概率论3
概率论第三章部分习题解答
ydxdy.
定理1 cov(X ,Y ) E( XY ) E( X )E(Y )
定理2 若X与Y 独立,则:covX ,Y 0. 逆命题不成立。
注 设X与Y是任两个随机变量,
10
D( X Y ) D( X ) D(Y ) 2cov(X ,Y )
2、X与Y 的相关系数
定义 R( X ,Y ) cov( X ,Y )
EX
xf
xdx
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
随机变量X及Y 的数学期望分别定义如下:
EX xi p xi , y j , EY y j p xi , y j .
i j
ji
即: EX xi pX xi , EY y j pY y j .
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x1 x2 xi
P p( x1 ) p( x2 )p( xi )
则随机变量X 的数学期望为: EX xi pxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为
i
j
假定级数是绝对收敛的.
(2)设二维连续随机变量(X,Y)的联合概率密度为f(x, y),则
随机变量X及Y 的数学期望分别定义如下:
EX
xf
x,
ydxdy,
EY
yf x, ydxdy.
即:EX
xf X x dx,
EY
yfY y dy.
2
假定积分是绝对收敛的.
概率论3
P AB PB | AP A
5.3
例3 已知 P( A) 0.5, P( B) 0.6, P( B / A) 0.8.
求 P( AB)与P( A B )
例4 设袋中有r只红求,t只白球.每次自袋中任 取一只球,观察其颜色然后放回,并再放入a只 与所取出的那只球同色的球.若在袋中连续取 球四次,试求第一、二次取到红球且求第三、 四次取到白球的概率.
PBi | A PA | Bi PBi
j j
5.6
5 .7
PA | B PB
j 1
n
i 1,2,,n
P A P A | B 1 P B 1 P A | B 2 P B 2 P A | B n P B n
P( A) P( B) P( A / B) P( B ) P( A / B )
例1 某电子设备制造厂所用的元件是由三家元件 制造厂提供的.根据以往的记录有以下数据:
元件制造厂 1 2 3 次品率 0.02 0.01 0.03 提供元件的份额 0.15 0.80 0.05
设这三家工厂的产品在仓库中是均匀混合的, 且无区别的标志.(1)在仓库中随机地取一只元件, 求它是次品的概率;(2)在仓库中随机地取一只元件, 若已知取到的是次品,分析此次品出自何厂,需求出 由三家工厂生产的概率分别是多少.试求这些概率.
二 乘法定理
乘法定理 其意义是… (5.3)式容易推广到多个事件的情况.
P A1 A2 An PAn A1 A2 An 1 PAn 1 A1 A2 An 2 PA2 A1 P A1 其 中 P A1 A2 An 1 0
设P(A)>0,则有
注 对 任 一 事 件 A, A与 A 构 成 样 本 空 间 Ω 的一个分划。
概率论3
X(a) = 1, X(b) = 2, X(c) = 2, 思考一下,X 是随机变量吗 ?很明显,X 不是随机变量,因为
{ω : X(ω) 1} = {a} ∈/ Ω, 那么如何对X 的取值进行一下修改,使之成为随机变量呢 ?只要修改X (b)的取值即可。令
Y (a) = 1, Y (b) = 1, Y (c) = 2,
其中,B(R)是实数轴上的Borel域。
这里有两点注记。首先,随机变量是确定性函数,自身并没有随机性。换句话说,给定 样本空间上的样本点,有唯一确定的实数值与之相对应。这种对应关系并没有不确定性。所 有的不确定性都体现在样本点是否在实验结果中出现上,和随机变量本身没有关系。随机 变量的引入,更多地是为了数学处理上的方便。其次,随机变量并不是概率论中独有的概 念。实分析的基本研究对象是所谓“可测函数(Measurable Functions)”。如果我们规定所谓 “可测集(Measurable Sets)”为某种σ-代数的元素,且在函数的定义域和值域上都定义了相应 的σ-代数,那么“可测函数”就是“可测集”原像仍为“可测集”的函数。很明显,随机变量 是一种特殊的可测函数,这里的“可测集”具有了更为具体的实际含义。
例 1.5 (随机变量平方) 包络检波器在通信和雷达电路中十分常见。小信号条件下,平 方律检波器作为包络检波器的重要类型被广泛使用。设平方律检波器的输入为随机噪声X, 那么其输出Y = aX2仍然是随机噪声。这是随机变量平方的典型实例。
4
例 1.6 (随机变量初等变换) 通信系统中载波信号常常表示为
是否仍然是随机变量呢?答案当然是肯定的。
定义 1.2 (实轴上的可测函数) 设B(R)为实数轴上的Borel域,如果函数f (x)满足
f (x) : R → R, f −1(A) ∈ B(R), ∀A ∈ B(R),
概率论第三章
一、数学期望的概念 二、数学期望的性质 三、应用实例
回
停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .
数学期望, 记为EX, 即
E X
xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为
1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.
《概率论》第3章§3条件分布
G
第三章 多维随机变量及其分布
§3
条件分布
12/17 12/17
设 ( X ,Y) 服从圆域 G : x2 + y 2 ≤ 1 上的均匀分布. 服从圆域 上的均匀分布. 求条件概率密度 f X|Y (x | y) f X |Y (x | y)表示固定 Y = y时 ( X ,Y)的密度及 Y的边缘密度分别为 y 2 , 1 y 2 ) ~ y 2 X y 2 U( 1 1/ π, x + ≤1 1 f (x, y) = y 其它 0,
p13 P{X =1| Y = 3 = p. = 0 = 0 } 3 7/ 48 p23 P{X = 2| Y = 3 = p. = 0 = 0 } 3 7/ 48 即在 Y = 3的条件下 ,Y = 3} = p33 = 1/12 = 4 P{ X = 3| X的条件分布律为 p.3 7/ 48 7 X=k 1 p43 2 3 4 1/163/ 73 P{{X=k | YY 3}3 = p.0 =4/ 7 = PX = 4| = = } 0 第三章 48 7 3 7/ 多维随机变量及其分布
P(B)
在形式上很相似! 在形式上很相似!
f (x, y) fY| X ( y | x) = f X (x)
(∞ < y < ∞)
F | X ( y | x) = ∫∞ fY| X (v | x)dv (∞< y < ∞) Y
x
第三章 多维随机变量及其分布
§3
f X |Y (x | y) ≥ 0
y
y=x
y {x>0.5,0.5<0.5 x y<
∫∫ f (x, y)dxdy
∫∫
x 1dxdy
概率论3
P(X 2) 1 P(X 1) 1 P(X 0) P(X 1) 1 C50 0.4500.555 C510.4510.554 1 0.555 5 0.45 0.554 0.744
例3-1 已知发射一枚地对空导弹可“击中”来犯 敌机的概率是0.96,问在同样条件下需发射多少枚 导弹才能保证至少有一枚导弹击中敌机的概率大于 0.999? 解 设需要发射n枚导弹,则击中敌机的导弹数是随机 变量X~B(n,0.96),则
0
1
k
n
X ~ Cn0 p0qn
Cn1 p1qn1
Cnk pk qnk
Cnn
p
n
q0
n
( px q)n
C
k n
pk
q
nk
xk
k 0
n
n
所以, b(k; n, p) Cnk p k q nk ( p 1 q)n 1n 1
k 0
k 0
特别地,n=1时,二项分布为二值分布,其分布列
射手甲在一次射击中得分X的概率分布为:
0 1 2
e1
X ~ 0 0.2 0.8
e2
射手乙在一次射击中得分Y的概率分布为:
Y
~
0 0.6
1 0.3
2 0.1
Y的概率分布(律)为:
0 Y ~ 0.6
1 0.3
2 0.1
计算Y的分布函数F(x)=P(Y<x):
当x≤0时, F(x)=P(Y<x)=P()=0
X=X (w) w
X=X(w0)=0, X=X(w1)=1, X=X(w2)=2, …, X=X(w100)=100 事件“废品数少于50”={w : X (w) <50}
概率论第三章课后习题答案_课后习题答案
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论第三章
若二维随机变量( 若二维随机变量(X,Y)具有概率密度 ) 1 1 x − µ1 2 f (x, y) = exp{− ) 2 [( 2 2(1− ρ ) σ1 2πσ1σ2 1− ρ x − µ1 y − µ2 y − µ2 2 )( ) +( ) ]} − 2ρ( 其中
µ1, µ2,σ1,σ2, ρ
3.1.2、二维随机变量的联合分布函数 、 维随机变量的联合 联合分布函数
二维随机变量( 二维随机变量(X,Y) ) ( X , Y )的联合分布函数 )的联合分布函数
一维随机变量X 一维随机变量 X的分布函数 的分布函数
F(x, y) = P(X≤ x,Y ≤ y) − ∞ < x, y < ∞
xi ≤3yj ≤2
求:F(3,2) = P(X≤ 3,Y ≤ 2) = ∑∑pij
1 1 1 1 = + 0+ 0+ + + 0 = 4 8 8 2
例2 设随机变量 Y ~ E (1) ,随机变量
0 , 若Y ≤ k ( k = 1,) 2 Xk = 1 , 若Y > k 的联合概率分布列。 求 X 1 和 X 2 的联合概率分布列。
第三章 多维随机变量及其分布
到现在为止, 到现在为止,我们只讨论了一维随机变量 及其分布. 及其分布. 但有些随机现象用一个随机变量来 描述还不够, 描述还不够,而需要用几个随机变量来描述 在打靶时, 在打靶时,命中点的位置是由一 对随机变量(两个坐标)来确定的. 对随机变量(两个坐标)来确定的. 飞机的重心在空 中的位置是由三个随 机变量(三个坐标) 机变量(三个坐标)来 确定的等等. 确定的等等.
1/ 4 x 1 1 解: (3)P( X < ,Y < ) = ∫0 [∫0 3xdy]dx 4 2
《概率论》第3章§4相互独立的随机变量
§4
A, B 相互独立 X , Y 相互独立
相互独立的随机变量
11/19
P( A | B) P( A), P( B | A) P( B)
f ( x, y) f X ( x) fY ( y) (a.e) f ( x, y ) f X |Y ( x | y ) = f X ( x) ( a.e) fY ( y )
§4
相互独立的随机变量
1/19
随机变量的独立性
离散型、连续型随机变量的独立性的判断
利用随机变量的独立性进行相关概率的 计算
第三章 多维随机变量及其分布
§4
A, B 相互独立
相互独立的随机变量
A, B 之间没有任何关系
P( AB) P( A) P( B)
2/19
怎样定义 r.v X , Y 之间的独立性 若
FX ( x2 ) FY ( y2 ) FX ( x1 ) FY ( y2 ) FX ( x2 ) FY ( y1 ) FX ( x1 ) FY ( y1 )
[ FX ( x2 ) FX ( x1 )] [ FY ( y2 ) FY ( y1 )]
P{x1 X x2 }P{ y1 Y y2 }
X ~ U (0,1), Y ~ U (0,1)
X , Y 独立,故联合密度为
1, 0 x 1, 0 y 1 f ( x, y ) f X ( x ) f Y ( y ) 其它 0,
故两信号互相干扰的概率为
P{ | X Y | 1 }
120
1
y
y x
1 2 1 2 1
2
( x ) 1 exp{ [ 21 2 1 2(1 )
概率论基础3——条件概率
一、条件概率生活中很多概率都是在某些特殊条件下的概率。
比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。
只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。
基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。
韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。
我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。
所以也很容易理解,分子是A和B的和事件(交集)的概率。
性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。
(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。
那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。
上面两个式子在实际计算中要根据问题灵活选择。
我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。
概率论第三章
8 July 2010
联合密度函数的基本性质 (1) p(x, y) ≥ 0. (非负性) (2) (正则性)
注意: P{(X,Y) ∈D} = ∫∫ p(x, y)dxdy
D
8 July 2010
3.1.5
一,多项分布
常用多维分布 常用多维分布
若每次试验有r 种结果:A1, A2, ……, Ar 记 P(Ai) = pi , i = 1, 2, ……, r 记 Xi 为 n 次独立重复试验中 Ai 出现的次数. 则 (X1, X2, ……, Xr)的联合分布列为:
2x
+∞
1 2x +∞ 1 3y +∞ = A e × e 2 0 3 0
=A/6 所以, A=6
8 July 2010
例3.1.4
6e(2x+3y) , x ≥ 0, y ≥ 0 若 (X, Y) ~ p( x, y) = 其 它 0,
试求 P{ X< 2, Y< 1}.
8 July 2010
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ), 则 XN( ), YN( ).
二维均匀分布的边际分布不一定是一维均匀分布.
8 July 2010
例3.2.1 设 (X, Y)服从区域 D={(x, y), x2+y2 <1} 上的均匀分布,求X 的边际密度p(x). 解: 由题意得
e y , 0 < x < y p( x, y) = 其 他 0,
求概率P{X+Y≤1}. 解: P{X+Y≤1}=
1/2
1x x
y=x
x+y=1
= ∫ dx∫
概率论第3章 随机向量及其分布
例3 一袋中有五件产品,其中两件次品,三件正品,
从袋中任意依次取出两件,分别采用有放回与不放回 两种方式进行抽样检查,规定随机变量
=10,,
第1次取出次品 第1次取出正品
=10,,
第2次取出次品 第2次取出正品
则(ξ,η)的联合分布律如下(并可求得边缘分布律):
表1 有放回抽样的分布律
设(X, Y)的联合分布律为P{X=xi , Y=yj}= pij (i,j=1,2, …) ,则(X, Y)关于X的边缘分布律有
PX xi PX xi ,Y
P X xi , (Y y j )
j 1
P ( X xi ,Y y j )
FX1,X2,L ,Xn x1, x2,L , xn P : X1() x1, X 2 () x2,L , X n () xn
I P : n Xi () xi
i 1
定理3.1.1 设,F, P为概率空间, 随机向量 X1, X 2,L , X n 的联合分布函数为FX1,X2,L ,Xn ,则
P 0, 1 P 0 P 1 0 2 3 3 5 4 10
P 1, 0 P 1 P 0 1 3 2 3 5 4 10
P 1, 1 P 1 P 1 1 3 2 3 5 4 10
定理3.1.2 设,F, P为概率空间, X1, X 2,L , X n
为其上的随机向量。
(1) 若X1, X 2,L
,
X
都为离散型随机变量,有分布列
n
P Xi aji ,j 1,2,L ,i 1,2,L ,n,
概率论 第3讲 条件概论
记 Ai = {球取自 i 号箱}, i =1, 2, 3; B = {取得红球}。 所求为 P(A1|B)。
P ( A1 B) P ( A1 | B) P ( B)
P ( A1 ) P ( B | A1 )
P ( A ) P ( B|A )
k 1 k k
3
将上述公式一般化,就得贝叶斯公式。
P( A) 0.005, P( A ) 0.995 , P( B | A) 0.95, P( B | A ) 0.04 。
求 P(A|B)。
由贝叶斯公式,得
P( A) P( B | A) P( A | B) , P( A) P( B | A) P( A ) P( B | A )
加法公式 P(A∪B)=P(A)+P(B) A、B互斥
乘法公式 P(AB)= P(A)P(B|A) P(A)>0
例3: 有三个箱子, 分别编号1, 2, 3。1号箱装 有1红球, 4白球; 2号箱装有2红球, 3白球; 3 号箱装有3红球。某人从三箱中任取一箱, 再 从箱中任取一球,求取到红球的概率。 解:记 Ai={球取自 i 号箱}, i =1,2,3; B ={取得红球}。 B= A1B∪A2B∪A3B, 其中 A1B、A2B、A3B两两互斥。运用加法公式 于是,P(B)=P( A1B)+P(A2B)+P(A3B)
贝叶斯公式
设 A 1 , A 2 , „ , A n 是两两互斥的事件,且 P(Ai)>0,i=1, 2, „, n; 另有一事件B, 它总是与 A1, A2, „, An 之一同时发生,则
P( A i | B)
P( A i ) P( B|A i )
P( Aj ) P( B|Aj )
概率论第三章(3,4,5)
e x y
y
x0
对y>0 P{ X>1| Y=y }
1
ex y dx e x y
1 y
y 1
e
例3 设( X, Y )服从单位圆上的均匀分布, 概率密度为:
1 2 2 , x y 1 f ( x , y ) 0, 其它
2
求 fY |X ( y | x ) y 1 x 解:
体重X 的分布
身高Y 的分布
现在若限制1.7<Y<1.8(米), 在这个条件下 去求X的条件分布,这就意味着要从该校的学 生中把身高在1.7米和1.8米之间的那些人都挑 出来,然后在挑出的学生中求其体重的分布. 容易想象,这个分布与不加这个条件 时的分布会很不一样.
一、离散型r.v.的条件分布 定义1: 设 (X,Y) 是二维离散型随机变量,
f ( x, y) f X ( x) fY ( y)
故X和Y不独立 .
对于正态分布有如下结论:
二维随机变量 ( X , Y ) ~ N (1, 2 ,1, 2 , ),
则X,Y相互独立 0
n维随机变量的边缘分布与独立性
1.边缘分布
设n维随机变量(X1,X2,...,Xn)的分布函数为 F(x1,x2,...,xn), (X1,X2,...,Xn)的k(1k<n)维 边缘分布函数就随之确定,
P( X xi |Y y j ) 0,
i = 1,2, …
i 1
P( X xi | Y y j ) 1
例1 一射手进行射击,击中目标的概率为 p,(0<p<1), 射击进行到击中目标两次为 止。以 X 表示首次击中目标所进行的射击次数, 以 Y 表示总共进行的射击次数。试求 X 和 Y 的联合分布及条件分布.
《概率论》第3章§2边缘分布-精选文档
(如图)
f ( x ) f( xyd , )y X
y x
2
y
1
y x
x 6dy ,0 x 1 x 2 其它 0, 6x(1 x),0 x 1 其它 0,
y
f ( y ) f( xyd , )x Y
x
1
1
12
2
Y) 则称 ( X , 服从参数为 记为
2 2 ( , , )的二维正态分布 1 2 1, 2,
2 2 ( X , Y ) ~( N , , , , 0 , 0 , | |1 1 2 1 2
X 故 r.v 的密度函数为
同理 Y 的分布函数为
Y 的密度函数为
f ( x ) fx ( ,) y d y( x ) X
F () y f (, x v ) d x v d Y
y
f ( y ) fx ( ,) y d x( y ) Y
§2
边缘分布
5/9
Y) 设 ( X , 的分布函数和密度函数分别为
X 则 r.v 的分布函数为
F (x ,y ) , f (x ,y )
f( uyd , )y u d
x
F ( x ) P { X x } P { X x , Y } X
x) 称 f X (为 y) 称 f Y (为
( 关于 X ,Y ) 的 ( 关于 X ,Y ) 的
边缘密度(函数) X 边缘密度 ( 函数 ) Y 第三章 多维随机变量及其分布
§2
边缘分布
概率论第三章练习答案
(C)
A.97
B.79
C.61
D.29
7.设已知随机变量 与 的相关系数 = 0 ,则 与 之间的关系为:
(D
)
A. 独立
B. 相关
C. 线性相关
D. 线性无关
8.设 X, Y 为两个独立的随机变量, 已知 X 的均值为 2, 标准差为 10, Y 的均值为 4, 标
准差为 20, 则与 Y − X 的标准差最接近的是[ D ]
3.已知(X,Y)的联合密度为 (x) =
(B ) A、0
B、0.25
C、0.5
4xy 0
0 x, y 1
其它
,则 F(0.5,2)=
D、0.1
F(0.5,2)= PX 0.5,Y 2
=
0.5
1
4xydxdy = 4
0.5
xdx
1
ydy
=
1 (利用图像)
00
0
0
4
4.如果 X 与 Y 满足 D(X+Y)=D(X-Y),则必有 ( ) A.X 与 Y 独立 B.X 与 Y 不相关 C.D(Y)=0 D .D ( X) D( Y) = 0
A 10
B 15
C 30
D 22
D(Y − X)= DX + DY = 100 + 400 = 500
400 500 900, 20 500 30
9.设随机变量 X~N(-3,1),Y~N(2,1),且 X 与 Y 独立,设 Z=X-2Y+7,
则 Z~
(A)
A.N(0,5) B.N(0,-3) C.N(0,46)
+ +(x,y)dxdy = 1 − −
即 + + ce−(x+ y)dxdy = 1 c = 1 00
概率论课后习题第3章答案
第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
《概率论》数学3章课后习题详解
概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104× 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。
解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得ka +1.5(2)由(1)与(2)解得a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/1887. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi12. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()22020222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe e x e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ16. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE144275144251225)(22=-=-=ξξξE E D3613311121311270=⨯+⨯+⨯=ηE1083731121912=+⨯=ηE129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论》期中测试题参考解答1、(10分)设A B C 、、表示三个随机事件,试用事件A B C 、、的运算分别表示下列各事件:(1)A 不发生而B C 、都发生; 表示为:ABC(2)A B C 、、三个事件至少有一个发生; 表示为:AB C ;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C 、、三个事件至多有一个发生; 表示为:ABCABC ABC ABC(4)A B C 、、恰有两个不发生; 表示为:ABCCAB BAC ;(5)A B C 、、都不发生; 表示为:ABC(6)A B C 、、三个事件不少于两个发生; 表示为:ABBC AC ;或表示为:ABC ABC ABC ABC(7)A B C 、、同时发生; 表示为:ABC(8)A B C 、、三个事件不多于两个发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(9)A B C 、、不全发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生.或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P AB ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--= (3)()()()()0.40.60.10.9P AB P A P B P AB =+-=+-=;(4)()()1()10.90.1P AB P A B P A B ==-=-=;(5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-;(7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率.解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。
《概率论》第3章§2边缘分布
F (x,y) =
2x2–x4 , 0 x <1, y 1 y4 , x 1, 0 y < 1 1, x 1, y 1
2013年8月5日星期一
(4)
0, 2x2–x4 , 1, 0,
x < 0, 0 x < 1, x1 y<0
FX ( x) F ( x,) =
FY ( y ) F (, y ) =
y4 ,
1,
0 y < 1,
y1
2013年8月5日星期一
4 x 4 x , 0 x 1 f X ( x) 其他 0,
3
4 y , 0 y 1 fY ( y ) 其他 0,
3
2013年8月5日星期一
当然也可直接由联合密度求边缘密度,例 如
6/29
§2
故 X , Y的联合分布律为
Y X
P{X i, Y j} P{Y j | X i} P{X i} 1 1 (1 j i) i 4
1 1/ 4 0 0 0
1 4
1 2 3 4
pi
2 1/ 8 1/ 8 0 0
1 4
3 1/12 1/12 1/12 0
y
故 r.v X的密度函数为 同理 Y的分布函数为
Y的密度函数为
( x )
FY ( y ) f ( x, v)dxdv
fY ( y ) f ( x, y )dx
( y )
称 f X ( x)为 ( X , Y )关于 X的边缘密度(函数) 称 f Y ( y) 为 ( X , Y )关于 Y 的边缘密度(函数) 第三章 多维随机变量及其分布
《概率论与数理统计》三
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)
性
1 0 pij 1,
质
2
pij 1.
j1 i1
分
布
函 F ( x, y) pij
数
xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 一个外科医生根据多年临床经验和患者病情, 认为“手术成功”的可能性为90%。
对主观方法的评价
• 主观概率与主观臆造有本质不同。
• 主观概率本质上是对随机事件概率的一种推断和估 计。虽然结论的精确性有待实践的检验和修正,但 结论的可信性在统计意义上是有价值的。
15 16
例2 甲掷硬币n+1次,乙掷n次. 求甲掷出的正面数比
乙掷出的正面数多的概率.
解 记甲正=甲掷出的正面数,乙正=乙掷出的正面数. 甲反=甲掷出的反面数,乙反=乙掷出的反面数.
因为 P(甲正>乙正)= P(n+1-甲反> n-乙反)
= P(甲反-1<乙反) = P(甲反乙反)
= 1P(甲正>乙正)
所以 2P(甲正>乙正)=1
由此得 P(甲正>乙正)=0.5
4. 若 A B, 则 P( A B) P( A) P( B)
P( A) P( B)
证明:P( A) P( B ( A B)) P( B) P( A B)
B A
思考:对一般性的A、B, P( A B) ?
的概率?
0
0.3 0.3 P( A) 0.3 1
1
几何方法的特点
随机现象的样本空间 是某个可度量区域(直线线段, 平面区域,空间立体等);试验进行一次,相当于向 该区域随机地投一点,点在区域内均匀分布,即点 落入 内任意区域A的可能性大小与A的量度成正比, 与A的形状或位置无关
则
• 在遇到的随机现象无法大量重复时,用主观方法做 决策和判断是适合的。主观方法至少是频率方法的 一种补充。 • 主观给定的概率要符合公理化的定义。
§3 概率的性质
从概率的非负性、正则性、可列可加性,可以导出概率的 一系列性质
1. P( ) 0
2. 有限可加性: 若有限个事件 Ai (i 1,2,, n) 互不相容 则 P( Ai ) P( Ai )
A B A AB P( A B) P( A) P( AB)
5. 概率的加法公式: P( A B) P( ) P( B) P( AB)
证明: ( A B) P( A ( B AB)) P
P( A) P( B AB) P( A) P( B) P( AB)
602 402 5 P( A) 2 60 9
60
20 0 20
60
例2 在长度为a的线段内任取两点,将线段一分为三,求 它们可以构成一个三角形的概率。
解 由于是将线段任意分成三段,由等可能性知是几何 概率问题,样本空间 为
( x, y) : 0 x a, 0 y a, 0 a x y a
设A=“所分线段能构成一个三角形”,因三角形任意 两边之和大于第三边,可得A为下图阴影部分
则 P( A)
a2 8 a2 2
1 4
五、确定概率的主观方法
现实世界中,有些随机现象不能重复或不能大量重复, 如何确定概率?
贝叶斯学派认为:一个事件的概率是人们根据经验
对该事件发生的可能性所给出的个人信念。这样给出 的概率称为主观概率。
i 1 i 1 n n
3. 对立事件公式: P( A) 1 P( A)
例1 抛一枚硬币5次,求既出现正面又出现反面的概率。
解 设事件A为“抛5次硬币既出现正面又出现反面”, 显然A的情况比较复杂, 则相对简单:5次全为正面 A (记为B)或全为反面(记为C)
P( A) 1 P A 1 PB C 1 P( B) P(C )
例 配对问题
练习
四、确定概率的几何方法
古典方法中,由于各样本点的等可能性,计算一个
事件的概率就相当于对事件中包含的样本点进行“计 数”,又因样本空间是有限的,计数容易进行
对古典方法进行拓展,保留等可能性,但允许无限
样本空间,就是几何方法(与几何形状有关)
引例 一个点随机地落在[0,1]区间,则A=“点落在0到0.3之间”
SA P( A) S
这个概率称为几何概率,它满足 概率的公理化定义
例1 两人约定下午6点到7点之间在校门口会面。先到者 可等候另一人20分钟,过时即离去。设二人到校门 的时间在6点至7点间是等可能的,求二人能会面的 概率。
解 用x、y分别表示两人在8点后到达校门的分钟数
则0≤x≤60, 0≤y≤60 两人能见面,即|x-y|≤20 即图中的阴影部分 能见面的概率为