································································· 1分(x +4)2=25. ………………………………………………………………2分x +4=±5. ············································································· 3分 解得x 1=1,x 2=-9. ································································ 5分18. 解: 2(1)(2)a a a −+−=22212a a a a −++− ····························································· 2分 =2241a a −+ ········································································ 3分 ∵a 是方程2210x x −−=的一个根,∴2210a a −−=,∴221a a −=. ······································································· 4分∴原式2221a a =+(-)211=⨯+=3 ·············································································· 5分19. 解:(1)∵方程有两个实数根,0∴∆≥ ················································································· 1分∵Δ=(-1) 2-4×1×(2m -2)188m =−+ 98m =− 980m ∴−≥98m ∴≤ ················································································ 2分(2)98m ≤,m 为最大整数,m ∴=1. ··············································································· 3分∴x 2﹣x =0.解得:x 1=0,x 2=1. ································································ 5分 20.解:(1)∵抛物线2+y x bx c =+经过点(1,0),(0,-3),∴1+03b c c +=⎧⎨=−⎩.··········································································2分解得2-3b c =⎧⎨=⎩.∴22-3y x x =+. ·····································································3分 (2)y =22-3x x +.()21-4x =+∴顶点坐标为(-1,-4). ··························································· 5分21. 解:连接OA ,OB ,············································1分∵∠C =45°,∴∠AOB =2∠C =90°. ··········································2分 在Rt △AOB 中,∵OA 2+OB 2=AB 2, AB =2,OA =OB ,∴2 OA 2=4. ························································4分 ∴ OA 2=2.∴OA (舍负).∴⊙O . ···········································5分 22.解:(1)m =95,n =90.5,九年级抽取的学生竞赛成绩在D 组的人数为4人; ···· 3分 (2)240. ····················································································· 4分 (3)设D 组的另外两名同学为丙,丁.宣讲员 甲 乙 丙 丁主持人 乙 丙 丁 甲 丙 丁 甲 乙 丁 甲 乙 丙由树状图可以看出,所有可能出现的结果共12种,这些结果出现的可能性相等. 甲和乙同时被选上的结果有2种, 所以P (甲乙同时被选上)=21126=. ································································ 6分23. 解:(1)把A (-1,2)和B (1,4)代入y=kx+b(k ≠0)中,24k b ,k b .−+=⎧⎨+=⎩………………………………………………………………1分解得:13k ,b .=⎧⎨=⎩………………………………………………………………2分 所以该函数的解析式为y=x +3. ················································· 3分 (2)n=4 ······················································································· 5分24.(1)证明:连接OC .∵OB=OC , ∴∠B =∠OCB. ∵∠E =∠B ,∴∠E =∠OCB . ·······························································1分 ∵OD ⊥BC , ∴∠E +∠DCE =90°. ∴∠OCB +∠DCE =90°. ∴∠OCE =90°. 即OC ⊥CE.∴CE 是⊙O 的切线.···························································2分 (2)∵OD ⊥BC ,∴∠CDE =90°.在Rt △CDE 中,DE =6 , CE=∴CD3.= …………………………..........................……… 3分 ∵OE ⊥BC , ∴BC =2CD =6.∴DE=BC . ………………………………………………………………4分 ∵AB 是直径, ∴∠ACB =90°. ∴∠CDE=∠ACB. 在△ABC 与△CED 中,B E,BC DE ACB CDE.∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△CED. ……………………………………….………5分 ∴AC=CD=3.∵O 是AB 的中点,D 是BC 的中点,∴1322OD AC ==. ···································································· 6分25.解:(1)由题意,A 点坐标为(0,1.25),B 点坐标为(2.5,0). …………………………1分设抛物线的解析式为y =a (x -1)2+k (a ≠0) …………….………………….… 2分 ∵抛物线经过点A ,点B .∴ ()21250251.a k,a .k.=+⎧⎪⎨=−+⎪⎩解得:1225a ,k ..=−⎧⎨=⎩∴y =-(x -1)2+2.25(0≤x ≤2.5). ……………………………….…………… 3分 ∴x =1时,y =2.25.∴水流喷出的最大高度为2.25 m. ………………………………..……… 4分(2)2.7 ························································································ 6分 26. 解:(1)∵点(2,m )在20y ax bx c(a )=++>上,∴m =4a +2b +c .又∵m =c ,∴4a +2b =0.∴b =-2a . ∴2122b a t a a−=−=−=. …………..………………………………………2分 (2)∵点(2,m )在抛物线2(0)y ax bx c a 上, ∴m =4a +2b +c.∵c < m ,∴m - c>0.∴m -c =4a +2b >0.∴2a +b >0. ············································································ 3分 ∵点(-1,y 1),(3,y 2)在抛物线2(0)yax bx c a 上,∴y 1=a -b+c ,y 2=9a+3b+c,∴y 2-y 1=(9a+3b+c )-( a -b+c )=8a +4b =4(2a+b ). ································ 4分 ∵2a +b >0,∴4(2a +b )>0,∴y 2-y 1>0.∴y 2>y 1. ………………………………………………………………….6分27. (1)解:补全图形如图所示; (1)分(2)证明:∵∠BAC =90°, ∴∠ACP +∠APC =90°.∵以P 为中心,将线段PC 顺时针旋转90°得到线段PD ,∴∠DPC =90°.∴∠APC +∠BPD =90°.∴∠ACP =∠DPB . ···························································· 3分 (3)线段BC ,BP ,BD =BD +BC. ………………4分证明:过点P 作PE ⊥PB 交BC 的延长线于点E .∵PE ⊥PB ,∴∠BPE =90°.∵∠DPC =90°,∴∠1+∠BPC =∠2+∠BPC =90°.∴∠1=∠2. ······································································· 5分 ∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°.∵∠BPE =90°,∴∠PBE =∠PEB =45°.∴PB =PE . ········································································ 6分 在△PBD 与△PEC 中,12.PB PE PD PC =⎧⎪∠=∠⎨⎪=⎩,, ∴△PBD ≌△PEC .∴BD =EC .∵BE ==.BP =BD +BC .····························································· 7分28. 解:(1)① A ,C ; ········································································ 2分②()21,,)21,+; ······················································ 5分 (2)-11 ≤ t ≤ 3. ············································································ 7分。
2023-2024学年第一学期九年级期末考试语文试题参考答案及评分标准
2023-2024学年第一学期九年级期末考试语文试题参考答案及评分标准一㊁积累与运用(23分)1.(8分)①飞鸟相与还 ②乱花渐欲迷人眼 ③佳木秀而繁阴 ④窈窕淑女⑤君子好逑 ⑥但愿人长久 ⑦千里共婵娟 ⑧后天下之乐而乐ʌ评分说明ɔ每空1分㊂错字㊁漏字㊁添字,该空不给分㊂2.(9分)(1)(3分)①溯 ②蕴 ③q ián(2)(3分)B(3)(3分)C3.(6分)示例一:林冲:他原是八十万禁军枪棒教头,因其妻子被高衙内看上而多次遭到陷害,他选择妥协和退让,直到在草料场再次遭到陆谦㊁富安等三人放火暗算后终于爆发,提枪戳死他们,走上了造反的道路㊂感悟:人不能始终抱有幻想,更不能逆来顺受㊁委曲求全,要敢于与黑恶势力作斗争㊂示例二:保尔㊃柯察金:他从小在社会最底层饱受折磨和侮辱,十月革命爆发后走上革命道路,在一次战斗中头部受到重伤,后因高强度的工作和久病缠身,失去工作能力且双目失明㊁全身瘫痪;之后开始从事文学创作,以笔作为武器,开始新的生活㊂感悟:无论处于怎样的人生逆境,我们都应该积极面对,英勇顽强㊁不畏艰难㊁自强不息,敢于与命运抗争㊂示例三:徐海东:他出身贫寒,入学后因在 贫儿对富儿 争斗中奋起反抗,遭到地主子弟和先生痛打,从而脱离学校;长大后,参与反对克扣工资的工人罢工,之后参加连队,开始革命生涯㊂感悟:面对欺凌㊁打压,要保持正直,坚定地追求真理,敢于反抗㊂ʌ评分说明ɔ按等级评分,不按点评分㊂四等0分,无情节且感悟错误或没有感悟;三等1-2分,情节不支持,感悟不准确;二等3-5分,有情节支持,感悟基本正确,;一等6分,情节充分恰切,感悟深入或全面㊂二㊁阅读(67分)(一)(7分)4.(3分)远远望去,长江浩荡悠远,雾气笼罩的碧波奔流不息㊂ʌ评分说明ɔ长江特点2分( 江面悠远 ㊁ 雾气笼罩 ㊁ 水波碧绿 ,一点1分,写两点即可),语句通顺㊁完整1分㊂5.(4分)第一问:结束钓鱼后,停船靠岸;卖鱼买酒后,踏着月光归家;喝醉后,靠着钓竿酣眠等场景㊂第二问:闲适自乐㊁悠然自得㊂ʌ评分说明ɔ第一问3分,第二问1分㊂其他答案,酌情给分㊂(二)(16分)6.(3分)B7.(3分)(1)拜见(2)应允,许可,同意(3)通 促 ,催促8.(6分)(1)(4分)邓元锡十七岁时,就能推行(利用)社仓法,让家乡人得到实惠㊂ʌ评分说明ɔ 行 惠 各1分,句意对2分㊂(2)(2分)邓元锡在家著书,撰写了‘五经绎函史“一书㊂ʌ评分说明ɔ 著述 1分,句意对1分㊂9.(4分)①好学,态度谦虚:他喜好经史之学并不断学习,虚心向黄在川㊁罗近溪㊁邹东廓㊁刘三五等诸多老师学习㊂ ②守孝道,孝顺长辈:他顺从大母的意愿,考中举人;为赡养老母放弃入京会试㊂ʌ评分说明ɔ每点2分㊂意思对即可㊂ʌ参考译文ɔ邓元锡字汝极,号潜谷,江西南城县人㊂他十三岁时,跟从黄在川学习,喜好看经史诸书,当时人认为这样不利于科举考试㊂邓元锡十七岁时,就能推行(利用)社仓法,让家乡人得到实惠㊂他听说罗近溪公开讲学,便跟从他游学㊂继而又去往吉州,拜访诸位老先生,要探求明白经史之学(的奥义),于是想要放弃科举考试㊂他的大母不同意(他这么做)㊂后来,他通过了嘉靖乙卯年的乡试㊂但他的志向在于奉养老母,(最终)没有再去参加举人入京的会试㊂他还曾向邹东廓㊁刘三五拜师学习,掌握了他们学术的要旨㊂后来,居家潜心著书,写成了‘五经绎函史“一书㊂他多次被当权者举荐,万历壬辰年,被授予翰林待诏一职,府㊁县各级官员都来敦促他上路赴任㊂第二年,他出发前到母亲墓前告别,却于七月十四日在母亲墓地去世了,享年六十六岁㊂(三)(20分)10.(3分)B11.(3分)甲:③ 乙:① 丙:②ʌ评分说明ɔ一空1分㊂12.(4分)示例一:不能删㊂ 探索 一词大词小用,(1分)双引号强调(突出)了对 我 童年时期对虫子一系列做法的否定,不是探索而是残害,(2分)表现了 我 年少无知时对生命缺乏敬畏感(1分)㊂示例二:能删㊂ 探索 一词体现了童年时期的 我 充满了对未知世界强烈的好奇心和求知欲,(2分)不加双引号更能突出事件的真实性㊂(1分)ʌ评分说明ɔ 不能删 答题要点: 大词小用 突出强调 不是探索而是残害 对生命缺乏敬畏感 一点1分㊂意思对即可㊂答 能删 的最高只能给3分㊂意思对即可㊂13.(5分)①虫子让 我 真正爱上凤山,而凤山的散步锻炼让 我 的身体渐渐康复㊂(1分) ②弱小虫子能自食其力㊁顽强生存,(1分)激发了 我 对生命㊁对死亡的思考及对现实生活的反思,(1分)学会了生命对生命的尊重与相惜,精神世界更加健康㊂(2分)ʌ评分说明ɔ意思对即可㊂14.(5分)本文的情节与描写是引发 我 联想㊁思考㊁反思的起点,也是抒发 我 的人生感悟以及表达文章主题的载体㊂(2分)‘蝉“中的情节与描写,增加了说明文的文学性,激发读者的阅读趣味,(2分)更能让人体会文中蕴含的科学精神㊂(1分)ʌ评分说明ɔ意思对即可㊂(四)(12分)15.(3分)D16.(4分)①科考旅行能获取新知识㊁尝试新体验㊁感受新视角,点燃了人们心中对知识与探索的渴望,能满足人们日益增长的精神文化生活需求㊂ ②文旅行业逐步回暖,科考旅行唤醒了人们对出游的无尽向往与对生活的满怀热忱㊂ʌ评分说明ɔ一点2分㊂意思对即可㊂17.(5分)示例一:A路线㊂理由:科考旅行要头脑冷静㊁理性选择;(2分) A路线时间较短,费用较低,更符合在校学生的实际情况㊂(3分)示例二:B路线㊂理由:此路线可以领略少数民族及异域风情,获取新知识㊁尝试新体验㊁感受新视角;(3分)作为世界第三大工程的滇越铁路也更具有科考价值,更能突出研学的意义㊂(2分)ʌ评分说明ɔ意思对即可㊂(五)(12分)18.(3分)D19.(6分) 渗 :铺地材料透水透气,铺设留有缝隙㊂蓄 :斜屋面引水汇入地沟㊁鱼池或水池㊂用 :积存雨水用于生活㊁灌溉㊂排 :利用地势引导雨水排入沟渠㊂ʌ评分说明ɔ一点2分,答出三点得满分㊂意思对即可㊂20.(3分)示例一:高楼(城市)㊁飞鸟及倒影体现海绵城市 渗-蓄-排-用 等建设理念㊂示例二:飞鸟与城市㊁水融为一体,象征人与自然和谐发展㊂ʌ评分说明ɔ元素1分,寓意2分㊂意思对即可㊂三㊁写作(60分)21.(60分)略㊂。
东城区2023-2024学年度第一学期期末检测初三英语试题
东城区2023-2024学年第一学期期末统一检测初三英语2024. 1学校________ 班级________ 姓名________ 教育ID号________本部分共33题, 共40分。
在每题列出的四个选项中, 选出最符合题目要求的一项。
一、单项填空 (每题0.5分, 共6分)从下面各题所给的A、B、C、D四个选项中, 选择可以填入空白处的最佳选项。
1. My brother studies at an art school. ________ can draw beautiful pictures.A. SheB. HeC. ItD. They2. The Double Ninth Festival is ________ October 11 this year.A. onB. inC. atD. to3. —Mom, I’ll prepare breakfast by myself tomorrow. You ________ get up early.—Thanks, Emma. That’s so nice of you.A. can’tB. mustn’tC. needn’tD. may not4. After winning the singing competition, Bob became ________ than before.A. confidentB. more confidentC. most confidentD. the most confident5. —________ do you go swimming?—Every weekend in the summer months.A. How longB. How soonC. How muchD. How often6. I knew Sara could help me, ________ I asked her for help.A. orB. forC. soD. but7. Look! Those kids ________ in the playground, laughing loudly.A. are runningB. runC. will runD. ran8. We ________ the new museum if we have time tomorrow.A. visitB. have visitedC. visitedD. will visit9. My dad ________ blood three times at the blood center since two years ago.A. will giveB. givesC. has givenD. gave10. I ________ a present for my grandpa in the shop when my friend saw me.A. chooseB. was choosingC. am choosingD. will choose11. In our school, lunch ________ from 11:30 am to 12:30 pm this term.A. servedB. servesC. was servedD. is served12. —Jack, can you tell me ________ at the school sports meeting?—Sure. I took part in the 100-metre race.A. what you didB. what you will doC. what did you doD. what will you do二、完形填空 (每题1分, 共8分)阅读下面的短文, 掌握其大意, 然后从短文后各题所给的A、B、C、D四个选项中, 选择最佳选项。
2024年北京燕山区初三上学期期末考数学试卷和答案
燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2023-2024学年第一学期九年级化学期末考试试题(带答案)
2023-2024年第一学期期末质量检测九年级化学试题(时间:60分钟分值100分)注意事项:1.本试题分Ⅰ、Ⅱ两卷。
第I卷(选择题共40分),第Ⅱ卷(非选择题共60分)。
2.考生答题前务必将自已的姓名、准考证号、座号填写在试卷和答题卡上,考试结束,试卷和答题卡一并收回。
3.第I卷每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须用橡皮擦干净后,再选涂其它答案。
答第II卷时,用0.5毫米黑色签字笔答在答题卡的相应位置上。
可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Ba-137 Cl-35.5一、单选题(本大题共12小题,共40.0分)1.将一定量的生铁投入盛有足量稀盐酸的烧杯中,完全反应后,发现烧杯底部留有黑色残渣,其主要成分是( )A. 纯铁B. 碳的单质C. 氯化亚铁D. 氧化铁2.下列劳动项目与所涉及的化学知识不相符的是 ( )A. AB. BC. CD. D3.下列物质的名称、俗名、化学式、用途完全对应的是( )A. 氯化钠食盐NaCl2消除积雪B. 碳酸钙石灰石CaCO3干燥剂C. 氢氧化钠纯碱NaOH炉具清洁剂D. 氢氧化钙熟石灰Ca(OH)2改良酸性土壤4.如图所示,滴管中吸入某种液体,平底烧瓶中盛有另一种物质,挤压滴管滴入液体,一段时间后气球明显鼓起。
下列选项符合题意的是( )A. AB. BC. CD. D5.“侯氏制碱法”创立了更为先进的“制碱”工艺,主要反应是:NaCl+NH4HCO3= NaHCO3↓+NH4C1。
如图是三种物质的溶解度曲线,下列叙述正确的是( )A. 0℃时,NH4Cl的溶解度大于NaCl的溶解度B. NH4Cl中含有少量NaCl,可用降温结晶的方法提纯NH4ClC. 20℃时,NaHCO3饱和溶液的溶质质量分数一定大于NH4Cl不饱和溶液的溶质质量分数D. 20℃时,将9.6g NaHCO3加入到90.4g水中,可得到100g饱和溶液6.如图是甲、乙、丙三种物质的溶解度曲线,下列说法中正确的是( )A. P点表示甲、丙两种物质的饱和溶液质量相等B. t1℃时,乙物质的饱和溶液,升温至t2℃时仍是饱和溶液C. t1℃时,甲物质的饱和溶液中溶质和溶剂的质量比为1:4D. 将三种物质的溶液从t2℃降至t1℃,溶质质量分数最小的一定是丙物质7.从海水中提取食盐的流程如下图所示,下列说法错误的是( )A. 蒸发池中海水的浓度逐渐增大B. 结晶池中食盐结晶的过程,溶质的质量分数保持不变C. 从母液中可以提取多种化工原料D. 从结晶池中得到的食盐属于纯净物8.小红同学为研究金属腐蚀的条件,用细尼龙线将三根大小相同的铁钉分别固定在如图所示的三个液面高度相同的装置中,放置一星期后观察现象(浓盐酸易挥发,浓硫酸具有吸水性)。
初中语文:2023-2024 学年度北京市西城区第一学期九年级语文期末试卷(含参考答案)
2023-2024学年北京西城初三(上)期末语 文一、基础•运用(共13分)年级开展了“美术里的中国”综合实践活动,你所在的班级参与了三个探究活动。
请你完成每个活动下的任务。
1.请在活动手册封面用正楷字书写“丹青承文化,墨彩绘时代”。
(1分)活动一:美术课上探古画题材老师向同学们介绍了中国古画的题材,下面是同学做的笔记。
..A.因为表达的是“从容不迫”的意思,所以“安详”一词中有错别字。
B.因为表达的是“用线条画出轮廓”的意思,所以“钩勒”一词中有错别字。
C.“寥”是“非常少”的意思,读作“li áo ”。
D.“狩”是“打猎”的意思,读作“sh òu ”。
课上,老师带同学们重点赏析了《清明上河图》,下面是同学写的一段鉴赏文字。
A.大至河流的浩瀚、原野的寂静,小到招牌上的文字、货摊上的物品B.大至寂静的原野、浩瀚的河流,小到货摊上的物品、招牌上的文字C.小到货摊上陈设的物品、招牌上的文字,大至寂静的原野、河流的浩瀚D.小到招牌上细小的文字、货摊上的物品,大至原野的寂静、浩瀚的河流活动二:纪念馆里悟民族精神同学们参观了徐悲鸿纪念馆,下面是同学写的一段参观笔记及搜集到的《六骏图》图片。
4.你检查文段中使用的成语后发现,下列成语使用不.恰当..的一项是(2分)A.痛心疾首B.栩栩如生C.断章取义D.前仆后继5.根据语境,文段中画横线短语“奔腾之魂”的含义是_________。
(2分)活动三:纪录片里叹经典“活化”同学们观看了纪录片《美术里的中国》,下面是同学写的一段观后感。
6.文段中的画线句存在问题,请你做出修改。
(2分)7.活动过程中,同学们有感而发,下列表达不.恰当..的一句是(2分)A.《清明上河图》是风俗画代表,真可谓“工笔长卷描绘生活百态,清明上河留存汴京繁华”。
B.徐悲鸿将抗战情怀融入到作品中,激励民众奋起反抗,这难道不是伟大与崇高的体现吗?C.纪录片《美术里的中国》用数字虚拟技术“活化”名画,好似一个真实而又静止的美术馆。
密云区2023-2024初三数学期末考试试题参考答案与评分标准
北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
2023-2024学年第一学期期末质量检测九年级物理试题(带答案)
2023-2024学年第一学期期末质量检测九年级物理试题(时间: 60分钟分值: 100分)一、单选题(本大题共12小题,共36分)1.串联在同一电路里的两盏灯L1、L2,当闭合开关后发现L1比L2亮,关于经过它们的电流,下列说法正确的是( )A. L1的电流大B. L2的电流大C. 相等D. 无法比较它们的电流大小2.小明用薄塑料袋做了一个有趣的实验。
他将薄塑料袋剪成细丝制成“章鱼”,用丝绸分别摩擦“章鱼”和塑料管,将摩擦后的“章鱼”抛向空中,在其下方用塑料管靠近“章鱼”,塑料管“托”着“章鱼”飞起来,如图所示。
下列说法正确的是( )A. 摩擦后,“章鱼”和塑料管带的是同种电荷B. 摩擦后,“章鱼”和丝绸带的是同种电荷C. 摩擦后,“章鱼”的各个细丝所带的是异种电荷D. 丝绸与塑料管摩擦的过程中,创造了电荷3.如图电路中,当闭合开关后,两个电压表的指针偏转均为图2,电阻R1和R2两端的电压分别为( )A. 1.9V;9.5VB. 7.6V;1.9VC. 1.9V;7.6VD. 9.5V;1.9V4.在如图所示的四种连接方法中,将滑动变阻器的滑片P向右移动时,可使变阻器接入电路部分阻值增大的是( )A. B. C. D.5.如图所示,闭合开关后两只小灯泡均发光。
一段时间后,两只小灯泡突然同时熄灭,电压表示数也变为0V,产生这种现象的原因可能是( )A. L1的灯丝断了B. L2的灯丝断了C. L1处发生短路D. L2处发生短路6.小刚同学家的电能表上标有“600R/kW⋅ℎ”字样,据此他用表记录了10min内电能表上的转盘转过120R,那么用电器平均每分钟消耗的电能是( )A. 7.2kW⋅ℎB. 0.72kWC. 0.02kWD. 0.02kW⋅ℎ7.有关家庭电路和安全用电,下列说法正确的是( )A. 使用试电笔时,手不能接触笔尾的金属体B. 经验证明,人体安全电压为36VC. 控制用电器的开关串联在用电器和火线之间D. 接在同一个插线板上的各用电器是串联的8.据物理学史记载,最先发现通电导线周围存在磁场的科学家是( )A. 安培B. 欧姆C. 伏特D. 奥斯特9.车载导航可以利用北斗导航系统配合电子地图来进行,导航仪和卫星间传输的信号是( )A. 超声波B. 电磁波C. 次声波D. 电流10.如图所示的现象中,其形成过程属于凝华现象的是 ( )A. 缥缈的雾B. 雪白的霜C. 坚硬的冰D. 晶莹的露11.如图所示的是汽油机的四冲程的示意图,其中表示压缩冲程的是( )A. B. C. D.12.近年来,国家出台了许多有关新能源开发与利用的政策,以保护环境,促进人类的可持续发展.下列选项均为不可再生能源的是( )A. 煤、石油、核能B. 太阳能、地热能、风能C. 电能、地热能、风能D. 核能、水能、生物质能二、填空题(本大题共5小题,共20分)13.给汽车蓄电池充电时,蓄电池相当于______ (选填“用电器”或“电源”);汽车一般用水作为发动机的冷却液,是因为水的______14.在研究某物质熔化过程中温度的变化规律时,持续加热该物质,记录并描绘出了该物质温度随时间变化的图线,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延庆县—2016学年第一学期期末试卷初三英语听力理解(共30分)一、听对话,从下面各题所给的A、B、C三幅图片中选择与对话内容相符的图片。
每段对话你将听两遍。
(共5分,每小题1分)1.A.B.C.2.A.B.C.3.A.B.C.4.A.B.C.5.A.B.C.二、听对话或独白,根据对话或独白的内容,从下面各题所给的A、B、C三个选项中选择最佳选项。
每段对话或独白你将听两遍。
(共15分,每小题1.5分)请听一段对话,完成第6至第7小题。
6. Who is the girl buying the gift for?A. Her father.B. Her mother.C. Her friend.7. What does the girl decide to buy?A. A coat.B. A jacket.C. A T-shirt.请听一段对话,完成第8至第9小题。
8. What’s Henry’s problem?A. He forgets a lot of new words.B. He makes mistakes in grammar.C. He can’t understand spoken English.9. What’s Tina’s advice?A. Listening to tapes.B. Joining an English club.C. Making word cards.请听一段对话,完成第10至第11小题。
10. Where will the volunteer work?A. In the gym.B. In the garden.C. In the hall.11. When will the man do the volunteer work?A. On Monday.B. On Wednesday.C. On Tuesday请听一段对话,完成第12至第13小题。
12. What are the two speakers talking about?A. Joe’s problem.B. Mr. Andrews’ problem.C. Mrs. Wilson’s problem.13. What is the relationship between the two speakers?A. Teacher and student.B. Mother and son.C. Mother and teacher. 请听一段独白,完成第14至第15小题。
14. What can students do in Magic World?A. Take a photo with Mama Monkey.B. Take a boat down a waterfall.C. Take a walk in space for a while.15. What’s the speech mainly about?A. An invitation to have fun in the park.B. An agreement on what to do in the park.C. An introduction to some places in the park.三、听对话,根据所听到的对话内容和提示词语, 记录关键信息。
对话读两遍。
(共10分,每小题2分)语言知识运用(共25分)四、单项填空(共10分,每小题1分)从下面各题所给的A、B、C、D四个选项中,选择可以填入空白处的最佳选项。
21. Jim, would you please show your new pencil-box?A. IB. meC. myD. mine22. — How are you going to the Summer Palace?— We’re going there bike.A. forB. atC. ofD. by23. Get up early, you’ll be late for school.A. soB. andC. orD.but24. —do you usually fly kites?— In the park.A. WhyB. HowC. WhenD. Where25. I jumped than Bill in the sports meet last year.A. highB. higherC. highestD. the highest26. — Jack, can you play the guitar?— Yes, I _______.A. mustB. canC. needD. may27. — What are the neighbours doing, Joe?— Oh, they _______ a party.A. haveB. hadC. are havingD. have had28. We in the same school since three years ago.A. have studiedB. were studyingC. will studyD. study29. Our new school last year.A. buildsB. builtC. was builtD. is built30. — Can you tell me to America?— Sure. Next month.A. when you will travelB. when will you travelC. when you travelledD. when did you travel五、完形填空(共15分,每小题1.5分)阅读下面的短文,掌握其大意,然后从短文后各题所给的A、B、C、D四个选项中,选择最佳选项。
Peter kept his eyes on the grounds. He felt like there was a heavy weight on his shoulders as he walked home alone. It was the 31 day of his life. His mind would not stop thinking about what happened only just an hour ago on the soccer field. How could he have missed scoring that goal? He had let his whole team down. His stupid mistake made him angry. His team had lost the game because of him. He was really 32 that his coach might kick him off the team.As soon as he walked through the door, his father asked, “ What’s wrong, son?” Peter’s feeling were written all over his face. “I 33 the game,” Peter replied. Then he went into his room without another word. Ten minutes later, Peter heard his father knocking on his bedroom door. He 34 the door to let him in.“Look, Peter. I don’t know what happened. But whatever it was, don’t be too worried on yourself.”“I lost the game, Dad. I 35 my team. They’ll probably never let me play again.”“Soccer is about team effort. You’re not the only reason your team lost. If you have a good team, you should support each other. Besides, winning or losing is only half the game. Another half is 36 how to communicate with your teammates and learning from your mistakes.Peter didn’t say anything, but what his father said made him think 37 .The next day, Peter went to soccer practice with courage in his heart. “Hey, guys” he said to his 38 . “I’m really sorry about yesterday. We were so close to winning that game. But I think if we 39 to pull together, we’re going to win the next one.”To his surprise, his teammates all nodded in 40 .“Yeah,” they said, “don’t worry about it. It’s never just one person’s fault. We should think about how we can do better next time.”Peter smiled. It made him feel lucky to know that he was on a winning team.31.A.best B.worst C.latest D.newest 32.A.lucky B.surprised C.worried D.pleased 33.A.missed B.won C.joined D.lost34.A.knocked B.closed C.opened D.locked 35.A.chose B.failed C.helped D.forgot 36.A.teaching B.choosing C.learning D.showing 37.A.carefully B.cheerfully C.nervously D.proudly 38.A.classmates B.teammates C.teachers D.friends 39.A.complete B.complain C.compare D.continue 40.A.agreement B.excitement C.achievement D.enjoyment阅读理解(共50分)六、阅读理解。