用公式法解三个方程

合集下载

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。

公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。

一元三次方程求解

一元三次方程求解

1.卡丹公式法(卡尔达诺公式法)特殊型一元三次方程X^3+pX+q=0 (p、q∈R) 判别式Δ=(q/2)^2+(p/3)^3 【卡丹公式】X⑴=(Y1)^(1/3)+(Y2)^(1/3);X⑵= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;标准型方程中卡尔丹公式的一个实根X⑶=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。

标准型一元三次方程aX ^3+bX ^2+cX+d=0 令X=Y—b/(3a)代入上式,可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。

【卡丹判别法】当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。

2.盛金公式法三次方程应用广泛。

用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。

范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

【盛金公式】一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,总判别式:Δ=B^2-4AC。

当A=B=0时,盛金公式①:X⑴=X⑵=X⑶=-b/(3a)=-c/b=-3d/c。

当Δ=B^2-4AC>0时,盛金公式②:X⑴=(-b-Y⑴^(1/3)-Y⑵^(1/3))/(3a);X(2,3)=(-2b+Y⑴^(1/3)+Y⑵^(1/3))/(6a)±i3^(1/2)(Y⑴^(1/3)-Y⑵^(1/3))/(6a);其中Y(1,2)=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。

(完整版)用公式法解一元二次方程

(完整版)用公式法解一元二次方程

Х=
=
Х1=
Х2=0
(4)4x²+1=-4x 解:移项,得4x²+4x+1=0 a=4,b=4,c=1,b²-4ac=4²-4×4×1=0
X=
=-
X1=X2 =-
故对于方程ax²+bx+c=0 (a≠0)有下列关系: • 猜一猜:对于一般式ax²+bx+c=0 (a≠0)的
(1)当b根²与-4abc²->40a时c的,符方号程有有什两么个关不系相?等的根
用配方法解下列方程:
(1)x2+6x=1 x1 3 10, x2 3 10
(2)x2=6-5x
x1 6, x2 1
(3) -x2+4x-3=0
x1 3, x2 1
注意:解第(2)题时要先移项,变形成x2+5x=6 的形式;
如果方程的二次项系数为负,则先把二次 项系数化为正.
ቤተ መጻሕፍቲ ባይዱ
Q 4a2 0 当 b2 4ac 0 时
2
b
b 4ac
x 2a
4a 2
特别提醒

b
b2 4ac
x
2a
2a
b
b2 4ac
x
2a
一元二次方程 的求根公式
(a≠0, b2-4ac≥0)
例1.用公式法解方程
(1)3x2+5x-1=0 (2)x2+2x+2=0
x b
b因x21为4aacxb²+b2xba+2c=40a(c a≠0)的求根公x2 式 是b
b2 4ac 2a
2a (根2)当x1b=²-x42ac==0时2ba ,方程有两个相等的

公式法解一元二次方程全面版

公式法解一元二次方程全面版

25
x3 25 3 5
22
4
即: x1 2,x2
1 2
2 x 3 2 x 9 6 0
解: 原方 2 x 2 9 程 x 6 x 2 化 6 7 0为
整理 2x2 为 3x2: 10
a 2 ,b 3 ,c 21
公式法解一元二次方程
一、回顾
用配方法解方程:x2bxc0
x 解:移项得: 2bxc
x22b 2xb 22b 22c
则:
xb22
b2 4
c
当b2 c0时,方程有实.数解 4
二、公式的推导
a2x b x c0a0
解: a0x2 bxc0
关于一元二次方程 a2x bxc0a0 ,当
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2x b xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
x__ 5_2 _7 ____
即x1: _1 _x_ 2_ _-6,___
2、用公式法解方程
1 x 2 2 x 5 2 6 t 2 13 t 5 0 3 3 x 2 1 x 1 0
22
4 x 2 2 2 x 3 0
2
3、想一想:
b24ac32 4221
9168
177
x3 177
22
即 :x13417,x7 234177
例3 解方程: x2323x
解: 原方x 程 2 23 x 化 30 为:
a 1 ,b 23 ,c 3

公式法解方程练习题

公式法解方程练习题

公式法解方程练习题公式法是解方程的一种常用方法,通过将方程转化为一元二次方程,然后利用求根公式求解。

在这篇文章中,我们将给出一些公式法解方程的练习题,以帮助读者巩固和提高解方程的能力。

一、一元二次方程的基本形式一元二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为已知数,且a≠0。

练习题1:解方程x² - 4x + 3 = 0。

解:将方程与一般形式进行对比,可知a = 1,b = -4,c = 3。

根据一元二次方程的求根公式 x = (-b ±√(b²-4ac))/(2a),代入对应的数值,得:x = (4 ± √((-4)²-4×1×3))/(2×1)。

化简并计算,可得方程的解x₁ = 3,x₂ = 1。

练习题2:解方程2x² + 5x - 3 = 0。

解:将方程与一般形式进行对比,可知a = 2,b = 5,c = -3。

根据一元二次方程的求根公式 x = (-b ± √(b²-4ac))/(2a),代入对应的数值,得:x = (-5 ± √(5²-4×2×(-3)))/(2×2)。

化简并计算,可得方程的解x₁ ≈ -1.5,x₂ ≈ 0.5。

二、一元二次方程的特殊情况1. 完全平方形式当一元二次方程可以写成完全平方的形式时,可以直接利用平方根的性质来求解。

练习题3:解方程(x - 2)² = 9。

解:观察方程可知,它可以改写为(x - 2)² - 3² = 0。

利用平方根的性质,得到(x - 2) = ±3。

进一步化简,得到x = 5 或 x = -1。

2. 因式分解形式有些一元二次方程可以进行因式分解,然后利用零乘法求解。

练习题4:解方程x² - 5x + 6 = 0。

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。

公式法解方程详细步骤

公式法解方程详细步骤

先乘除,后加减;所以在加法或者减法算式里,与未知数相乘或相除的部分可以看成一个整体例题一:2.5+2x=9.5 2x看成一个整体,符合“加数+加数=和”解:2x=9.5-2.5 加数=和-另一个加数2x=7 化简后,可看成“因数×因数=积”x=7÷2 因数=积÷另一个因数x=3.5例题二:2.5+14÷x=9.5 14÷x看成一个整体,符合“加数+加数=和”解:14÷x=9.5-2.5 加数=和-另一个加数14÷x=7 化简后,可看成“被除数÷除数=商”x=14÷7 除数=被除数÷商x=2先算括号里的,再算括号外的;所以如果未知数在括号里的,可以把整个括号部分看成一个整体例题三:14.4÷(3-x)=12 3-x 看成一个整体,符合“被除数÷除数=商”解:3-x =14.4÷12 除数=被除数÷商3-x =1.2 化简后,可看成“被减数-减数=差”x=3-1.2 减数=被减数-差x=1.8例题四:14.4÷(x÷2)=12 x ÷2 看成一个整体,符合“被除数÷除数=商”解:x ÷2 =14.4÷12 除数=被除数÷商x ÷2 =1.2 化简后,可看成“被除数÷除数=商”x=1.2×2 被除数=除数×商x=2.4如果“被除数”、“除数”里都有未知数,就用“被除数=除数×商”进行计算例题五:(6.8+x)÷(4-x)=2 符合“被除数÷除数=商”解: 6.8+x=2(4-x)被除数=除数×商6.8+x=8-2x 去括号,把6.8+x看成一个整体,符合“差=被减数-减数”6.8+x+2x=8 差+减数=被减数6.8+3x=8 化简后,看成“加数+加数=和”3x=8-6.8 加数=和-另一个加数3x=1.2 化简后,可看成“因数×因数=积”x=1.2÷3 因数=积÷另一个因数x=0.46.8+x=8-2x 用教材里的“同加同减,同乘同除,等式仍相等”来理解6.8+x+2x=8 一般把前面符号是“-”或“÷”的未知数先化掉6.8+3x=8 接下来跟上面一样鸡兔同笼应用题解法对比鸡和兔共15只,脚共36条,求鸡和兔鸡和兔共15只,鸡脚比兔脚多12条,求鸡和兔假设全是鸡假设全是鸡脚有15 ×2=30条(即鸡脚和兔脚共30条)脚有15 ×2=30条(即鸡脚比兔脚多30条)与题目差36-30=6条与题目差30-12=18条一只兔子换一只鸡,则多4-2=2条脚一只兔子换一只鸡,则鸡脚减兔脚的差值少4+2=6条换进去的兔子数量6÷2=3只(也就是调整3次)换进去的兔子数量18÷6=3只(也就是调整3次)鸡的数量15-3=12只鸡的数量15-3=12只解:设鸡x只,则兔有(15-x)只解:设鸡有x只,则兔有(15-x)只2x+4(15-x)=36 2x-4(15-x)=1260-2x=36 6x-60=122x=60-36 6x=60+122x=24 6x=72x=12 x=12兔:15-12=3(只)兔:15-12=3(只)四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,有多少名男生?假设:全是男生,则种了52×3=156(棵)解:设有x名男生,则女生有(52-x)名比较:156-36=120(棵)3x-2(52-x)=36调整(男生换女生):120÷(3+2)=24(次),5x-104=36则有女生24名,男生:52-24=28(名)5x=104+36检验:28×3 -24×2=36(棵)x=140÷5鸡兔同笼:“设鸡求兔,设兔求鸡”;x=282个小和尚共用1根扁担挑一桶水,1个大和尚用1根扁担挑2桶水,现在共有27根扁担挑了39桶水,则大小和尚各多少人?设扁担全是大和尚用的,则有大和尚27人设扁担全是小和尚用的,则有小和尚27×2=54人应挑水27×2=54桶应挑水27桶比实际多54-39=15桶比实际少39-27=12桶一根扁担换成小和尚用,则大和尚少1人,一根扁担换成大和尚用,则小和尚少2人,小和尚多2人,水少2-1=1桶大和尚多1人,水多2-1=1桶由桶差,知要换次数15÷1=15次由桶差,知要换次数12÷1=12次则小和尚人数15×2=30人则大和尚人数12×1=12人大和尚人数27-15×1=12人小和尚人数54-12×2=30人解:设大和尚有x人,则小和尚有2(27-x)人解:设小和尚有x人,则大和尚有(27-x÷2)人2x+2(27-x)÷2=39 x÷2+2(27-x÷2)=39x+27=39 54-x÷2=39x=39-27 x÷2=54-39x=12 x=30小和尚:2×(27-12)=30(人)大和尚:27-30÷2=12(人)。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。

1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m. 例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

九年级数学上册公式法解方程

九年级数学上册公式法解方程
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+ x=-
配方,得:x2+ x+( )2=- +( )2
即(x+ )2=
∵b2-4ac≥0且4a20
∴ ≥0
直接开平方,得:x+ =±
即x=
∴x1= ,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
二、探索新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1= ,x2=
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
3x2-5x-2=0
a=3,b=-5,c=-2
b2-4ac=(-5)2-4×3×(-2)=490
x=
x1=2,x2=-
(3)将方程化为一般形式
3x2-11x+9=0
a=3,b=-11,c=9
b2-4ac=(-11)2-4×3×(3)a=4,b=-3,c=1
b2-4ac=(-3)2-4×4×1=-70
分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
① 或② 或③
解:(1)存在.根据题意,得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0

公式法解一元二次方程的例题20道

公式法解一元二次方程的例题20道

公式法解一元二次方程的例题20道一元二次方程是中学数学学习中的重要内容,公式法是解一元二次方程的一种常见方法。

通过求根公式,可以解任意形式的一元二次方程,这在代数学习中具有重要意义。

接下来,我将结合公式法解一元二次方程的例题,带你一起深入理解这一知识点。

1. 解题思路在使用公式法解一元二次方程时,我们首先要将方程化为标准形式:$ax^2+bx+c=0$,然后利用求根公式:$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$来求得方程的解。

在实际解题中,我们需要注意判别式$\Delta=b^2-4ac$的正负与零,以确定方程的解的个数及性质。

2. 例题1已知一元二次方程$2x^2-5x+2=0$,求方程的根。

解:根据公式法,首先计算判别式$\Delta=(-5)^2-4\times2\times2=1$,由于$\Delta>0$,则方程有两个不相等的实根。

代入求根公式,得$x_1=\frac{5+\sqrt{1}}{4}=\frac{7}{4}$,$x_2=\frac{5-\sqrt{1}}{4}=\frac{3}{2}$。

方程的解为$x_1=\frac{7}{4}$,$x_2=\frac{3}{2}$。

3. 例题2求一元二次方程$3x^2-4x+1=0$的根。

解:计算判别式$\Delta=(-4)^2-4\times3\times1=0$,由于$\Delta=0$,则方程有两个相等的实根。

代入求根公式,得$x_1=x_2=\frac{4}{6}=\frac{2}{3}$。

方程的解为$x_1=x_2=\frac{2}{3}$。

4. 例题3已知一元二次方程$4x^2-12x+9=0$,求方程的根。

解:计算判别式$\Delta=(-12)^2-4\times4\times9=-48$,由于$\Delta<0$,则方程没有实数根,只有一对共轭复数根。

代入求根公式,得$x_1=\frac{12+\sqrt{-48}}{8}=1+\frac{\sqrt{3}}{2}i$,$x_2=\frac{12-\sqrt{-48}}{8}=1-\frac{\sqrt{3}}{2}i$。

解方程 公式法

解方程 公式法

解方程公式法
公式法可以用来解一元一次方程和一元二次方程。

1. 一元一次方程:形如ax + b = 0的方程
解法:
x = -b/a
2. 一元二次方程:形如ax^2 + bx + c = 0的方程
解法:
x = (-b ± √(b^2 - 4ac)) / 2a
需要注意的是,使用公式法解方程时,需要先判断方程的解是否存在。

对于一元一次方程,只要系数a不为0,方程就有解。

对于一元二次方程,需要计算判别式D = b^2 - 4ac,当D > 0时,有两个不相等的实数解;当D = 0时,有一个实数解;当
D < 0时,没有实数解。

如果方程无法用公式法解出,可以考虑使用其他解法,如因式分解、配方法、全参数代换法等。

用公式法解方程

用公式法解方程

随堂 练习 用公式法解下列方程:
(1)2x2-9x+8=0;
(2)9x2+6x+1=0;
(3)16x2+8x=3.
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实 数解
这是收获的 时刻,让我们 共享学习的 成果
一、由配方法解一般的 一元二次方程 ax2+bx+c=0 (a≠0) 若 b2-4ac≥0 得
21
2
即 : x1 9 x2 2
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式,并写出 a、b、c
b 的值。 2
2、求出
4ac的值,
特别注意:当 b2 4ac 0 时无解
3、代入求根公式 : x b b2 4ac 2a
4、写出方程的解: x1、x2
b b2 4ac x
求根公式 : X=
这是收获的 二、用公式法解一元二次 时刻,让我 们共享学习 方程的一般步骤: 的成果 1、把方程化成一般形式。并写
a,b,c的值。2、求出b2-4ac
的值。3、代入求根公式 :
X=
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
这是收获的 时刻,让我 们共享学习 的成果
解:去括号,化简为一般式:
3x2 7x 8 0
这里 a 3、 b= - 7、 c= 8
b2 4ac ( 7)2 4 3 8
49 96 - 47 0
方程没有实数解。
用公式法解下列方程
1) 2x2+x-6=0 2) x2 +4 x =2 3) 5 x2 - 4 x -12 =0 4) 4 x2 +4 x+ 10 =1 -8 x

公式法解方程

公式法解方程

解:∵a=1,b=-4,c=-7 Δ= b2-4ac=(-4)2-4×1×(-7)
=44>0 ∴ 方程有两个不相等的实数根。
x b b2 4ac 2a
(4) 44 2 11 21
x1 2 11, x2 2 11
∴ 方程有两个相等的实数根。
x1

x2
=36>0
=-4<0
∴ 方程有两个不相等的实数根。
b b2 4ac x
2a
方程无实数根
(4) 36 4 6
25
10
x1

1,
x2


1 5
22x2 2 2x 1 0
解:∵a=2,b= ,c=1, ∴Δ =b²-4ac =( )²-4×2 ×1=0 ∴方程的两个相等的实数根
Δ= b2-4ac=12-4×1×(-12)
a=1,b=2,c=-3
=49>0
Δ= b2-4ac=22-4×1×(-3)
x b b2 4ac 2a
1 49 21
=16>0
b b2 4ac 2 16
x

2a
21
x1 3, x2 1
x1 4, x2 3
解:(1)


课 时 学
x 1 25 1 5 ,
21
2

2 x2 3x 1 0
4 倍 速 课 时 学 练
3 3x2 6x 2 0
倍 速 课 时 学 练
4 4x2 6x 0
倍 速 课 时 学 练
5 x2 4x 8 4x 11

公式法求解

公式法求解

要点归纳 公式法解方程的步骤
1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数; 3.计算: b2-4ac的值; 4.判断:若b2-4ac ≥0,则利用求根公式求出;
若b2-4ac<0,则方程没有实数根.
当堂练习 1.解方程:x2 +7x – 18 = 0.
解:这里 a=1, b= 7, c= -18.
注意
二 公式法解方程
典例精析
例1 用公式法解方程 5x2-4x-12=0. 解:∵a 5,b 4,c 12,
x b b2 4ac 2a
b2-4ac=(-4)2-4×5×(-12)=256>0.
∴x b b2 4ac 2a
(4) 256 4 16 = 2 8
25
10
5
x1
2a
例3 解方程:x2 x 1 0(精确到0.001).
解: a 1,b 1,c 1,
b2 4ac 12 41 (1) 5 0
x 1 5 2
用计算器求得: 5 2.2361,
x1 0.618, x2 1.618.
例4 解方程:4x2-3x+2=0
解:∵ a 4,b 3,c 2. ∴b2 4ac (3)2 4 4 2 9 32 23 0. ∵在实数范围内负数不能开平方, ∴方程无实数根.
17.2 一元二次方程的解法
17.2.2 公式法
学习目标
1.经历求根公式的推导过程.(难点) 2.会用公式法解简单系数的一元二次方程.(重 点)
复习引入
1.用配方法解一元二次方程的步骤有哪几步?
2.如何用配方法解方程2x2+4x+1=0?
一 求根公式的推导
合作探究

一元二次方程的解法(三)公式法(课件)数学九年级上册(人教版)

一元二次方程的解法(三)公式法(课件)数学九年级上册(人教版)
D.a 且 a 0
8
8
4
8
2
【分析】∵一元二次方程ax2-x+2=0有实数根,
∴b 4ac -1 -4a 2 1 8a 0 ,且a≠0,
1
解得 a ≤ 且a≠0.
8
2
2
例3.已知关于x的一元二次方程 kx 2 (k 3) x 3 0(k 0).求证:
若b2-4ac<0,则方程没有实数根.
用公式法解下列方程:
(1)x2+x-6=0
(2)x2-
1
3x- =0
4
解:(1) a=1,b=1,c=-6.
Δ=b2-4ac=12-4×1×(-6)=25>0
方程有两个不等的实数根
b b 2 4ac 1 25 1 5
x


2a
2 1
2

,得 k 且 k 1
4
Δ 1 4(k 1) 0
解得
且 k 1.
【点睛】一元二次方程有实根,说明方程可能有两个不等实根或
两个相等实根两种情况.
已知一元二次方程 ax x 2 0 有实根,a的取值范围是( B)
1
1
1
1
a≤ 且a 0
A.a ≤
B.
C.a
将x=2代入 x 2 kx k 1 0 有
4-2k+k-1=0
解得k=3
2
则方程为 x 3x 2 0
解得x1=2,x2=1
等腰三角形三边长为2,2,1,符合三角形三边关系.
2
例4.已知关于x的一元二次方程 x kx k 1 0.
(1)求证:无论k取何值,该方程总有实数根;

公式法解方程

公式法解方程

2 解:将方程化为一般式,得2x2+5x-3=0与b -4ac 有什么关系?
a=2
b=5 c= -3
2、用公式法解一元二次方程的
一般步骤是什么?
①、把方程化成一般形式。 并
∴ b2-4ac=52-4×2×(-3)=49
∴x= =
写出a,b,c的值。
②、求出b2-4ac的值。 ③、代入求根公式 :
=
即 x1= - 3 x2 =
X= (a≠0, b2-4ac≥0)
④、写出方程的解:
x1=?, x2=?
用公式法解下列方程
2x x 6 0
2
x 4x 2
2
小游戏
一组同学写方程,另一组判断方程 根的情况,或者其中一个同学写方 程,其他几个判断方程根的情况.
总结归纳
由配方法解一般的一元 二次方程 ax2+bx+c=0 (a≠0) 若 b2-4ac≥0 得
b b 4ac 2 x (b 4ac 0) 2a
2
(口答)填空:用公式法解方程
3x2+5x-2=0
解:a= 3 ,b= 5 ,c = -2 . b2-4ac=52-4×3×(-2) = 49 . x= .

=
=
.
x1 =
-2 ,
x2=
例.用公式法解方程2x2+5x=3
1、一元二次方程实数根的情况

移 配 即
项 方
x
2

b a
x
c a
x2 2 x
b b 2 b 2 c ( ) ( ) 2a 2a 2a a
2
( x
b ) 2 a

用求根公式法解一元二次方程

用求根公式法解一元二次方程

用求根公式法解一元二次方程一元二次方程是数学中常见的一类方程,它的一般形式为ax^2+bx+c=0,其中a、b、c为已知常数,x为未知数。

求解一元二次方程的方法有很多,其中一种常用的方法是求根公式法。

求根公式法是通过使用一元二次方程的根的公式来求解方程。

一元二次方程的根的公式如下:x = (-b±√(b^2-4ac))/(2a)其中,±表示两个解,一个为加号,一个为减号。

根据这个公式,我们可以计算出一元二次方程的解。

下面我们通过一个具体的例子来说明求根公式法的应用。

例题:解方程x^2-5x+6=0解:首先,我们将方程的系数代入根的公式中,得到:x = (5±√((-5)^2-4*1*6))/(2*1)化简得:x = (5±√(25-24))/2继续化简得:x = (5±√1)/2由于√1=1,所以我们可以得到:x1 = (5+1)/2 = 3x2 = (5-1)/2 = 2因此,方程x^2-5x+6=0的解为x1=3和x2=2。

通过这个例子,我们可以看到求根公式法的求解过程。

首先,我们将方程的系数代入根的公式中,然后化简得到最终的解。

这种方法简单直接,适用于所有的一元二次方程。

需要注意的是,当方程的判别式b^2-4ac小于0时,方程没有实数解,此时方程的解为虚数解。

此时,我们可以通过计算出的根的实部和虚部得到方程的解。

求根公式法是解一元二次方程的常用方法之一,它的原理简单清晰,适用范围广泛。

在实际问题中,我们经常需要求解一元二次方程,求根公式法可以帮助我们快速准确地求解方程的解。

除了求根公式法外,还有其他方法可以用来解一元二次方程,比如配方法、因式分解法等。

每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解方程。

求根公式法是解一元二次方程的一种简单有效的方法。

通过代入方程的系数,利用根的公式进行计算,可以得到方程的解。

在实际应用中,我们可以根据具体问题选择合适的求解方法,以便更好地解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档