解三角形章末检测试卷三(第11章)2021新高考
第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)
第11章三角形学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8【答案】D【解析】【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=3608 45︒=︒,∴这个正多边形的边数是8.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.2.如图,要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.1根B.2根C.3根D.4根【答案】A【解析】【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【详解】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选A .【点睛】此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.3.如图,△ABC 中,AE ⊥BC 于点E,AD 为BC 边上的中线,DF 为△ABD 中AB 边上的中线,已知AB=5cm,AC=3cm,△ABC 的面积为12cm 2.求△ABD 与△ACD 的周长的差( )A .3B .4C .2D .1【答案】C【解析】【分析】根据中线的性质得到BD=CD ,根据周长的计算公式计算即可;【详解】∵AD 为BC 边上的中线,∴BD=CD ,∴△ABD 与△ACD 的周长的差=(AB+AD+BD)−(AC+AD+CD)=AB −AC=2cm.故选择C.【点睛】本题考查三角形中线的性质,解题的关键是掌握三角形中线的性质.4.如图,在ABC ∆中,点,D E 分别为,BC AD 的中点,2EF FC =,若ABC ∆的面积为a ,则BEF ∆的面积为( )A .6aB .4aC .3aD .38a 【答案】C【解析】【分析】根据高相同,底成比例的两个三角形的面积也成比例即可得出答案.【详解】∵ABC ∆的面积为a ,D 为BC 的中点 ∴11S S S 22ABD ACD ABC a === ∵E 为AD 的中点 ∴11S S S 24ABE BED ABD a ===同理:11SSS 24ACE CED ACD a === ∴1S S S 2CBE BED CED a =+= ∵EF=2FC∴S2S BEF BFC = 即21S 33BEF BEC S a == 故答案选择C.【点睛】本题考查的是三角形的基本概念.5.下列命题中:①长为5cm 的线段AB 沿某一方向平移10cm 后,平移后线段AB 的长为10cm ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两直线平行;⑤两个角的两边分别平行,则这两个角相等,真命题个数有()A.1B.2C.3D.4【答案】A【解析】【分析】利用平移的性质、三角形高的定义、多边形的外角与内角、平行线的性质分别判断出正确答案的个数,即可得出答案.【详解】①:平移不改变图形的形状和大小,故选项①错误;②:直角三角形的高在三角形的边上,钝角三角形的高在三角形的外面,故选项②错误;③:六边形的外角和360°,六边形的内角和720°,故选项③正确;④:平行于同一条直线的两条直线平行,故选项④正确;⑤:两个角的两边分别平行,则这两个角相等或互补,故选项⑤错误.因此正确的个数有两个,答案选择A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平移的性质、三角形的高的定义、多边形的外角与内角、平行线的性质等知识,难度不大.6.如图,在中,,是的角平分线交于点,于点,下列四个结论中正确的有()①②③④A.个B.个C.个D.个【答案】C【解析】【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,∴DE=DC,故①正确;又∵∠C=∠BEC=90°,BD=BD,∴Rt△BCD≌Rt△BED(HL),故④正确;∴BE=BC,故②正确;∵Rt△ADE中,AD>DE=CD,∴AD=DC不成立,故③错误;故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.等腰直角三角形的腰长为2,该三角形的重心到斜边的距离为()A.223B.23C.23D.13【答案】D【解析】【分析】作等腰直角三角形底边上的高并根据勾股定理求解,再根据三角形重心三等分中线的性质即可求出.【详解】如图,根据三线合一的性质,底边上的中线CD=2sin45°=1,∵三角形的重心到三角形顶点的距离等于中点距离的2倍,∴重心到AB 的距离=1×13=13. 故选D.【点睛】此题考查等腰直角三角形,三角形的重心,解题关键在于画出图形8.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°【答案】D【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠,∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12【答案】B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180°【答案】D【解析】【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 11.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°【答案】B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°.故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.12.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm 【答案】D【解析】【分析】先根据三角形的三边关系确定第三边的范围,再判断各选项即可.【详解】解:∵有两条线段长度分别为:2cm ,5cm ,∴设第三条边长为acm ,故5﹣2<a <5+2,则3<a <7,故再添加一条线段长为4cm 时,能构成一个三角形.故选D .【点睛】本题考查了三角形的三边关系,三角形的三边满足:任意两边之和大于第三边,任意两边之差小于第三边.二、填空题13.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.【答案】①③④【解析】【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°, ∵∠ACB =∠BAD∴90°-∠ACB=90°-∠BAD ,即∠CAD=∠B, ∵三角形ABC 的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE 平分∠CAD ,EF ∥AC ,∴∠CAE=∠EAD=∠AEF ,∠C=∠FEB=∠BAD ,②错误,∵∠BAE=∠BAD+∠DAE ,∠BEA=∠BEF+∠AEF,∴∠BAE =∠BEA ,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF ,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.14.如图,E ∠是六边形ABCDE 的一个内角.若120E ∠=︒,则A B C D F ∠+∠+∠+∠+∠的度数为________.【答案】600︒【解析】【分析】根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720° ∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600° 故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°. 15.如图,直线12l l ,1110∠=︒,2130∠=︒,那么3∠的度数为___________度.【答案】60【解析】【分析】如图利用平行线的性质求出∠4,再根据三角形的外角的性质解决问题即可.【详解】解:∵l 1∥l 2,∴∠1+∠4=180°,∵∠1=110°,∴∠4=70°,∵∠2=∠3+∠4,∠2=130°,∴∠3=130°−70°=60°,故答案为60.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.,点E是AC中点,若△CDE面积为1,则△ABC的16.如图,△ABC中,点D在BC上,且BD2DC面积为____.【答案】6【解析】【分析】根据等底同高的两个三角形的面积公式得到△ADC的面积,然后根据△ABC与△ADC的底边的数量关系来求△ABC.【详解】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.【点睛】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.三、解答题17.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】【分析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB,再利用三角形内角和可求得∠A.(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC、∠ACB 的三等分线交于点E、D设∴∠=∠=∠=∠=∠=∠=;ABE EBD DBC x ACE ECD DCB y,, ∠ABC=3x,∠ACB=3y∴∠=∠=22EBC x ECB y∠∠+∠=∠+∠+∠=1+180,2180EBC DCB ECB DBC130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360° 即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60° (2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.18.如图是某厂生产的一块模板,已知该模板的边//AB CF ,//CD AE ,按规定AB ,CD 的延长线相交成70︒角,因交点不在模板上,不便测量,这时师傅规定徒弟只需测一个角,便知道AB ,CD 的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.【答案】测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,见解析.【解析】【分析】连接AF ,由AB ∥CF 可证明360BAE E EFC ∠+∠+∠=︒,设AB ,CD 延长线交于点M ,若∠M =70°,则在五边形AEFCM 中,∠C =540°-360°-70°=110°,即当∠C =110°时,可知AB ,CD 的延长线的夹角合乎规定,再按此思路整理写出即可.【详解】解:测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,即知模板中AB ,CD 的延长线的夹角是否符合规定,理由如下:连接AF .因为//AB CF ,所以180BAF AFC ∠+∠=︒.又因为180EAF E AFE ∠+∠+∠=︒,所以360BAE E EFC ∠+∠+∠=︒.若110C ∠=︒,则AB ,CD 延长线的夹角∠M 54036011070=︒-︒-︒=.即符合规定;同理,若连接CE ,当110A ∠=︒时,也可说明AB ,CD 延长线的夹角为70°,符合规定.【点睛】此题考查了多边形的内角和和平行线的性质的实际应用,解题的关键是通过连接AF 架起已知和所求的桥梁,进而解决问题.19.(1)如图,四边形ABCD 中,30A ∠=︒,60B ∠=︒,20C ∠=︒,则ADC ∠=________. (2)对于任意的凹四边形ABCD ,猜想A ∠,B ,C ∠与ADC ∠的大小关系,并证明.(3)一个零件的形状如图所示,按规定,A ∠应等于40︒,B 与C ∠应分别是70︒和25︒,工人检验140ADC ∠=︒,就断定这个零件不合格,请你运用上述结论,说明零件不合格的理由.【答案】(1)110︒;(2)ADC A B C ∠=∠+∠+∠,见解析;(3)见解析.【解析】【分析】(1)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ; (2)连接BD 并延长,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC.(3)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ,然后即可判断.【详解】(1)延长AD 交BC 于E ,∵∠A=30°,∠B=60°,∴∠AEC=∠A+∠B=30°+60°=90°,∵∠C=20°,∴∠ADC=∠C+∠AEC=20°+90°=110°. (2)ADC A B C ∠=∠+∠+∠.证明:连接BD 并延长,如图所示.在ABD △中,13∠=∠+∠A ,在BCD 中,24C ∠=∠+∠,1234A C ∴∠+∠=∠+∠+∠+∠,即ADC ABC A C ∠=∠+∠+∠.(3)延长AD 交BC 于E ,∵∠A=40°,∠B=70°,∴∠AEC=∠A+∠B=40°+70°=110°,∵∠C=25°,∴∠ADC=∠C+∠AEC=25°+110°=135°. 又∵∠ADC=140°,∴这个零件不合格.【点睛】此题考查多边形内角与外角了,三角形的外角性质,解题关键在于作辅助线.20.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD= 度;(2)求∠CAE的度数.【答案】(1)40;(2)20°【解析】【分析】(1)直接根据三角形内角和定理求出∠BAD的度数;(2)先根据图形折叠的性质求出∠AED的度数,再由三角形外角的性质即可得出结论.【详解】(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°-90°-50°=40°.故答案为40;(2)∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED-∠C=50°-30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S△ABE=S△BCE,∴S△ABD=S△BCE=12S△ABC=12×20=10(cm2).(2)△AOE与△BOD的面积相等,理由如下.根据(1)可得:S△ABE=S△ABD,∵S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,∴S△AOE=S△BOD.【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;22.如图为一个正n 边形的一部分,AB 和DC 延长后相交于点P ,若∠BPC=120°,求n .【答案】n=12.【解析】试题分析:因为是正多边形,所以外角相等,根据∠BPC =120°,利用三角形内角和可求出正多边形的外角,再利用多边形外角等于360°,即可求出正多边形的边数. 试题解析:∵PB =PC ,∠BPC =120°, ∴∠PBC =∠PCB =12(180°﹣∠BPC )=30°, 即正n 边形的一个外角为30°, ∴n =36030︒︒=12. 23.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【答案】(1)()6,4,0,4-;(2)2312x y -=;(3)不变,2OFC FCG OEC∠+∠=∠. 【解析】【分析】(14b -=0,可得,a b 的值,再根据AB=OC ,且C 在y 轴负半轴上,可得C 的坐标; (2)过点P 分别作P M ⊥x 轴于点M ,P N ⊥y 轴于点N ,连接OP ,根据BOC POB POC SS S =+,可得,x y 满足的关系式;(3)由//BC OA ,证明,AOB OBC ∠=∠结合已知条件可得,BOG CBO ∠=∠ 再利用三角形的外角的性质证明∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,得到∠OFC+∠FCG =2∠OEC ,从而可得结论.【详解】解:(1)∵ 40b -=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上,()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP .∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y -∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯=2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3) OFC FCG OEC∠+∠∠的值不变,值为2. 理由如下:∵线段OC 是由线段AB 平移得到,∴//,OA CB ,∴∠AOB=∠OBC ,又∵∠BOG=∠AOB ,∴∠BOG=∠OBC ,根据三角形外角性质,可得∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,,OEC FCG OBC ∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC ) =2∠OEC ,∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠; 所以:OFC FCG OEC ∠+∠∠的值不变,值为2.【点睛】本题属于几何变换综合题,主要考查了非负数的性质,坐标与图形,平行线的性质以及平移的性质,三角形的外角的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解. 24.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >. (1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.【答案】(1)36c <<;(2)5c =.【解析】【分析】(1)根据三角形两边之和大于第三边,两边之差小于第三边即可求解;(2)根据23a b c +=-得三角形的周长为33-c 等于12,即可求出c 的值.【详解】解:(1)∵a ,b ,c 分别为ABC ∆的三条边,且23a b c +=-,26a b c -=-,∴23,26,c c c c ->⎧⎨-<⎩ 解得36c <<.故答案为:36c <<.(2)∵ABC ∆的周长为12,23a b c +=-,∴3312a b c c ++=-=,解得5c =.故答案为:5c =.【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.。
20212022学年人教版八年级数学上册第十一章三角形单元测试卷含答案.docx
第十一章三角形一、选择题(每小题3分,共30分)1.已知三角形的三边长分别是3, 8, %;若x的值为偶数,则x的值有()A. 6个B. 5个C. 4个D. 3个2.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D. A、B、。
都可以4.一个多边形有14条对角线,那么这个多边形的边数是()A. 5B. 6C. 7D. 85.如图,已知ZA=30° , ZB£F=105° , ZB=20° ,则ZD=()DA. 25°B. 35°C. 45°D. 30°6.如图所示,AD是AABC的高,延长BC至E,使CE=BC, AABC的面积为Si, AACE的面积为S2,那么()A. Si>S2B. Si=S2C. Si<S2D.不能确定7.下列图形中具有稳定性有()9. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个 锐角,③有两个内角为50°和20°的三角形一定是钝角三角形,④直角三角形中两锐角 的和为90° ,其中判断正确的有( )10. 如图所不,Z1+Z2+Z3+匕4=()二、填空题(每小题3分,共18分)11. 若一个两边相等的三角形的两边分别是4cm 和9cm,则其周长是 .12. 一个多边形的每一个内角都相等,且比它的一个外角大100° ,则边数〃= 13. 如图△ABC 中,AB=AC, AD=AE, ZBAD=40° ,则ZEDC=.14. 如图所不,/ 1+N2+匕3+匕4+匕5+匕6=(1) (2) A. 2个8.在△ABC 中,若ZA=ZC=AZB,3A. 30°B. 36°C. 72°D. 108°A. 1个B. 2个C. 3个D. 4个C. 480°D. 540°D. 5个则匕A 的度数为()⑶ (4)B. 3个15. AABC 中,ZA=40° ,高BE 、CF 所在直线交于点。
第十一章三角形单元检测卷-2021-2022学年人教版数学八年级上学期(word版 无答案)
2021-2022学年度人教版数学八年级上第十一章三角形单元检测卷一、选择题:1.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个2.如图,要使五边形木架不变形,至少要再钉上几根木条()A.1根B.2根C.3根D.4根3.一个多边形的内角和是外角和的2倍,则这个多边形是( )A. 四边形B. 五边形C. 六边形D. 八边形4.下列说法中错误的是()A.三角形的一个外角大于任何一个内角B.边数为n的多边形内角和是(n﹣2)×180°C.有一个内角是直角的三角形是直角三角形D.三角形的中线、角平分线、高线都是线段5.如图,△ABC中,延长BC到点D,若∠ACD=123°,∠B=45°,则∠A为()A.12°B.88°C.78°D.68°6.如图,在△ABC中,∠A=50°,则∠1+∠2的度数是()A.180°B.230°C.280°D.无法确定二、填空题7.如果一个多边形的每一个外角都等于40°,那么该多边形是边形.8.从一个多边形的某个顶点出发,连接这个顶点与其余的顶点,将这个多边形分成了10个三角形,则这个多边形的边数为________.9.已知一个三角形三边长为a、b、c,则|a﹣b﹣c|﹣|a+b﹣c|=.10.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=105°,则∠DAC的度数为.11.如图,在△ABC中,OB,OC分别为∠ABC和∠ACB的平分线,且∠A=68°,则∠BOC=.12.如图,直角三角形ABC中,∠ABC=90°,BD⊥AC于点D,AB=3,AD=1.8,BD=2.4,DC =3.2,BC=4,则点A到BD的距离是.13.如图,CD、BD分别平分∠ACE、∠ABC,∠A=80°,则∠BDC=()14.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.三、解答题15.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m 米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值范围.16.如图,点D、B、C在同一条直线上,∠A=60∘,∠C=50∘,∠D=25∘.求∠1的度数.17.有一张长方形桌面,它的内角和是360∘,现在锯掉它的一个内角,剩下的残余桌面所有的内角的和是多少度?18.定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.。
2023八年级数学上册第十一章三角形章末培优专练作业课件新版新人教版
)
A.220° B.240° C.260° D.280°
答案
5.D 如图,连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB=360°-80°=280°.
6. [2019铁岭中考]如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,
∴∠DCE=∠ACB=70°.如图,连接CF并延长至点M,可知
∠DFM=∠D+∠DCF,
∠EFM=∠E+∠ECF,∴∠EFD=∠DFM+∠EFM=∠D+∠DCF+
4. 一题多解如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形
BCDEMN,则∠1+∠2的度数为 (
)
A.210° B.110° C.150° D.100°
答案
4.A
解法一 ∵∠A+∠B+∠C+∠D+∠30°,∴∠B+∠C+∠D+∠E=510°.
章末培优专练
1. [2021绥化中考]一个多边形的内角和是外角和的4倍,则这个多边形是 (
)
A.八边形 B.九边形
C.十边形
D.十二边形
答案
1.C 设这个多边形的边数为n,则(n-2)×180°=360°×4,解得n=10,故这个多边形是
十边形.
2. [2021盐城中考]将一副三角板按如图方式重叠,则∠1的度数为 (
)
A.45° B.60° C.75° D.105°
2021年新人教版数学八年级上人教新课标第十一章全等三角形全章检测题
数学:第11章全等三角形全章检测题(人教新课标八年级上)一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB的平分线的交点3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°5.所对的角的关系是( )A.相等B.不相等C.互余或相等 6,如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD A.∠1=∠EFD B.BE =EC C.BF =DF =7.如图所示,BE ⊥AC 于点D ,且AD =CD ,A.25° B.27° C.30°A D A CB O DC B AA B C E F A BC D F EO 8.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB于F ,则( )A.AF =2BFB.AF =BFC.AF >BFD.AF <BF9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA10.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°二、填空题(每小题3分,共24分)11. (08牡丹江)如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).12.如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由 可得△AFC ≌△AEB .13.如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .DOC B AFED C B A A EC B A ′ E ′D14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.16.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有______对.17.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.18.如图,AD ,A ′D ′分别是锐角三角形ABC 和锐角三角形A ′B ′C ′中BC ,B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写一个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.20. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.21.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③A B C D A ′ B ′ D ′ C ′ D C E量出DE 的长a 米,FG 的长b 米.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.23.如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.24.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.25.(1)如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?A D E CB F G G D F AC B E GD FA CB E F E DC B AG参考答案:一、选择题1.A2.D3.C 提示:∵△ABD ≌△CDB ,∴AB =CD ,BD =DB ,AD =CB ,∠ADB =∠CBD ,∴△ABD 和△CDB 的周长和面积都分别相等.∵∠ADB =∠CBD ,∴AD ∥BC .4.D5.A6.D7.B 解析:在Rt △ADB 与Rt △EDC 中,AD =CD ,BD =ED ,∠ADB =∠EDC =90°,∴△ADB ≌△CDE ,∴∠ABD =∠E .在Rt △BDC 与Rt △EDC 中,BD =DE ,∠BDC =∠EDC =90°,CD =CD ,∴Rt △BDC ≌Rt △EDC ,∴∠DBC =∠E .∴∠ABD =∠DBC =12∠ABC ,∴∠E =∠DBC =12×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD =∠DBC =∠E. 8.B 9.D 10. C二、填空题11. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 12.SAS 13.60°,10 14. 14提示:角平分线上的一点到角的两边的距离相等.15.互补或相等 16.5 17.35° 18.答案不惟一三、解答题19.解:∵△DEF ≌△MNP ,∴DE =MN ,∠D =∠M ,∠E =∠N ,∠F =∠P ,∴∠M =48°,∠N =52°,∴∠P =180°-48°-52°=80°,DE =MN =12cm.20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o ,因为EB ⊥AC ,所以∠E+∠ECB=90o (直角三角形两锐角互余).所以∠ACD=∠E(同角的余角相等).因为AD ⊥AC ,BE ⊥AC(已知),所以∠A=∠EBC=90o (垂直的定义).在Rt △ACD 和Rt △BEC 中,A EBC ACD E CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以Rt △ACD ≌Rt △BEC(AAS).所以AD=BC ,AC=BE(全等三角形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE.21.解:DE =AE .由△ABC ≌△EDC 可知.22.证明∵DA ⊥OM ,EB ⊥ON ,∴∠OAD=∠OBE=90°.在△OAD 和△OBE 中,,,(),OAD OBE AOD BOE OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩公共角∴△OAD ≌△OBE(ASA),∴OD=OE ,∠ODA=∠OEB ,∴OD-OB=OE-OA .即BD=AE . A G F C B D E 图1 图2。
《第11章三角形》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册
2021-2022学年人教版八年级数学上册《第11章三角形》同步专题提升训练(附答案)1.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.如图中三角形的个数是()A.6B.7C.8D.93.如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A.1个B.2个C.3个D.4个4.如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的()A.2B.13C.16D.185.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°6.如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°7.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是()A.10°B.12°C.15°D.18°8.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°9.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有()A.1个B.2个C.3个D.4个10.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.911.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠E=90°,则∠BDC 的度数为()A.120°B.125°C.130°D.135°12.一副三角板如图放置,则∠1+∠2的度数为()A.22.5°B.30°C.45°D.60°13.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=∠CGE.其中正确的结论的个数是()A.1B.2C.3D.414.若多边形的边数由n增加到n+1(n为大于3的正整数),则其内角和的度数()A.增加180°B.减少180°C.不变D.不能确定15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.280°B.285°C.290°D.295°16.若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是三角形.17.木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是.18.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为.19.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为,α=度.20.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB=度,若∠AIB=155°,则∠C=度.21.如图,在△ABC中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE的度数.22.如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.24.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.25.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案1.解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.2.解:∵图中三角形有:△ECA,△EBD,△FBA,△FCD,△AFD,△ABD,△ACD,△AED,∴共8个.故选:C.3.解:∵△ABC的角平分线AD、中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②AO≠OD,所以BO不是△ABD的中线,故②错误;③在△ADC中,AE=CE,DE是△ADC的中线,故③正确;④∠ADE不一定等于∠EDC,那么ED不一定是△EBC的角平分线,故④错误;正确的有2个选项.故选:B.4.解:∵三角形的两边长分别为7和9,∴9﹣7<第三边的长<9+7,即2<第三边的长<16,选项中只有,13符合题意.故选:B.5.解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.6.解如图,∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,∴∠1=∠2=∠3,∴∠ABC=3∠3,在△BCD中,∠3+∠C+∠CDB=180°,∴∠3+∠C=180°﹣74°=106°,在△ABC中,∵∠A+∠ABC+∠C=180°,∴20°+2∠3+(∠3+∠C)=180°,即20°+2∠3+106°=180°,∴∠3=27°,∴∠ABC=3∠3=81°,∠C=106°﹣27°=79°,故选:D.7.解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣64°=26°,∴∠DAE=∠EAC﹣∠CAD=38°﹣26°=12°,故选:B.8.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.9.解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选:C.10.解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.11.解:在△BEC中,∵∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ABC、∠ACB的三等分线交于点E、D,∴∠DBC=∠EBC,∠DCB=∠ECB,∴∠DBC+∠DCB=×90°=45°,∴∠BDC=180°﹣(∠DBC+∠DCB)=135°,故选:D.12.解:标上字母如图,连接BA并延长到C,∵∠DAC是△ABD的外角,∠EAC是△ABE的外角,∴∠DAC=∠1+∠ABD,∠EAC=∠2+∠ABE,∴∠DAE=∠1+∠2+∠DBE,∴∠1+∠2=90°﹣60°=30°.故选:B.13.解:∵EG∥BC,∴∠CEG=∠ACB,∵CD平分∠ACB,∴∠ACB=2∠DCB,∴∠CEG=2∠DCB,故①正确;∵∠A=90°,∴∠ACD+∠ADC=90°,∵EG∥BC,且CG⊥EG于G,∴∠CGE=∠GCB=90°,∴∠GCD+∠BCD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC=∠GCD,故②正确;无法证明CA平分∠BCG,故③错误;∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,故④正确;所以其中正确的结论为①②④共3个,故选:C.14.解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n+1﹣2)•180°=(n﹣1)•180°,则(n﹣1)•180°﹣(n﹣2)•180°=180°,故选:A.15.解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠2+∠3=180°﹣∠D=150°,∵∠α=∠1+∠A,∠β=∠4+∠C,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,故选:B.16.解:若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是直角三角形.故答案为直角.17.解:木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性,故答案为:三角形具有稳定性.18.解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.19.解:∵840÷180=4…120,∴这个多边形的边数为:4+2=6,α=120°,故答案为:六;120.20.解:连接CI并延长交AB于P.∵AI平分∠CAP,∴∠1=∠2.∵BI平分∠CBP,∴∠3=∠4,∴∠1+∠3=(∠CAB+∠CBA)=×(180°﹣70°)=55°,∴∠7+∠8=∠1+∠3+∠5+∠6=55°+70°=125°.∵∠AIB=155°,∴∠2+∠4=180°﹣155°=25°,又∵∠CAP、∠CBP的平分线,相交于点I,∴∠CAP+∠CBP=2×25°=50°,∴∠ACB=180°﹣50°=130°.21.解:∵∠CDE+∠C=∠AED,∠ADE=∠AED,∴∠C+∠CDE=∠ADE.又∵∠B+∠BAD=∠ADC,∴∠B+40°=∠C+∠CDE+∠CDE.∵∠B=∠C,∴2∠CDE=40°,∴∠CDE=20°.22.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.23.解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.24.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.25.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。
人教版2020-2021学年八年级上册第11章《三角形》单元测试卷 (解析版)
人教版2020-2021学年八年级上册单元测试卷第11章《三角形》满分120分班级________姓名________学号________成绩________一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3B.3,4,5C.5,6,10D.4,5,92.在如图中,正确画出AC边上高的是()A.B.C.D.3.已知,在△ABC中,∠A=45°,∠B=46°,那么△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m5.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形6.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°7.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm8.如图,A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°9.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°10.如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)11.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是.12.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.13.等腰三角形的一个角为50°,那么它的一个底角为.14.一个多边形的内角和是1080°,请问这个多边形有条对角线.15.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了米.16.如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AC,垂足为E,∠BAC=56°,则∠ADE的度数是.17.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.18.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,若∠AED=60°,∠EDC=100°,则∠ADE=.19.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED=.20.如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.三.解答题(共8小题,满分60分)21.(6分)如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.22.(6分)如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.23.(7分)如图,在△ABC中,∠B=40°,∠C=80°.(1)求∠BAC的度数;(2)AE平分∠BAC交BC于E,AD⊥BC于D,求∠EAD的度数.24.(7分)如图是五角星和它的变形图.(1)图1中是一个五角星,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)把图1中的点A向下移到BE上时(图2),五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?请证明你的结论.25.(8分)用一条长为18cm细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?26.(8分)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.27.(8分)(1)如图1,AD平分∠BAC,AE⊥BC,∠B=30°,∠C=70°.①∠BAC=°,∠DAE=°;②如图2.若把“AE⊥BC”变成“点F在AD的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(2)如图3,AD平分∠BAC,AE平分∠BEC,∠C﹣∠B=40°,求∠DAE的度数.28.(10分)问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠P AO+∠PCO+∠APC,所以2∠AOC=2∠P AO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P 与∠B、∠D的关系为.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3+3>3,符合三角形的三边关系定理,故本选项错误;B,3+4>5,3+5>4,5+4>3,符合三角形的三边关系定理,故本选项错误;C、5+6>10,5+10>6,6+10>5,符合三角形的三边关系定理,故本选项错误;D、4+5=9,不符合三角形的三边关系定理,故本选项正确;故选:D.2.解:画出AC边上高就是过B作AC的垂线,故选:C.3.解:在△ABC中,∠A=45°,∠B=46°,∴∠C=180°﹣∠A﹣∠B=89°,∴△ABC为锐角三角形.故选:A.4.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则AB的值在5和25之间.故选:B.5.解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.6.解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:B.7.解:∵在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,∴CE=DE,∴AE+DE=AE+CE=AC=3cm,故选:B.8.解:∵∠BMQ=∠A+∠B,∠DQF=∠C+∠D,∠FNM=∠E+∠F,∴∠BMQ+∠DQF+∠FNM=∠A+∠+∠C+∠D+∠E+∠F,∵∠BMQ+∠DQF+∠FNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:B.9.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形.故答案为:直角三角形.12.解:这样做的道理是利用三角形的稳定性.13.解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.14.解:设多边形的边数是n,则(n﹣2)•180°=1080°,解得n=8,∴多边形的对角线的条数是:(条).故答案为:20.15.解:由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).故答案为:120.16.解:∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,∵∠BAC=56°,∴∠DAC=28°,∵DE⊥AC,∴∠ADE=90°﹣28°=62°,故答案为:62°.17.解:∵△ABC中,AB=AC,AD是BC边上的高,∴△ABC是轴对称图形,且直线AD是对称轴,∴△CEF和△BEF的面积相等,∴S阴影=S△ABD,∵AB=AC,AD是BC边上的高,∴BD=CD,∴S△ABD=S△ACD=S△ABC,∵S△ABC=12cm2,∴S阴影=12÷2=6cm2.故答案为:6.18.解:∵∠AED=60°,∴∠BED=180°﹣∠AED=180°﹣60°=120°,∴∠B+∠C=360°﹣∠BED﹣∠EDC=360°﹣100°﹣120°=140°,∵∠B=∠C,∴∠B=∠C=70°,∴∠A=70°,∴∠ADE=180°﹣∠A﹣∠AED=180°﹣70°﹣60°=50°,故答案为:50°.19.解:∵AE平分∠BAC∴∠BAE=∠CAE=36°∵ED∥AC∴∠CAE+∠DEA=180°∴∠DEA=180°﹣36°=144°∵∠AED+∠AEB+∠BED=360°∴∠BED=360°﹣144°﹣90°=126°.故答案为126°.20.解:过B作BF⊥AC于F,交CD于E,则BF的长即为AE+EF的最小值,∵AC=BC=5,CD为△ABC的中线,∴AD=AB=3,∵S△ABC=AB•CD=AC•BF,∴BF==,∴AE+EF的最小值为,故答案为:.三.解答题(共8小题,满分60分)21.解:∵∠ABC=∠C=70°,BD平分∠ABC,∴∠DBC=35°,∴∠ADB=∠C+∠DBC=70°+35°=105°.22.解:∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.23.解:(1)∵∠B+∠BAC+∠C=180°,∠B=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°;(2)∵AD⊥BC,∴∠ADC=90°,∵∠DAC=180°﹣∠ADC﹣∠C,∠C=80°,∴∠DAC=180°﹣90°﹣80°=10°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC,∴∠BAE=∠CAE=30°,∵∠EAD=∠CAE﹣∠DAC,∴∠EAD=20°.24.解:(1)由三角形外角的性质,得∠A+∠C=∠1,∠B+∠D=∠2.由三角形的内角和定理,得∠A+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180°;(2)不变,理由如下:由三角形外角的性质,得∠2=∠B+∠D,∠1=∠CAD+∠C,由三角形的内角和定理,得∠E+∠1+∠2=180°,等量代换,得∠CAD+∠B+∠C+∠D+∠E=180°.25.解:(1)设底边长为xcm,∵腰长是底边的2倍,∴腰长为2xcm,∴2x+2x+x=18,解得,x=cm,∴2x=2×=cm,∴各边长为:cm,cm,cm.(2)①当4cm为底时,腰长==7cm;②当4cm为腰时,底边=18﹣4﹣4=10cm,∵4+4<10,∴不能构成三角形,故舍去;∴能构成有一边长为4cm的等腰三角形,另两边长为7cm,7cm.26.解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.27.解:(1)①∵∠B=30°,∠C=70°,∴∠BAC=180°﹣(30°+70°)=80°,∵AD平分∠ABC,∴∠CAD=∠BAC=40°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°﹣70°=20°,∴∠DAE=∠CAD﹣∠CAD=20°.故答案为80,20.②∵∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣70°=70°,∴∠FDE=∠ADC=70°,∵FE⊥BC,∴∠FED=90°,∴∠DFE=90°﹣∠FDE=20°.(3)∵AD平分∠ABC,∴∠BAD=∠CAD,∵AE平分∠BEC,∴∠AEB=∠AEC,∵∠C+∠CAE+∠AEC=180°,∠B+∠BAE+∠AEB=180°,∴∠C+∠CAE=∠B+∠BAE,∵∠CAE=∠CAD﹣∠DAE,∠BAE=∠BAD+∠DAE,∴∠C+∠CAD﹣∠DAE=∠B+∠BAD+∠DAE,∴2∠DAE=∠C﹣∠B=40°,∴∠DAE=20°.28.解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(28°+48°)=38°;解决问题1:如图3,∵AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+(∠B+∠D).故答案为:∠P=90°+(∠B+∠D).解法二:如图3,∵AP平分△AOB的外角∠F AD,CP平分△COD的外角∠BCE,∴∠1=∠2,∠3=∠4,分别作∠BAD、∠BCD的角平分线交于点M,则∠5=∠6,∵∠1+∠2+∠5+∠6=180°,∴∠2+∠6=90°,即∠P AM=90°,同理:∠PCM=90°,∴在四边形APCM中,∠P+∠M=180°,由问题2,得∠M=(∠B+∠D).∴∠P=180°﹣(∠B+∠D).如图4中,作∠BCD的角平分线,交AP的延长线于点N,则∠1=∠2,由问题2,得∠N=(∠B+∠D).∵CP平分△COD的外角∠BCE,∴∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,即∠PCN=90°,∵∠APC=∠PCN+∠N∴∠APC=90°+(∠B+∠D).。
人教版2021年八年级上册第11章《三角形》单元复习试题 word版,含答案
人教版2021年八年级上册第11章《三角形》单元复习试题一.选择题1.下列图形中,具有稳定性的是()A.B.C.D.2.三角形的角平分线、中线、高都是()A.直线B.线段C.射线D.以上都不对3.在△ABC中,作出AC边上的高,正确的是()A.①B.②C.③D.④4.四组木条(每组3根)的长度分别如图,其中能组成三角形的一组是()A.B.C.D.5.如图,在Rt△AOB中,∠O=90°,C为AO上一点,且不与A,O重合,则x可能是()A.10°B.20°C.30°D.40°6.将一个四边形用刀截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形7.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个8.如图∠1,∠2,∠3是五边形ABCDE的三个外角,若∠A+∠B=230°,则∠1+∠2+∠3=()A.140°B.180°C.230°D.320°9.如图,已知△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是()A.AD⊥BC B.BF=CF C.BE=EC D.∠BAE=∠CAE 10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是()A.2∠DAE=∠B﹣∠C B.2∠DAE=∠B+∠CC.∠DAE=∠B﹣∠C D.3∠DAE=∠B+∠C12.已知三角形的三边长分别为a、b、c,化简|a+b﹣c|﹣2|a﹣b﹣c|+|a+b+c|得()A.4a﹣2c B.2a﹣2b﹣c C.4b+2c D.2a﹣2b+c二.填空题13.木工师傅做完房门后,为防止门变形,会沿着门的对角线方向钉上一根斜拉的木条,这做的根据是.14.在△ABC中,若∠A=40°,∠B=100°,则△ABC的形状是.15.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.16.如图,∠ADB是△和△的外角;以AC为一边长的三角形有个.17.如图,线段AD和BC相交于点O,若∠A=70°,∠C=85°,则∠B﹣∠D=.18.如图,计算∠A+∠B+∠C+∠D+∠E+∠F=度.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.三.解答题20.如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.21.如图,在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC的长.22.如图,在△ABC中,点D在BC上,∠ADB=∠BAC,BE平分∠ABC,过点E作EF ∥AD,交BC于点F.(1)求证:∠BAD=∠C;(2)若∠C=20°,∠BAC=110°,求∠BEF的度数.23.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.24.阅读理解:请你参与下面探究过程,完成所提出的问题.(Ⅰ)问题引入:如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=70°,则∠BOC =度;若∠A=α,则∠BOC=(用含α的代数式表示);(Ⅱ)类比探究:如图②,在△ABC中,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α.试探究:∠BOC与∠A的数量关系(用含α的代数式表示),并说明理由.(Ⅲ)知识拓展:如图③,BO、CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数(用含α、n的代数式表示).参考答案一.选择题1.解:A、具有稳定性,故此选项符合题意;B、不具有稳定性,故此选项不符合题意;C、不具有稳定性,故此选项不符合题意;D、不具有稳定性,故此选项不符合题意;故选:A.2.解:三角形的角平分线、中线、高都是线段.故选:B.3.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,①、②、③都不符合高线的定义,④符合高线的定义.故选:D.4.解:A、2+2<5,不能构成三角形;B、2+2=4,不能构成三角形;C、2+3=5,不能组成三角形;D、3+2>4,能够组成三角形.故选:D.5.解:∵∠BCA=∠O+∠OBC,∠O=90°,∴90°<6x<180°,∴15°<x<30°,故选:B.6.解:一个四边形沿对角线截一刀后得到的多边形是三角形,一个四边形沿平行于边的直线截一刀后得到的多边形是四边形,一个四边形沿除上述两种情况的位置截一刀后得到的多边形是五边形,故选:A.7.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.8.解:∵五边形ABCDE,∠A+∠B=230°,∴∠AED+∠EDC+∠BCD=540°﹣230°=310°,又∵∠AED+∠EDC+∠BCD+∠1+∠2+∠3=540°,∴∠1+∠2+∠3=540°﹣310°=230°.故选:C.9.解:∵AD,AE,AF分别是三角形的高线,角平分线及中线,∴AD⊥BC,∠BAE=∠CAE,BF=CF,而BE=CE不一定成立,故选:C.10.解:∵三角形的内角和等于180°,∴可得∠1和∠2的邻补角等于90°,∴∠1+∠2=2×180°﹣90°=270°.故选:C.11.解:∵∠BAC=180°﹣∠B﹣∠C,AD是∠BAC的平分线,∴∠BAD=∠BAC=(180°﹣∠B﹣∠C),∵AE是高,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAE﹣∠CAD=(90°﹣∠C)﹣(180°﹣∠B﹣∠C)=(∠B﹣∠C),故选:A.12.解:∵△ABC的三边长分别是a、b、c,∴必须满足两边之和大于第三边,两边的差小于第三边,则a+b﹣c>0,a﹣b﹣c<0,a+b+c >0∴|a+b﹣c|﹣2|a﹣b﹣c|+|a+b+c|=a+b﹣c+2a﹣2b﹣2c+a+b+c=4a﹣2c.故选:A.二.填空题13.解:木工师傅做完房门后,为防止门变形,会沿着门的对角线方向钉上一根斜拉的木条,这做的根据是三角形具有稳定性,故答案为:三角形具有稳定性.14.解:∵∠A+∠B+∠C=180°,∠A=40°,∠B=100°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣100°=40°,∵∠A=∠C,∴△ABC是等腰三角形;又∠B=100°∴△ABC是钝角三角形.故△ABC的形状是等腰三角形或钝角三角形.15.解:∵正多边形的一个内角是162°,∴它的外角是:180°﹣162°=18°,边数n=360°÷18°=20.故答案为:二十.16.解:根据图形可得:∠ADB是△ADC和△DFC的外角;以AC为一边长的三角形有:△ACF,△ADC,△ACB,△ACE,共4个;故答案为:ADC,DFC,4.17.解:∵∠C+∠D+∠COD=180°,∠A+∠B+∠AOB=180°,∴∠D=180°﹣∠C﹣∠COD,∠B=180°﹣∠A﹣∠AOB.∵∠AOB=∠COD,∴∠B﹣∠D=(180°﹣∠A﹣∠AOB)﹣(180°﹣∠C﹣∠COD)=∠C﹣∠A=85°﹣70°=15°.故答案为:15°.18.解:∵∠1=∠A+∠F,∠2=∠D+∠E,∠3=∠B+∠C,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠3,∠1、∠2、∠3是△MNP的三个不同外角,∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.19.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.三.解答题20.解:设∠1=∠2=x°,则∠3=∠4=2x°,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.21.解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2AE=2×2=4,∵△ABC的周长为15,∴BC=15﹣6﹣4=5.22.(1)证明:∵∠ABC+∠BAC+∠C=180°,∠ABC+∠BDA+∠BAD=180°,∠BDA=∠BAC,∴∠BAD=∠C.(2)解:∵∠C=20°,∠BAC=110°,∴∠ABC=180°﹣20°﹣110°=50°,∵BE平分∠ABC,∴∠EBF=∠ABC=25°,∵∠BDA=∠BAC=110°,∴∠BHD=180°﹣∠HBD﹣∠BDA=180°﹣25°﹣110°=45°,∵AD∥EF,∴∠BEF=∠BHD=45°.23.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.24.解:(Ⅰ)∠ABC+∠ACB=180°﹣∠A=110°,∵点O是∠ABC和∠ACB平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=125°;∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵点O是∠ABC和∠ACB平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=90°﹣α,∴∠BOC=90°+α;(Ⅱ)∠BOC=120°+α.理由如下:∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+α.(3)∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠DBC+∠ECB)=180°﹣(180°+∠A)=•180°﹣.故答案为:125°;90°+α.。
2021-2022学年 人教版八年级数学上册第11章 三角形 单元测试题 含答案
第十一章三角形一、选择题(本大题共7小题,每小题4分,共28分.在每小题列出的四个选项中,只有一项符合题意)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是 ()A.1,2,1B.1,2,2C.1,2,3D.1,2,42.如图1,在△ABC中,∠ACB=90°,CD⊥AB于点D,图中线段可以作为△ACD的高的有()图1A.0条B.1条C.2条D.3条3.如图2,以∠B为内角的三角形有 ()图2A.2个B.3个C.4个D.5个4.如图3,将一张含有30°角的三角形纸片的两个顶点分别叠放在长方形的两条对边上.若∠2=44°,则∠1的度数为 ()图3A.14°B.16°C.90°-αD.α-44°5.若一个三角形的两个内角分别是55°和65°,则这个三角形的外角不可能是 ( )A.115°B.120°C.125°D.130°6.如图4所示,在△ABC中,点D,E,F分别在BC,AC,AB上,E是AC的中点,AD,BE,CF相交于点G,BD=2DC,S△GEC =3,S△GDC=4,则△ABC的面积是 ()图4A.25B.30C.35D.407.如图5,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()图5A.180°B.360°C.540°D.720°二、填空题(本大题共7小题,每小题4分,共28分)8.人站在晃动的公共汽车上,若分开两腿站立,则还需伸出一只手抓住栏杆才能站稳,这是利用了.9.若正n边形的每个内角为120°,则这个正n边形的对角线条数为.10.如图6,AD是△ABC的中线,AE是△ABD的中线,若CE=9 cm,则BC= cm.图611.如图7,AC⊥BC于点C,D为BC上一点,DE⊥BE于点E,BC平分∠ABE,∠BDE=58°,则∠A= °.图712.如图8,在五边形ABCDE中,点M,N分别在AB,AE边上,∠1+∠2=100°,则∠B+∠C+∠D+∠E= °.图813.将一副三角尺如图9放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为.图914.如图10,在△ABC中,∠B=40°,∠C=30°,D为边BC上一点,将△ADC沿直线AD翻折后,点C 落到点E处.若DE∥AB,则∠ADC的度数为.图10三、解答题(共44分)15.(10分)已知a,b,c是△ABC的三边长,a=4,b=6,设△ABC的周长是x.(1)直接写出c及x的取值范围.(2)若x是小于18的偶数,①求c的值;②判断△ABC的形状.16.(10分)如图11,点D在AB上,点E在AC上,BE,CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.图11 17.(12分)阅读图12中佳佳与明明的对话,解决下列问题:图12(1)“多边形的内角和为2020°”,为什么不可能?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?18.(12分)如图13(a),在四边形ABCD中,∠A=x°,∠C=y°.图13(1)∠ABC+∠ADC= °(用含x,y的式子表示).(2)BE,DF分别为∠ABC,∠ADC的外角平分线.①若BE∥DF,x=30,则y= ;②当y=2x时,若BE与DF相交于点P,且∠DPB=20°,求y的值.(3)如图(b),∠ABC的平分线与∠ADC的外角平分线相交于点Q,则∠Q= °(用含x,y的式子表示).答案1.B2.C[解析] 可以作为△ACD的高的线段有AD,CD,共2条.3.C[解析] 以∠B为内角的三角形有△EBD,△ABD,△EBC,△ABC.4.A5.D6.B[解析] 因为E是AC的中点,所以S△AGE=S△GEC=3.又S△GDC=4,所以S△ADC=10.因为BD=2DC,所以S△ABD =2S△ADC=20.所以S△ABC=30.7.B [解析] 如图.∵∠1是△ABG 的外角, ∴∠1=∠A+∠B. ∵∠2是△EFH 的外角, ∴∠2=∠E+∠F. ∵∠3是△CDI 的外角, ∴∠3=∠C+∠D.∵∠1,∠2,∠3是△GIH 的外角, ∴∠1+∠2+∠3=360°.∴∠A+∠B+∠C+∠D+∠E+∠F=360°. 8.三角形的稳定性 9.910.12 [解析] ∵AD 是△ABC 的中线,AE 是△ABD 的中线,∴CD=BD=12BC ,DE=12BD. ∴CE=DE+CD=34BC. ∵CE=9 cm, ∴BC=12 cm . 故答案为12.11.58 [解析] ∵BC 平分∠ABE ,∴∠ABC=∠DBE.∵AC ⊥BC ,DE ⊥BE ,∴∠A+∠ABC=90°, ∠BDE+∠DBE=90°.∴∠A=∠BDE=58°.12.460 [解析] ∵∠A=180°-(∠1+∠2)=180°-100°=80°,五边形ABCDE 的内角和为(5-2)×180°=540°,∴∠B+∠C+∠D+∠E=540°-80°=460°.故答案为460. 13.15° [解析] ∵在Rt △ABC 中,∠BAC=90°,∠C=45°,∴∠ABC=45°.∵BC ∥DE ,∠D=30°,∴∠DBC=30°. ∴∠ABD=45°-30°=15°.14.110°[解析] ∵∠B=40°,∠C=30°,∴∠BAC=110°.由折叠的性质,得∠E=∠C=30°,∠EAD=∠CAD.∵DE∥AB,∴∠BAE=∠E=30°.∴∠CAD=1(∠BAC-∠BAE)=40°.2∴∠ADC=180°-∠CAD-∠C=110°.15.解:(1)因为a=4,b=6,所以2<c<10.故周长x的取值范围为12<x<20.(2)①因为周长x为小于18的偶数,12<x<20,所以x=16或x=14.当x=16时,c=6;当x=14时,c=4.综上所述,c的值为6或4.②当c=6时,b=c,此时△ABC为等腰三角形;当c=4时,a=c,此时△ABC为等腰三角形.综上,△ABC是等腰三角形.16.解:(1)∵∠A=50°,∠C=30°,∴∠BDO=∠A+∠C=80°.又∠BOD=70°,∴∠B=180°-∠BDO-∠BOD=30°.(2)猜想:∠BOC=∠A+∠B+∠C.证明:∵∠BEC=∠A+∠B,∴∠BOC=∠BEC+∠C=∠A+∠B+∠C.17.解:(1)设多边形的边数为n.根据题意,得(n-2)×180°=2020°,.解得n=1329∵n为正整数,∴“多边形的内角和为2020°”不可能.(2)设应加的内角为x,多加的外角为y.根据题意,得(n-2)×180°=2020°-y +x.∵-180°<x-y<180,∴2020°-180°<(n-2)×180°<2020°+180°, 解得1229<n<1429.又∵n 为正整数,∴n=13或n=14.故明明求的是十三边形或十四边形的内角和. (3)十三边形的内角和为180°×(13-2)=1980°,∴y-x=2020°-1980°=40°. 又x+y=180°, 解得x=70°,y=110°;十四边形的内角和为180°×(14-2)=2160°,∴x-y=2160°-2020°=140°. 又x +y=180°, 解得x=160°,y=20°.∴错当成内角的那个外角为110°或20°. 18.解:(1)(360-x-y )[解析] 在四边形ABCD 中,∠ABC+∠ADC=360°-∠A-∠C=(360-x-y )°. 故答案为(360-x-y ). (2)①30 [解析] 如图ⓐ.∵BE ∥DF ,∴∠C=∠CDF +∠CBE=y °.∵BE ,DF 分别为∠ABC ,∠ADC 的外角平分线, ∴∠MDC +∠CBN=2(∠CDF +∠CBE )=(2y )°. ∵∠ADC +∠ABC=360°-30°-y °, ∠ADC +∠MDC=180°,∠ABC +∠CBN=180°,∴360°-30°-y °+(2y )°=360°. ∴y=30. 故答案为30.②如图ⓑ,延长BC 交PD 于点Q.由(1)可知:∠ABC +∠ADC=(360-x-y )°.∵∠ADC+∠MDC=180°, ∠ABC+∠CBN=180°,∴∠CBN+∠MDC=(x+y )°.∵BE ,DF 分别为∠ABC ,∠ADC 的外角平分线, ∴∠PBC=12∠CBN ,∠PDC=12∠MDC. ∴∠PBC+∠PDC=12(x +y )°. ∵∠BCD=∠PDC+∠CQD , ∠CQD=∠PBC +∠DPB ,∴∠BCD=∠PDC+∠PBC+∠DPB. ∴y=20+12(x+y ),即y-x=40. 又∵y=2x ,∴x=40,y=80. (3)90+12(x-y )[解析] 设BQ 与AD 相交于点N ,如图ⓒ.由题意,得∠DNQ=∠ANB=180°-x °-12∠ABC ,∠QDN=12(180°-∠ADC ),∴∠Q=180°-∠DNQ-∠QDN=180°-180°-x °-12∠ABC -12(180°-∠ADC )=x °+12(∠ABC+∠ADC )-90°=x °+12(360°-x °-y °)-90°=x °+180°-12(x+y )°-90°=90+12(x-y )°. 故答案为90+12(x-y ).。
人教版2021年八年级上册第11章《三角形》单元复习训练卷 含答案
人教版2021年八年级上册第11章《三角形》单元复习训练卷一、选择题1.三角形的角平分线、中线和高都是 ( )A.直线B.线段C.射线D.以上答案都不对2.下列说法正确的是()A.有一个内角是锐角的三角形是锐角三角形B.钝角三角形的三个内角都是钝角C.有一个内角是直角的三角形是直角三角形D.三条边都相等的三角形称为等腰三角形3.用直角三角板作ABC的高,下列作法正确的是()A. B. C. D.4.如图,与ABC没有公共边的三角形是( )A.CDE B.BCE C.ABE D.BCD5.如图,三角形的个数是()A.4个B.3个C.2个D.1个6.如图,△ABC的面积计算方法是()A.AC•BD B.12BC•EC C.12AC•BD D.12AD•BD7.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形8.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°9.如图,在△ABC 中,∠A =80°,点D 在BC 的延长线上,∠ACD =145°,则∠B 是( )A .45°B .55°C .65°D .75°10.五边形对角线的条数为( )A .5B .6C .7D .811.如图,△ABC 中,∠A =46°,∠C =74°,BD 平分∠ABC ,交AC 于点D ,那么∠BDC 的度数是()A .76°B .81°C .92°D .104°12.如图,AE 、AD 分别是ABC 的高和角平分线,且28B ∠=︒,72C ∠=︒,则DAE ∠的度数为()A .18°B .22°C .30°D .38°13.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形14.如图,点B 、C 、D 在同一直线上,AB //CE ,若∠A =55°,∠ACB =65°,则∠1的值为( )A .80°B .65°C .60°D .55°15.如图,在ABC 中,D E 、分别为BC AD 、的中点,且4ABC S =,则S 阴影为( )A .2B .1C .12D .14二、填空题16.若一个三角形三边的长分别为5,11,2k,则k的取值范围是___.17.一个n边形的内角和为1080°,则n=________.18.如图,该硬币边缘镌刻的正九边形每个内角的度数是_____.19.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.20.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.21.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是_____.--+--+-+=______.22.已知ABC的三边长分别为a,b,c,则a b c b c a c a b23.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=_____.三、解答题24.已知,ABC的三边长为4,9,x.(1)求ABC的周长的取值范围;(2)当ABC的周长为偶数时,求x.25.(1)填表:(2)猜想给定一个正整数n,凸n边形最多有m个内角等于135°,则m与n之间有怎样的关系?(3)取n=7验证你的猜想是否成立?如果不成立,请给出凸n边形中最多有多少个内角等于135°?并说明理由.26.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20 .(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?27.如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.28.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.参考答案1.B【分析】根据三角形的角平分线、中线和高定义判断即可.【详解】解:三角形的角平分线、中线、高都是线段.故选:B.【点睛】本题考查了三角形的角平分线、中线和高定义,熟练掌握三角形的角平分线、中线和高定义是解题关键.2.C【分析】根据三角形的定义进行判断即可.【详解】A.有一个内角是锐角的三角形可以是锐角三角形,直角三角形,钝角三角形,故A错误;B.钝角三角形只有一个内角为钝角,其余两个内角为锐角,故B错误;C.有一个内角是直角的三角形是直角三角形,故C正确;D.三条边都相等的三角形称为等边三角形,故D错误.故选:C.【点睛】本题考查了三角形的定义,熟知各个类型三角形的定义是解题的关键.3.C【分析】根据高线的定义即可得出结论.【详解】解:A、B、D均不是高线.故选:C.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.4.A【分析】直接找两个三角形的公共边即可.【详解】解:三角形的公共边即两个三角形共同的边.A,两个三角形没有公共边;B,两个三角形的公共边为BC;C,两个三角形的公共边为AB;D,两个三角形的公共边为BC.故选A.【点睛】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.5.B【分析】根据三角形的定义可直接进行解答.【详解】解:由图可得:三角形有:△ABC、△ABD、△ADC,所以三角形的个数为3个;故选B.【点睛】本题主要考查三角形的概念,正确理解三角形的概念是解题的关键.6.C【分析】根据三角形的高线及面积可直接进行排除选项.【详解】解:由图可得:线段BD是△ABC底边AC的高线,EC不是△ABC的高线,所以△ABC的面积为12AC BD,故选C.【点睛】本题主要考查三角形的高线及面积,正确理解三角形的高线是解题的关键.7.D【详解】A选项,直角三角形有一个内角是直角,其他两个内角都是锐角,即直角三角形的三个内角不都相等,故不是正多边形;B选项,等腰三角形的三条边不一定都相等,所以不是正多边形;C选项,长方形的四个角都是直角,但是四条边不一定都相等,故不是正多边形;D选项,正方形四个内角都相等,且四条边都相等,所以是正多边形.8.C【详解】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.9.C【分析】利用三角形的外角的性质即可解决问题.【详解】在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°-80°=65°,故选C.【点睛】本题考查三角形的外角,解题的关键是熟练掌握基本知识.10.A【分析】根据三角形以及对角线的概念,不难发现:从一个顶点出发的对角线除了和2边不能组成三角形外,其余都能组成三角形,故从一个顶点出发的对角线有(n-3)条.【详解】从n边形的一个顶点可以引(n-3)条对角线,对角线的总数是(3)2n n-;可得五边形的对角线条数为5(53)=52⨯-,故选:A.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.11.A【分析】根据三角形的内角和为180°,可得∠A+∠C+∠ABC=180°,然后根据△ABC中,∠A=46°,∠C=74°,求得∠ABC=60°,然后根据角平分线的性质,可得∠ABD=30°,再根据三角形的外角性质,可得∠BDC=∠A+∠ABD=76°. 【详解】∵△ABC 中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD 为∠ABC 平分线,∴∠ABD=∠CBD=30°,∵∠BDC 为△ABD 外角,∴∠BDC=∠A+∠ABD=76°,故选A【点睛】此题主要考查了三角形的内角和外角的性质,解题关键是构造合适的角的和差关系,然后根据角平分线的性质求解即可.12.B【分析】根据角平分线性质和三角形内角和定理求解即可;【详解】∵AE 是ABC 的高,∴90AEB AEC ∠=∠=︒,又∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠,∵28B ∠=︒,72C ∠=︒,∴40BAD CAD ∠=∠=︒,∴180407268ADC ∠=︒-︒-︒=︒,∴906822DAE ∠=︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和三角形内角和定义,准确分析计算是解题的关键.13.A【详解】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.14.C【分析】根据三角形的内角和定理可求出∠B的值,再根据两直线平行,同位角相等即可得解.【详解】如图,∵∠A=55°,∠ACB=65°,∴∠B=180°﹣55°﹣65°=60°.∵AB∥CE,∴∠1=∠B=60°.故选:C.【点睛】本题考查平行线的性质和三角形的内角和定理,熟知平行线的性质是解题的关键.15.B【分析】根据中线将三角形面积分为相等的两部分可知:△ACD是△CDE的面积的2倍,△ABC的面积是△ACD的面积的2倍,依此即可求解.【详解】解:∵D、E分别是BC,AD的中点,∴S△CDE=12S△ACD,S△ACD=12S△ABC,∴S阴影=14S△ABC=14×4=1.故选B.【点睛】本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分,知道中线将三角形面积分为相等的两部分是解题的关键.16.3<k<8【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【详解】∵11-5<2k<5+11即6<2k <16∴3<k <8故答案为3<k <8【点睛】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.17.8【分析】直接根据内角和公式()2180n -⋅︒计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n -⋅︒.18.140°.【分析】先根据多边形内角和定理:()1802n ⋅-求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和()180921260=︒⨯-=︒, 则每个内角的度数12601409︒︒==. 故答案为140°.【点睛】本题主要考查了多边形的内角和定理:()1802n ⋅-,比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.19.110°【分析】连接AD ,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC 是∠3和∠4的和,从而不难求得∠BDC 的度数.【详解】解:连接AD ,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.20.36°【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.21.5,6,7.【分析】直接画图,动作操作即可知答案.【详解】如图可知,原多边形的边数可能为5,6,7故填5,6,7.【点睛】本题考查多边形性质,解题关键在于能够画出图形.+-22.3c b a【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.23.50°【分析】首先依据邻补角的定义求得∠CDE 的度数,然后在△EDC 中依据三角形的内角和定理可求得∠C=50º,由∠B =∠C 可得到∠B=50º,在△BEF 中可求得∠FEB 的度数,最后依据∠FED=180º-∠FEB-∠DEC 求解即可.【详解】解:∵∠ADE=140∘,∴∠EDC=40º,∵DE ⊥BC ,∴∠DEC=90º,∴∠C=180º−90º−40º=50º,∴∠B=∠C=50º,∵EF ⊥AB ,∴∠EFB=90º,∴∠BEF=40º,∴∠FED=180º−40º−90º=50º.故答案为:50º.【点睛】本题考查了三角形内角和定理,垂直的性质.24.(1)18△<ABC 的周长26<;(2)7,9或11.【分析】(1)直接根据三角形的三边关系即可得出结论;(2)根据轴线为偶数,结合(1)确定周长的值,从而确定x 的值.【详解】解:(1)ABC的三边长分别为4,9,x,x,即513∴-<<+9494<<,x<++,∴++<ABC的周长9413945△<;即:18△<ABC的周长26(2)ABC的周长是偶数,由(1)结果得ABC的周长可以是20,22或24,x 的值为7,9或11.【点睛】本题考查了三角形的三边关系,掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.25.(1)1,2,3;(2)m=n﹣2;(3)不成立,当3≤n≤5时,凸n边形最多有n﹣2个内角等于135°;当6≤n ≤7时,凸n边形最多有n﹣1个内角等于135°;当n=8时,凸n边形最多有8个内角等于135°;当n>8时,凸n边形最多有7个内角等于135°,理由见解析【分析】(1)根据三角形、四边形、五边形的内角和,可求得答案;(2)根据(1)可猜想凸n边形中角度等于135°的内角个数的最大值为:n﹣2;(3)设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,由凸n边形的n个外角和为360°,分类讨论,可确定凸n边形中最多有多少个内角等于135°.【详解】解:(1)∵三角形中只有一个钝角,∴三边形中角度等于135°的内角个数的最大值为1;∵四边形的内角和为360°,∴四边形中角度等于135°的内角个数的最大值为2;∵五边形的内角和为540°,∴五边形中角度等于135°的内角个数的最大值为3;答案:1,2,3;(2)由(1)得:凸n边形中角度等于135°的内角个数的最大值为:n﹣2.即m=n﹣2;(3)取n=7时,m=6,验证猜想不成立;设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,∵凸n边形的n个外角和为360°,∴k≤360=8,只有当n=8时,m才有最大值8,45讨论n≠8时的情况:(1)当时n >8,m 的值是7;(2)当n =3,4,5时,m 的值分别为1,2,3;(3)当n =6,7时,m 的值分别为5,6;综上所述,当3≤n ≤5时,凸n 边形最多有n ﹣2个内角等于135°;当6≤n ≤7时,凸n 边形最多有n ﹣1个内角等于135°;当n =8时,凸n 边形最多有8个内角等于135°;当n >8时,凸n 边形最多有7个内角等于135°.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度较大,注意掌握分类讨论思想的应用是解此题的关键.26.(1)9;(2)1080º或1260º或1440º.【分析】(1)设多边形的一个外角为x ,则与其相邻的内角等于320x +︒,根据内角与其相邻的外角的和是 180︒列出方程,求出x 的值,再由多边形的外角和为360︒,求出此多边形的边数为360x︒; (2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案.【详解】解:(1)设每一个外角为x ,则与其相邻的内角等于320x +︒,180320x x ∴︒-+︒=,40x ∴=︒,即多边形的每个外角为40︒,∵多边形的外角和为360︒, ∴多边形的外角个数为:360940︒=︒, ∴这个多边形的边数为9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,①若剪去一角后边数减少1条,即变成8边形,∴内角和为()821801080-⨯︒=︒,②若剪去一角后边数不变,即变成9边形,∴内角和为()921801260-⨯︒=︒,③若剪去一角后边数增加1,即变成10边形,∴内角和为()1021801440-⨯︒=︒,∴将这个多边形剪去一个角后,剩下多边形的内角和为1080︒或1260︒或 1440︒.【点睛】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键.27.⑴4.8cm ;⑵12cm ²;⑶2cm.(1)利用直角三角形面积的两种求法求线段AD的长度即可;(2)先求△ABC的面积,再根据△AEC与△ABE是等底同高的两个三角形,它们的面积相等,由此即可求得△ABE的面;(3)由AE是中线,可得BE=CE,根据△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE),化简可得△ACE的周长-△ABE的周长=AC-AB,即可求解.【详解】∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴AD=•6810AB ACBC⨯= =4.8(cm),即AD的长度为4.8cm;(2)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC=12AB•AC=12×6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE•AD=12EC•AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=8-6=2(cm),即△ACE和△ABE的周长的差是2cm.【点睛】本题考查了中线的定义、三角形周长的计算.解题的关键是利用直角三角形面积的两两种表达方式求线段AD的长.28.(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.。
第11章 三角形 同步练习题 2020-2021学年人教版数学八年级上册(含答案)
2020-2021年八年级数学人教版(上)三角形同步练习题(含答案)一、选择题(本大题共10道小题)1. 五边形的内角和是( )A .180°B .360°C .540°D .600°2. 已知三角形的两边分别为4和9,则此三角形的第三边可能是( )A .4B .5C .9D .133. 下列命题是假命题的是( )A .三角形的三条角平分线相交于一点,并且这一点到三边距离相等B . 等腰三角形底边的中点到两腰的距离相等C . 面积相等的两个三角形全等D . 一个三角形中至少有两个锐角4. 如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( )A .61°B .60°C .37°D .39°5. (2021广东汕头)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】A . 5 B.6 C .11 D.166. 下列各组线段能构成三角形的是( )A .2 cm ,2 cm ,4 cmB .2 cm ,3 cm ,4 cmC .2 cm ,2 cm ,5 cmD .2 cm ,3 cm ,6 cm7. 如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP 、CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A .60°B .65°C .55°D .50°8. (2021 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C )50° (D )55°9. 如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cmB.32cmC.30cmD.28cm10. 已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+21∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-21∠A.上述说法正确的个数是()A.0个 B.1个 C.2个 D.3个二、填空题(本大题共7道小题)11. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.12. n边形的每个外角都等于45°,则n=______.13. 正多边形的一个外角是°,则这个多边形的内角和的度数是______.14. 若4,5,x是一个三角形的三边,则x的值可能是________ (填写一个即可)15. (2021·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是____.16. 如图,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.17. (2021•贵港二模)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…∠A n﹣1BC的平行线与∠A n﹣1CD的平分线交于点A n,设∠A=θ,则∠A n= .三、解答题(本大题共5道小题)18. 如图,求证:∠A+∠B+∠C+∠D+∠E=180°.19. 【题目】(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.20. 取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?21. (2021春•苏州期末)观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.22. (12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】B7. 【答案】A8. 【答案】A9. 【答案】C ;【解析】图中小三角形也是正三角形,且边长等于正六边形的边长,所以正六边形的周长是正三角形的周长的23,正六边形的周长为90×3×23=180cm,所以正六边形的边长是180÷6=30cm.10. 【答案】C二、填空题(本大题共7道小题)11. 【答案】三角形的稳定性;12. 【答案】813. 【答案】540°14. 【答案】 x满足1<x<9即可15. 【答案】540°16. 【答案】【答案】12017. 【答案】;【解析】解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A,同理可得∠A2=∠A1==,…,∠A n=.三、解答题(本大题共5道小题)18. 【答案】解:延长BE,交AC于点H,易得∠BFC=∠A+∠B+∠C再由∠EFC=∠D+∠E,上式两边分别相加,得:∠A+∠B+∠C+∠D+∠E=∠BFC+∠EFC=180°.即∠A+∠B+∠C+∠D+∠E=180°19. 【答案】腰长为10cm ,底边长为4cm20. 【答案】解:∵ BD =CD ,∴ ABD ACD S S =△△.∴ ABD ADG ACD ADG S S S S -=-△△△△.∴ ADG BGD S S =△△.21. 【答案】解:(1)BP+PC <AB+AC ,理由:三角形两边之和大于第三边,或两点之间线段最短.(2)△BPC 的周长<△ABC 的周长.理由如下:如图,延长BP 交AC 于M ,在△ABM 中,BP+PM <AB+AM ,在△PMC 中,PC <PM+MC ,两式相加得BP+PC <AB+AC ,于是得:△BPC 的周长<△ABC 的周长.(3)四边形BP 1P 2C 的周长<△ABC 的周长.理由如下:如图,分别延长BP 1、CP 2交于M ,由(2)知,BM+CM <AB+AC ,又P 1P 2<P 1M+P 2M ,可得,BP 1+P 1P 2+P 2C <BM+CM <AB+AC ,可得结论.或:作直线P 1P 2分别交AB 、AC 于M 、N (如图),△BMP 1中,BP 1<BM+MP 1,△AMN 中,MP 1+P 1P 2+P 2M <AM+AN ,△P 2NC 中,P 2C <P 2N+NC ,三式相加得:BP 1+P 1P 2+P 2C <AB+AC ,可得结论.(4)四边形BP 1P 2C 的周长<△ABC 的周长.理由如下:将四边形BP 1P 2C 沿直线BC 翻折,使点P 1、P 2落在△ABC 内,转化为(3)情形,即可.(5)比较四边形B 1P 1P 2C 1的周长<△ABC 的周长.理由如下:如图,分别作如图所示的延长线交△ABC 的边于M 、N 、K 、H ,在△BNM 中,NB 1+B 1P1+P 1M <BM+BN ,又显然有,B 1C 1+C 1K <NB 1+NC+CK ,及C 1P 2+P 2H <C 1K+AK+AH ,及P 1P 2<P 2H+MH+P 1M ,将以上各式相加,得B 1P 1+P 1P 2+P 2C+B 1C 1<AB+BC+AC ,于是得结论.22. 【答案】解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB ∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C+∠D +∠E=180°。
2021-2022学年人教版八年级数学上册第十一章三角形单元提升测试卷
第十一章三角形提升卷时间:60分钟满分:l00分一、选择题(共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个选项符合题意)1.(2020·浙江嘉兴期末)如果一个三角形的两边长分别为3和4,那么第三边的长可能是()A.12B.10C.8D.62.(2020·北京二模)用三角板作△ABC的BC边上的高,下列三角板的摆放位置正确的是()3.(2020·河北邢台期末)下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()4.(2021·山西太原期末)如图,CE是△ABC的外角∠ACD的平分线,CE交BA的延长线于点E,若∠B=35°,∠E=25°,则∠ACD的度数为()A.100° B.110° C.120° D.130°(第4题)(第5题)5.(2021·广东中山期末)如图,在△ABC中,∠A=90°,若沿图中虚线截去∠A,则∠1+∠2的度数为()A.90°B.180°C.270°D.300°6.如图,已知BD是△ABC的中线,AB=5.BC=3,且△ABD的周长为11,则△BCD的周长是()A.9B.14C.16D.不能确定7.(2021·湖北武汉青山区期末)如图,AD,AE分别为△ABC的高线和角平分线,DFLAE于点F,当∠ADF=69,∠C=65时,∠B的度数为()A.21°B.23°C.25°D.30°(第7题)(第8题)8.如图,在△ABC中,D,E,F分别是BC,AD,CE的中点,若S∆ABC=4cm2,则S∆BEF =A.0.5cm2B.1cm2C.1.5cm2D.2cm29.(2021·河北唐山路北区期末)若一个多边形截去一个角后,形成的新多边形的内角和是1620°,则原来多边形的边数可能是()A.10或11B.11C.1l或12D.10或11或1210.(2020·河南郑州期末)如图,△ABC的外角平分线BP,CP相交于点P,若∠P=60°,则∠A的大小为()A.30°B.60°C.90°D.120°二、填空题(共6小题,每小题3分,共18分)。
2021_2022学年新教材高中数学第十一章立体几何初步章末质量检测含解析新人教B版必修第四册
第十一章章末质量检测(三) 立体几何初步本试卷分第1卷(选择题)和第2卷(非选择题)两局部.总分为150分,考试时间120分钟.第1卷(选择题,共60分)一、选择题(本大题共12小题,每一小题5分,共60分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的)1.a,b是两条异面直线,c∥a,那么c与b的位置关系( )A.一定是异面B.一定是相交C.不可能相交D.不可能平行2.直线m,n,平面α,β,给出如下命题:①假如m⊥α,n⊥β,且m⊥n,如此α⊥β②假如m∥α,n∥β,且m∥n,如此α∥β③假如m⊥α,n∥β,且m⊥n,如此α⊥β④假如m⊥α,n∥β,且m∥n,如此α⊥β其中正确的命题是( )A.②③B.①③C.①④D.③④3.如图,在正方体ABCD-A1B1C1D1中,点M为A1D1中点,如此异面直线AM与CD1所成角的余弦值为( )A.105B.55C.1010D.524.如图,长方体ABCD -A 1B 1C 1D 1的体积为V 1,E 为棱CC 1上的点,且CE =13CC 1,三棱锥E -BCD 的体积为V 2,如此V 2V 1=( )A.13B.16C.19D.1185.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为( ) A.1+2π2π B.1+4π4πC.1+2ππD.1+4π2π6.假如l 、m 、n 是互不重合的直线,α、β是不重合的平面,如此如下命题中为真命题的是( )A .假如α⊥β,l ⊂α,n ⊂β,如此l ⊥nB .假如l ⊥α,l ∥β,如此α⊥βC .假如l ⊥n ,m ⊥n ,如此l ∥mD .假如α⊥β,l ⊂α,如此l ⊥β7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积与为米几何?〞其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?〞1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛8.长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,如此这个球的外表积是( )A.25πB.50πC.125πD.都不对9.如下列图,在三棱锥S-MNP中,E,F,G,H分别是棱SN,SP,MN,MP的中点,如此EF与HG的位置关系是( )A.平行B.相交C.异面D.平行或异面10.如图,在四面体ABCD中,E,F分别是AC与BD的中点,假如CD=2AB=4,EF ⊥BA,如此EF与CD所成的角为( )A.30°B.45°C.60°D.90°11.在正方体ABCD-A1B1C1D1中,P,Q分别为AD1,B1C上的动点,且满足AP=B1Q,如此如下4个命题中,所有正确命题的序号是( )①存在P,Q的某一位置,使AB∥PQ②△BPQ的面积为定值③当PA>0时,直线PB1与直线AQ一定异面④无论P,Q运动到何位置,均有BC⊥PQA.①②④B.①③C.②④D.①③④12.用长度分别是2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,如此能够得到的长方体的最大外表积为( )A.258cm2B.414cm2C.416cm2D.418cm2第2卷(非选择题,共90分)二、填空题(本大题共4小题,每一小题5分,共20分.将答案填在题中横线上)13.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.14.如下列图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现,圆柱的体积与球的体积之比为________,圆柱的外表积与球的外表积之比为________.15.一个正方体纸盒展开后如下列图,在原正方体纸盒中有如下结论①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上四个命题中,正确命题的序号是________.16.球O是三棱锥P-ABC的外接球,△ABC是边长为23的正三角形,PA⊥平面ABC,假如三棱锥P-ABC的体积为23,如此球O的外表积为________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题总分为10分)如图,ABCD是正方形,O是正方形的中心,PO⊥面ABCD,E是PC的中点.求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE.18.(本小题总分为12分)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.19.(本小题总分为12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)△ACD是直角三角形,AB=BD.假如E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(本小题总分为12分)如图,在直三棱柱ABC-A1B1C1中,AB=AC,D,E,F分别是棱BC,CC1,B1C1的中点.求证:(1)直线A1F∥平面ADE;(2)平面ADE⊥平面BCC1B1.21.(本小题总分为12分)如图,棱长为1的正方体ABCD-A1B1C1D1.(1)证明:D1A∥平面C1BD;(2)求异面直线BC1与AA1所成的角的大小;(3)求三棱锥B1-A1C1B的体积.22.(本小题总分为12分)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.第十一章章末质量检测(三) 立体几何初步1.解析:空间直线存在的位置关系为异面、平行、相交.c∥a, a,b是两条异面直线那么一定不会平行,应当选D.答案:D2.解析:①假如m⊥α,n⊥β,且m⊥n,如此α⊥β,正确.∵n⊥β,且m⊥n,可得出m∥β或m⊂β,又m⊥α,故可得到α⊥β.②假如m∥α,n∥β,且m∥n,如此α∥β,不正确.两个面平行与同一条直线平行,两平面有可能相交.③假如m⊥α,n∥β,且m⊥n,如此α⊥β,不正确.m⊥α且m⊥n,可得出n∥α或n⊂α,又n∥β,故不能得出α⊥β.④假如m⊥α,n∥β,且m∥n,如此α⊥β,正确.m⊥α且m∥n,可得出n⊥α,又n∥β,故得出α⊥β.应当选C.答案:C3.解析:取AD的中点N,连结,D1N,易知AM∥ND1,故∠ND1C(或其补角)即为异面直线AM与CD1所成的角.不妨设AB=1,如此=D1N=52,CD1=2,故cos∠ND1C=54+2-542×2×52=105.应当选A. 答案:A4.解析:由题意,V 1=S ABCD ·CC 1,V 2=13S △BCD ·CE =13⎝ ⎛⎭⎪⎫12S ABCD ⎝ ⎛⎭⎪⎫13CC 1=118S ABCD ·CC 1,如此V 2V 1=118.应当选D.答案:D5.解析:设圆柱底面积半径为r ,如此高为2πr ,全面积:侧面积=[(2πr )2+2πr 2]:(2πr )2 这个圆柱全面积与侧面积的比为1+2π2π,应当选A.答案:A6.解析:假如α⊥β,l ⊂α,n ⊂β,设α∩β=m ,只要l ,n 与m 都不垂直,如此l ,n 不垂直,A 项错误;l ∥β,过l 的平面与β的交线为m ,如此l ∥m ,又l ⊥α,如此m ⊥α,∴β⊥α,B 项正确;l ⊥n ,m ⊥n ,l 与m 可能相交,可能异面,也可能平行,C 项错误;α⊥β,l⊂α时,l 与β可能垂直,也可能不垂直,甚至可能平行,D 项错误.应当选B.答案:B7.解析:设圆锥底面半径为r ,如此14×2×3r =8,所以r =163,所以米堆的体积为14×13×3×⎝ ⎛⎭⎪⎫1632×5=3209,故堆放的米约为3209≈22,应当选B. 答案:B8.解析:设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =32+42+52,解得R 2=252,所以球的外表积为S 球=4πR 2=4π×252=50π.应当选B. 答案:B9.解析:∵E 、F 分别是SN 和SP 的中点, ∴EF ∥PN .同理可证HG ∥PN , ∴EF ∥HG .应当选A. 答案:A 10.解析:如图,取CB 中点G ,连接EG ,FG .如此EG ∥AB ,FG ∥CD ,∴EF 与CD 所成的角为∠EFG (或其补角),又∵EF ⊥AB ,∴EF ⊥EG .在Rt △EFG 中,EG =12AB =1,FG =12CD =2,∴sin ∠EFG =12,∴∠EFG =30°,∴EF 与CD 所成的角为30°. 应当选A. 答案:A11.解析:①当P ,Q 分别为棱AD 1,B 1C 的中点时满足,正确;②当P 与A 重合时:S △BPQ =12a 2;当P 与D 1重合时:S △BPQ =22a 2(a 为正方体边长),错误;③当PA >0时,假设直线PB 1与直线AQ 是共面直线,如此AP 与B 1Q 共面,矛盾,正确;④如下列图:F ,G 分别为P ,Q 在平面内的投影,易证BC ⊥平面PFGQ ,正确. 应当选D. 答案:D12.解析:设长方体的三条棱的长度为a ,b ,c ,所以长方体外表积S =2(ab +bc +ac )≤(a +b )2+(b +c )2+(a +c )2, 取等号时有a =b =c ,又由题意可知a =b =c 不可能成立,所以考虑当a ,b ,c 的长度最接近时,此时对应的外表积最大,此时三边长:8,8,9, 用2和6连接在一起形成8,用3和5连接在一起形成8,剩余一条棱长为9, 所以最大外表积为:2(8×8+8×9+8×9)=416cm 2. 应当选C. 答案:C13.解析:设球的半径为r ,如此V 圆柱=πr 2×2r =2πr 3,V 圆锥=13πr 2×2r =2πr 33,V 球=43πr 3,所以V 圆柱:V 圆锥:V 球=2πr 3:2πr 33:43πr 3=3:1:2,故答案为3:1:2. 答案:3:1:214.解析:由题意,圆柱底面半径r =球的半径R , 圆柱的高h =2R ,如此V 球=43πR 3,V 柱=πr 2h =π·R 2·2R =2πR 3.∴V 柱V 球=2πR 343πR 3=32. S 球=4πR 2,S 柱=2πr 2+2πrh =2πR 2+2πR •2R =6πR 2.∴S 柱S 球=6πR 24πR 2=32.故答案为32,32.答案:323215.解析:把正方体的平面展开图复原成原来的正方体,如图:如此AB ⊥EF ,EF 与MN 异面,AB ∥CM ,MN ⊥CD ,只有①③正确. 故答案为①③. 答案:①③16.解析:∵三棱锥P -ABC 的体积为23,∴13×34×(23)2×PA =23,∴PA =2,将三棱锥补成三棱柱,可得球心在三棱柱的中心, 球心到底面的距离d 等于三棱柱的高PA 的一半, ∵△ABC 是边长为23的正三角形,∴△ABC 外接圆的半径r =2, ∴球的半径为22+12=5,∴球O 的外表积为4π×5=20π. 故答案为20π 答案:20π 17.解析:(1)连接OE∵O 是正方形ABCD 的中心 ∴O 为AC 中点,又E 为PC 中点 ∴OE ∥PA∵OE ⊂平面BDE ,PA ⊄平面BDE ∴PA ∥平面BDE .(2)∵O 是正方形ABCD 的中心,∴AC ⊥BD ∵PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴PO ⊥BD∵AC,PO⊂平面PAC,AC∩PO=O,∴BD⊥平面PAC∵BD⊂平面BDE,∴平面PAC⊥平面BDE.18.解析:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM. 因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.19.解析:(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.又DO∩BO=O.从而AC⊥平面DOB,又BD⊂平面DOB,故AC⊥BD.(2)连结EO.由(1)与题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为11.20.解析:证明:(1)连结DF ,∵D ,F 分别是棱BC ,B 1C 1的中点,∴DF 綊BB 1綊AA 1, ∴四边形ADFA 1为平行四边形, ∴A 1F ∥AD ,∵AD ⊂平面ADE ,A 1F ⊄平面ADE , ∴A 1F ∥平面ADE .(2)∵BB 1⊥平面ABC ,∴BB 1⊥AD , ∵AB =AC ,D 为BC 中点,∴BC⊥AD,又BB1∩BC=B,∴AD⊥平面BCC1B1,∵AD⊂平面ADE,∴平面ADE⊥平面BCC1B1.21.解析:证明:(1)∵在棱长为1的正方体ABCD-A1B1C1D1中,AB∥C1D1,且AB=C1D1,∴四边形ABC1D1为平行四边形,∴AD1∥BC1.又BC1⊂平面C1BD,AD1⊄平面C1BD,∴D1A∥平面C1BD;(2)∵AA1∥BB1,∴异面直线BC1与AA1所成的角即为BC1与BB1所成的角,∵∠B1BC1=45°,∴异面直线BC1与AA1所成的角的大小为45°.(3)三棱锥B1-A1C1B的体积:VB1-A1C1B =VB-A1B1C1=13S△A1B1C1×BB1=13×12×1×1×1=16.22.解析:(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)证明:∵AC =BC ,O 为AB 的中点,∴OC ⊥AB ,又∵平面VAB ⊥平面ABC ,平面ABC ∩平面VAB =AB ,且OC ⊂平面ABC , ∴OC ⊥平面VAB ,∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB ;(3)在等腰直角三角形ACB 中,AC =BC =2,所以AB =2,OC =1.所以等边三角形VAB 的面积S △VAB =3. 又因为OC ⊥平面VAB ,所以三棱锥C -VAB 的体积等于13×OC ×S △VAB =33. 又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等,所以三棱锥V -ABC 的体积为33.。
专题11.11 三角形章末测试卷(拔尖卷)(举一反三)(人教版)(解析版)
第11章三角形章末测试卷(拔尖卷)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2021春•玄武区校级月考)如图,∠BAD=∠ADC=90°,以AD为一条高线的三角形个数有()A.2个B.3个C.4个D.5个【解题思路】由于AB⊥AD,AD⊥CD,根据三角形的高的定义,可确定以AD为一条高线的三角形的个数.【解答过程】解:以AD为一条高线的三角形有△ADE、△ADC、△AEC、△DAB这4个,故选:C.2.(3分)(2020秋•巩义市月考)随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形的内角和是180°D.直角三角形两个锐角互余【解题思路】利用三角形的稳定性的性质直接回答即可.【解答过程】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故选:B.3.(3分)(2021春•莲湖区期末)在△ABC中,AB=10,BC=1,并且AC的长为偶数,则△ABC的周长为()A.20B.21C.22D.23【解题思路】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围;再根据第三边是偶数,确定第三边的值,从而求得三角形的周长.【解答过程】解:根据三角形的三边关系得:10﹣1<AC<10+1,即9<AC<11,∵AC为偶数,∴AC=10,∴△ABC的周长为:10+10+1=21,故选:B.4.(3分)(2020春•晋江市期末)在△ABC中,若∠A>∠B+∠C,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【解题思路】根据在△ABC中,∠A+∠B+∠C=180°,∠A>∠B+∠C可求出∠A的取值范围,进而得出结论.【解答过程】解:∵在△ABC中,∠A+∠B+∠C=180°,∠A>∠B+∠C,∴2∠A>180°,解得∠A>90°,∴△ABC是钝角三角形.故选:A.5.(3分)(2021春•周村区月考)如图,在△CEF中,∠E=80°,∠F=55°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°【解题思路】根据两直线平行同位角相等,将∠A转化为∠ECF,再利用三角形内角和定理求出度数.【解答过程】解:连接AC并延长交EF于点G.∵AB∥CF,∴∠BAC=∠FCG,∵AD∥CE,∴∠DAC=∠ECG,∴∠BAD=∠BAC+∠DAC=∠FCG+∠ECG=∠ECF,在△CEF中,∠E=80°,∠F=55°,∴∠ECF=180°﹣∠E﹣∠F=180°﹣80°﹣55°=45°,∴∠BAD=∠ECF=45°.故选:A.6.(3分)(2021春•汉阳区期末)将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°【解题思路】如图,延长DC交直线n于2点H.由m∥n,得∠2=∠CHG.由四边形内角和等于360°,得∠4+∠5+∠A+∠B=360°,故∠1+∠A+∠B+∠5=360°,那么∠5=144°﹣∠1.由∠3+∠GCH+∠CGH=180°,得∠CGH=108°﹣∠2,故108°﹣∠2=144°﹣∠1.进而推断出∠1=36°﹣∠2.【解答过程】解:如图,延长DC交直线n于2点H.由题意得:∠A=∠B=∠DCB=108°.∴∠GCH=180°﹣∠DCB=180°﹣108°=72°.∵∠1和∠4是对顶角,∴∠1=∠4.∵∠4+∠5+∠A+∠B=360°,∴∠4+∠5=360°﹣(∠A+∠B)=360°﹣(108°+108°)=144°.∴∠1+∠5=144°.∴∠5=144°﹣∠1.∵∠5与∠CGH是对顶角,∴∠5=∠CGH.∵m∥n,∴∠2=∠CHG.又∵∠GCH+∠3+∠CGH=180°,∴72°+∠2+∠5=180°.∴∠5=108°﹣∠2.∴108°﹣∠2=144°﹣∠1.∴∠1=∠2+36°.故选:C.7.(3分)(2021春•长安区期末)如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°【解题思路】由∠O=30°可分两种情况:若∠A为钝角,则90°<∠A<180°﹣30°,可直接求解∠A 的范围;若∠A为锐角,则90°<∠A<180°﹣30°,再根据三角形外角的性质可求解.【解答过程】解:∵∠O=30°,若∠A为钝角,则90°<∠A<180°﹣30°,即90°<∠A<150°,若∠A为锐角,则0°<∠APN<90°,∵∠APN=∠O+∠A,∴∠A+30°<90°,∴0°<∠A<60°,综上,∠A的取值范围为0°<∠A<60°或90°<∠A<150°,故选:D.8.(3分)(2020秋•台江区校级月考)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠C=∠E=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°【解题思路】根据直角三角形的性质得到∠COP+∠CPO=90°,根据三角形的外角性质计算,得到答案.【解答过程】解:如图,∵∠C=90°,∴∠COP+∠CPO=90°,∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=30°+90°+90°=210°,故选:C.9.(3分)(2021春•丹阳市期末)如图,△ABC 中,∠C =90°,将△ABC 沿DE 折叠,使得点B 落在AC 边上的点F 处,若∠CFD =60°且△AEF 中有两个内角相等,则∠A 的度数为( )A .30°或40°B .40°或50°C .50°或60°D .30°或60°【解题思路】分三种情形:①当AE =AF 时,②当AF =EF 时,③当AE =EF 时,分别求解即可.【解答过程】解:①当AE =AF 时,则∠AFE =∠AEF =12(180°﹣∠A ),∵∠B =∠EFD =90°﹣∠A ,∠CFD =60°,∴∠AFD =120°,∴12(180°﹣∠A )+90°﹣∠A =120°, ∴∠A =40°.②当AF =EF 时,∠AFE =180°﹣2∠A ,同法可得180°﹣2∠A +90°﹣∠A =120°,∴∠A =50°.③当AE =EF 时,点F 与C 重合,不符合题意.综上所述,∠A =40°或50°,故选:B .10.(3分)(2021春•衡阳期末)如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE 平分外角∠MBC 交DC 的延长线于点E .以下结论:①∠BDE =12∠BAC ;②DB ⊥BE ;③∠BDC +∠ABC =90°;④∠BAC +2∠BEC =180°.其中正确的结论有( )A .1个B .2个C .3个D .4个 【解题思路】根据三角形的内角和定理、三角形的外角的性质判断即可.【解答过程】解:①∵∠DCP =∠BDC +∠CBD ,2∠DCP =∠BAC +2∠DBC ,∴2(∠BDC +∠CBD )=∠BAC +2∠DBC ,∴∠BDE =12∠BAC ,故①正确.②∵BD 、BE 分别平分△ABC 的内角∠ABC 、外角∠MBC ,∴∠DBE =∠DBC +∠EBC =12∠ABC +12∠MBC =12×180°=90°, ∴EB ⊥DB ,故②正确,③∵∠DCP =∠BDC +∠CBD ,2∠DCP =∠BAC +2∠DBC ,∴2(∠BDC +∠CBD )=∠BAC +2∠DBC ,∴∠BDC =12∠BAC ,∵∠BAC +2∠ABC =180°,∴12∠BAC +∠ABC =90°, ∴∠BDC +∠ABC =90°,故③正确,④∵∠BEC =180°−12(∠MBC +∠NCB )=180°−12(∠BAC +∠ACB +∠BAC +∠ABC )=180°−12(180°+∠BAC ),∴∠BEC =90°−12∠BAC ,∴∠BAC +2∠BEC =180°,故④正确,故选:D .二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2020春•翼城县期末)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上3根木条.【解题思路】从一个多边形的一个顶点出发,能做(n﹣3)条对角线,把多边形分成(n﹣2)个三角形.【解答过程】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故答案为:3.12.(3分)(2021春•曲阳县期末)在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为7或8或9.【解题思路】根据多边形的内角和公式列方程求出切下一个三角形后多边形的边数,再分新多边形的边数比原多边形的边数增加1,减少1,不变三种情况求解.【解答过程】解:设切下一个三角形后多边形的边数x,由题意得,(x﹣2)•180°=1080°,解得x=8,所以,n=8﹣1=7,n=8+1=9,或n=x=8.故答案为:7或8或9.13.(3分)(2021春•南京月考)现有长为100cm的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,则n的最大值为9.【解题思路】根据三角形的三边关系;三角形两边之和大于第三边,由于每段的长为不小于1的整数,所以设最小的是1,又由于其中任意三段都不能拼成三角形,所以每段长是;1,1,2,3,5,8,13,21,34,55,然后依此类推,最后每段的总和要不大于100即可.【解答过程】解:因为n段之和为定值100cm,故欲n尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意3段都不能拼成三角形,因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,但1+1+2+3+5+8+13+21+34=88<100,1+1+2+3+5+8+13+21+34+55=143>100,所以n 的最大值为9.故答案为9.14.(3分)(2021春•道里区期末)在△ABC 中,AE 是中线,AD 是高,AD =6,CD =1,若△ABC 的面积为12,则线段DE 的长度为 1或3 .【解题思路】根据题意分AD 在△ABC 内部和AD 在△ABC 外部两种情况进行讨论,先根据三角形的面积公式求得BC =4,再根据三角形中线的性质及边之间的和差关系求解即可.【解答过程】解:当AD 在△ABC 内部时,如图1,根据题意可知S △ABC =12,即12×BC ×AD =12, 解得BC =4,∵AE 是△ABC 的中线,∴BE =EC =12BC =2,∴DE =EC ﹣DC =2﹣1=1;当AD 在△ABC 外部时,如图2,根据题意可知S △ABC =12,即12×BC ×AD =12,解得BC=4,∵AE是△ABC的中线,∴BE=EC=12BC=2,∴DE=EC+DC=2+1=3,综上所述,DE长为1或3.故答案为:1或3.15.(3分)(2021春•新都区期末)如图,将△ABC沿DE、DF翻折,使顶点B、C都落于点G处,且线段BD、CD翻折后重合于DG,若∠AEG+∠AFG=54°,则∠A=63度.【解题思路】连接BG、CG,由折叠的性质得BD=CD=GD,则∠BGC=90°,∠GBC+∠GCB=90°,又由折叠的性质得EG=EB,FG=FC,得出∠EBG=∠EGB,∠FGC=∠FCG,由三角形外角性质得出2∠EBG+2∠FCG=54°,得出∠EBG+∠FCG=27°,则∠ABC+∠ACB=∠EBG+∠FCG+∠GBC+∠GCB =117°,即可得出结果.【解答过程】解:连接BG、CG,如图所示:由折叠的性质得:BD=CD=GD,∴∠BGC=90°,∠GBC+∠GCB=90°,又由折叠的性质得:EG=EB,FG=FC,∴∠EBG=∠EGB,∠FGC=∠FCG,∵∠AEG=2∠EBG,∠AFG=2∠FCG,∠AEG+∠AFG=54°,∴2∠EBG+2∠FCG=54°,∴∠EBG+∠FCG=27°,∴∠ABC+∠ACB=∠EBG+∠FCG+∠GBC+∠GCB=27°+90°=117°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣117°=63°,故答案为:63.16.(3分)(2021春•迁安市期末)某工人加工一个机器零件(数据如图),经过测量不符合标准.标准要求是:∠EFD=120°,且∠A、∠B、∠C保持不变.为了达到标准,工人在保持∠E不变情况下,应将图中∠D减小(填“增大”或“减小”)15度.【解题思路】延长EF交CD于点M,利用外角解决角度变化问题.【解答过程】解:如图延长EF交CD于点M,由图可知∠EMD是△NEC的外角,∠EFD是△DMF的外角,∴∠EMD=∠E+∠MCE,∠EFD=∠EMD+∠D,∵∠A=70°,∠B=50°,∴∠ACB=60°,∴∠MCE=∠ACB=60°,∵∠E=40°,∴∠EMD=∠E+∠MCE=40°+60°=100°,∵要求∠EFD=120°,∴∠D=∠EFD﹣∠EMD=20°,由图可知∠D原来是35°,∴∠D要减少15°.故答案为:∠D减少15°.三.解答题(共7小题,满分52分)17.(6分)(2020秋•洪山区期中)如图,AD、CE是正五边形ABCDE的对角线,交点为F,试求∠CFD 的度数.【解题思路】利用正五边形的性质可得CD=DE=AE,∠AED=∠CDE,易得∠ADE,∠CDE的度数,由外角的性质可得结果.【解答过程】解:∵正五边形ABCDE,∴CD=DE=AE,∠AED=∠CDE=(5−2)×1805=108°,∴∠ADE=180°−108°2=36°=∠CED,∴∠CFD=∠ADE+∠CED=36°+36°=72°.18.(6分)(2019秋•瑶海区期中)已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a﹣b)2+(b﹣c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.【解题思路】(1)直接根据非负数的性质即可得出结论;(2)根据三角形的三边关系可得出c的取值范围,进而可得出结论.【解答过程】解:(1)∵(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC是等边三角形;(2)∵a=5,b=2,且c为整数,∴5﹣2<c<5+2,即3<c<7,∴c=4,5,6,∴当c=4时,△ABC周长的最小值=5+2+4=11;当c=6时,△ABC周长的最大值=5+2+6=13.19.(8分)(2021春•衡阳期末)如图,AD为△ABC的中线,BE为△ABD的中线,过点E作EF垂直BC,垂足为点F.(1)∠ABC=35°,∠EBD=18°,∠BAD=55°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD.【解题思路】(1)由所给的条件不难求出∠ABE的度数,再利用三角形的外角等于与它不相邻的两个内角之和,从而可求∠BED的度数;(2)由AD,BE是三角形的中线,可得到S△ABD=12S△ABC,S△BDE=12S△ABD,再由S△BDF=12BD•EF,可求得BD的长度,从而可求CD的长度.【解答过程】解:(1)∵∠ABC=35°,∠EBD=18°,∴∠ABE=35°﹣18°=17°,∴∠BED=∠ABE+∠BAD=17°+55°=72°;(2)∵AD是△ABC的中线,∴S△ABD=12S△ABC,又∵S△ABC=30,∴S△ABD=12×30=15,又∵BE为△ABD的中线,∴S△BDE=12S△ABD,∴S△BDE=12×15=152,∵EF⊥BC,且EF=5,∴S △BDE =12•BD •EF ,∴12•BD ×5=152, ∴BD =3,∴CD =BD =3.20.(8分)(2021春•通许县期末)如图,在△ACB 中,∠ACB =90゜,CD ⊥AB 于D .(1)求证:∠ACD =∠B ;(2)若AF 平分∠CAB 分别交CD 、BC 于E 、F ,求证:∠CEF =∠CFE .【解题思路】(1)由于∠ACD 与∠B 都是∠BCD 的余角,根据同角的余角相等即可得证; (2)根据直角三角形两锐角互余得出∠CF A =90°﹣∠CAF ,∠AED =90°﹣∠DAE ,再根据角平分线的定义得出∠CAF =∠DAE ,然后由对顶角相等的性质,等量代换即可证明∠CEF =∠CFE .【解答过程】证明:(1)∵∠ACB =90゜,CD ⊥AB 于D , ∴∠ACD +∠BCD =90°,∠B +∠BCD =90°,∴∠ACD =∠B ;(2)在Rt △AFC 中,∠CF A =90°﹣∠CAF , 同理在Rt △AED 中,∠AED =90°﹣∠DAE .又∵AF 平分∠CAB ,∴∠CAF =∠DAE ,∴∠AED =∠CFE ,又∵∠CEF =∠AED ,∴∠CEF =∠CFE .21.(8分)(2021春•高邮市期末)在一个三角形中,如果一个角是另一个角的2倍,这样的三角形我们称之为“倍角三角形”.如图,△ABC 中,∠ACB =90°,点P 是线段AB 上一点(不与A 、B 重合),连接CP .(1)当∠B=72°时;①若∠CPB=54°,则△ACP是“倍角三角形”(填“是”或“否”);②若△BPC是“倍角三角形”,求∠ACP的度数;(2)当△ABC、△BPC、△ACP都是“倍角三角形”时,求∠BCP的度数.【解题思路】(1)①求出△APC中各个内角的度数,即可判断.②由∠B=72°,△BPC是“倍角三角形”,推出△BCP内角的度数分别是72°,72°,36°,由此即可解决问题.(2)首先确定△ABC是“倍角三角形”时,有两种情形,45°的直角三角形,30°的直角三角形,再分类讨论解决问题即可.【解答过程】解:(1)①∵∠ACB=90°,∠B=72°,∴∠C=90°﹣72°=18°,∵∠CPB=54°,∴∠A+∠ACP=54°,∴∠ACP=36°,∴∠ACP=2∠A,∴△ACP是“倍角三角形”,故答案为:是.②∵∠B=72°,△BPC是“倍角三角形”,∴△BCP内角的度数分别是72°,72°,36°,∴∠BCP=36°或72°,∴∠ACP=54°或18°.(2)如图2﹣1中,当△ABC是等腰直角三角形,CP⊥AB时,满足条件,此时∠BCP=45°.如图2﹣2中,当∠A=60°,CP⊥AB时,满足条件,此时∠BCP=60°.如图2﹣3中,当∠A=60°,∠BPC=100°时,满足条件,此时∠BCP=50°.如图2﹣4中,当∠B=60°,∠APC=100°时,满足条件,此时∠BCP=40°.如图2﹣5中,当∠B=60°,∠APC=90°时,满足条件,此时∠BCP=30°.综上所述,满足条件的∠BC的值为30°或40°或45°或50°或60°.22.(8分)(2021春•侯马市期末)(1)如图1,四边形ABCD沿MN折叠,使点C、D落在四边形ABCD内的点C'D'处,探索∠AMD′、∠BNC'与∠A+∠B之间的数量关系,并说明理由;(2)如图2,将四边形ABCD沿着直线MN翻折,使得点D落在四边形ABCD外部的D′处,点C落在四边形ABCD内部的C'处,直接写出∠AMD'、∠BNC'与∠A+∠B之间的关系.【解题思路】(1)根据四边形的内角和可知∠DMN+∠CNM=∠A+∠B,再根据翻折可找到∠AMD′、∠BNC′与∠A+∠B之间的数量关系.(2)同理可得∠DMN+∠CNM=∠A+∠B,再根据翻折可找到∠AMD′、∠BNC′与∠A+∠B之间的数量关系.【解答过程】解:(1)∠AMD′+∠BNC′=360°﹣2(∠A+∠B),理由如下:根据四边形的内角和为360°可知,∠D+∠C=360°﹣(∠A+∠B),∠DMN+∠CNM=360°﹣(∠C+∠D)=∠A+∠B,根据折叠的性质得,∠DMN=∠D′MN,∠CNM=∠C′NM,∴∠DMD′+∠CNC′=2(∠A+∠B),∵∠DMD′+∠AMD′=180°,∠CNC′+∠BNC′=180°,∴∠AMD′+∠BNC′=360°﹣2(∠A+∠B).(2)∠BNC′﹣∠AMD′=360°﹣2(∠A+∠B),理由如下:由(1)知,∠DMN+∠CNM=∠A+∠B,根据折叠的性质得,∠DMN=∠D′MN,∠CNM=∠C′NM,∴∠D′MN+∠C′NM=∠A+∠B,由四边形的内角和为360°得,∠D′MN﹣∠AMD′+∠BNC′+∠C′NM=360°﹣(∠A+∠B)∴∠BNC′﹣∠AMD′=360°﹣2(∠A+∠B).23.(8分)(2021春•海口期末)如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B 在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【解题思路】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答过程】(1)解:∵∠AOB=90°,∴∠BAO+∠ABO=90°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CAB=12∠BAO,∠CBA=12∠ABO,∴∠CAB+∠CBA=12(∠BAO+∠ABO)=45°,∴∠ACB=180°﹣45°=135°,故答案为:135°;(2)解:∠ADB的大小不发生变化,∵∠OBE是△AOB的外角,∴∠OBE=∠OAB+∠AOB,∵∠AOB=90°,∴∠OBE﹣∠OAB=90°,∵BD平分∠OBE,∴∠EBD=12∠OBE,∵∠EBD是△ADB的外角,∴∠EBD=∠BAG+∠ADB,∴∠ADB=∠EBD﹣∠BAG=12∠OBE−12∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°,∴∠BCG=180°﹣∠ACB=180°﹣135°=45°,∵∠AGO是△BCG的外角,∴∠AGO=∠BCG+∠CBG=45°+∠CBG,∵∠AGO﹣∠BCF=45°,∴45°+∠CBG﹣∠BCF=45°,∴∠CBG=∠BCF,∴CF∥OB.。
2021-2023三年新高考解三角形大题解析
3 ,解得 sin ADC 1,而 0 ADC π ,于是 2
ADC π , 2
所以 b c AD2 CD2 2 .
3.(2022·全国·统考高考真题)记 ABC 的内角 A,B,C 的对边分别为 a,b,c,已知
cos A sin 2B . 1 sin A 1 cos 2 B
2
(2)由(1)知, C π B , A π 2B ,再利用正弦定理以及二倍角公式将 a2 b2
2
2
c2
化成
4
cos2
B
2 cos2
B
5
,然后利用基本不等式即可解出.
【详解】(1)因为
cos A 1 sin A
sin 2B 1 cos 2B
2 sin B cos 2 cos2 B
B
sin B cos B
由正弦定理,
c
b
5 2 5 ,可得 b 5 2 10 ,
sin C sin B
2
2
1 AB h 1 AB AC sin A,
2
2
h b sin A 2 10 3 10 6 . 10
2.(2023·全国·统考高考真题)记 ABC 的内角 A, B,C 的对边分别为 a,b, c ,已知 ABC 的面积为 3 , D 为 BC 中点,且 AD 1 .
2021-2023 三年新高考解三角形大题
1.(2023·全国·统考高考真题)已知在 ABC 中, A B 3C, 2 sin A C sin B .
(1)求 sinA ; (2)设 AB 5 ,求 AB 边上的高. 【答案】(1) 3 10
10 (2)6
【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测试卷三(第11章)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分)1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若A =π3,a =7,b =2,则边c 的大小为( )A .3B .2 C. 3 D. 2 答案 A解析 由余弦定理得,a 2=b 2+c 2-2bc cos A ,所以7=4+c 2-2c ,解得c =3或c =-1(舍去).故选A.2.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( ) A .(1,3) B .(2,3) C .(5,3) D .(22,3) 答案 C解析 由cos C =a 2+b 2-c 22ab <0,得c 2>a 2+b 2=5.∴c >5,又c <a +b =3,∴5<c <3.3.某船在小岛A 的南偏东75°,相距20千米的B 处,该船沿东北方向行驶20千米到达C 处,则此时该船与小岛A 之间的距离为( ) A .10(6-2)千米 B .10(6+2)千米 C .20千米 D .20 3 千米答案 D解析 由题意可得,在△ABC 中,AB =BC =20,∠ABC =120°,则AC =AB 2+BC 2-2AB ·BC cos ∠ABC =400+400-2×20×20×⎝⎛⎭⎫-12=20 3. 即此时该船与小岛A 之间的距离为203千米,故选D.4.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则三角形外接圆的半径为( ) A. 3 B .2 C .2 3 D .4 答案 B解析 根据三角形的面积公式S =12bc sin A ,可得到3=12×2×c ×32,解得c =2,所以△ABC是顶角为120°的等腰三角形,C 为30°,所以由正弦定理csin C =2R ,解得R =2.5.在△ABC 中,B =120°,AB =2,角A 的平分线AD =3,则AC 等于( ) A .1 B .2 C. 6 D .2 2 答案 C解析 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB,∴sin ∠ADB =22.由题意知0°<∠ADB <60°, ∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°. ∴∠BAC =30°,C =30°,BC =AB = 2. 在△ABC 中,由正弦定理,得AC sin B =BCsin ∠BAC, ∴AC =6,故选C.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2=a 2+bc ,AC →·AB →=4,则△ABC 的面积是( )A. 3 B .4 3 C .4 D .2 3 答案 D解析 在△ABC 中,b 2+c 2=a 2+bc , 所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12.又因为A 为△ABC 的内角,所以A =π3.又因为AC →·AB →=4,所以bc cos A =4,得bc =8.故△ABC 的面积为S =12bc sin A =12×8×sin π3=23,故选D.7.一辆汽车在一条水平的公路上向正西行驶,如图,到A 处时测得公路北侧一铁塔底部C 在北偏西60°的方向上,行驶200 m 后到达B 处,测得此铁塔底部C 在北偏西15°的方向上,塔顶D 的仰角为30°,则此铁塔的高度为( )A.10063 mB .50 6 mC .100 3 mD .100 2 m答案 A解析 设此铁塔高h m ,则BC =3h m ,在△ABC 中,∠BAC =30°,∠CBA =105°,∠BCA =45°,AB =200.根据正弦定理得3h sin 30°=200sin 45°,解得h =10063,故选A. 8.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .3 3 答案 C 解析a cos B +b cos Ac =sin A cos B +sin B cos A sin C =sin (A +B )sin (A +B )=1,即2cos C =1,可得C =60°,∵S △ABC =23,∴12ab sin C =23,即ab =8,又a +b =6,∴由c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -ab =(a +b )2-3ab =62-3×8=12,解得c =2 3.二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若C =30°,a =2c ,则B 等于( ) A .45° B .105° C .15° D .135° 答案 BC解析 因为在△ABC 中,C =30°,a =2c ,所以由正弦定理可得sin A =a sin C c =2×12=22,所以A =45°或135°,因此B =180°-45°-30°=105°或B =180°-135°-30°=15°,故选BC. 10.在△ABC 中,若AB =4,AC =5,△BCD 为等边三角形(A ,D 两点在BC 两侧),则当四边形ABDC 的面积S 最大时,下列选项正确的是( ) A .∠BAC =2π3B .∠BAC =5π6C .S =4134+20D .S =4134答案 BC解析 设BC =a ,c =4,b =5,∵△BCD 是等边三角形, ∴S △BCD =34a 2, 由余弦定理得a 2=b 2+c 2-2bc cos A , 则S 四边形ABDC =S △BCD +S △ABC =34a 2+12cb sin A =34(25+16-40cos A )+12×20sin A =4134+10sin A -103cos A =4134+20sin ⎝⎛⎭⎫A -π3. 故当A -π3=π2,即A =∠BAC =5π6时,四边形ABDC 的面积最大,为4134+20,故选BC.11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,以下四个结论中,正确的是( ) A .若a >b >c ,则sin A >sin B >sin C B .若A >B >C ,则sin A >sin B >sin C C .a cos B +b cos A =cD .若a 2+b 2>c 2,则△ABC 是锐角三角形 答案 ABC解析 对于A ,由于a >b >c ,故由正弦定理a sin A =b sin B =csin C =2R ,可得sin A >sin B >sin C ,故A 正确;对于B ,A >B >C ,由大边对大角定理可知,a >b >c ,由正弦定理a sin A =b sin B =csin C =2R ,可得sin A >sin B >sin C ,故B 正确;对于C ,根据正弦定理可得a cos B +b cos A =2R (sin A cos B +sin B cos A )=2R sin(B +A )=2R sin(π-C )=2R sin C =c ,故C 正确;对于D ,a 2+b 2>c 2,由余弦定理可得cos C =a 2+b 2-c 22ab >0,由C ∈(0,π),可得C 是锐角,但A 或B 可能为钝角,故D 错误.12.在△ABC 中,根据下列条件解三角形,其中有一解的是( ) A .b =7,c =3,C =30° B .b =5,c =4,B =45° C .a =8,b =43,B =60° D .a =20,b =30,A =30°答案 BC解析 对于A ,因为b =7,c =3,C =30°,所以由正弦定理可得sin B =b sin Cc =7×123=76>1,无解;对于B ,b =5,c =4,B =45°,所以由正弦定理可得sin C =c sin Bb=4×225=225<1,且c <b ,有一解;对于C ,因为a =8,b =43,B =60°,所以由正弦定理可得sin A =a sin Bb =8×3243=1,A =90°,此时C =30°,有一解;对于D ,因为a =20,b =30,A =30°,所以由正弦定理可得sin B =b sin Aa =30×1220=34<1,且b >a ,所以B 有两个值,有两解.三、填空题(本大题共4小题,每小题5分,共20分)13.在等腰三角形ABC 中,已知sin A ∶sin B =1∶2,底边BC =10,则△ABC 的周长是________. 答案 50解析 由正弦定理,得BC ∶AC =sin A ∶sin B =1∶2, 又底边BC =10,∴AC =20,∴AB =AC =20, ∴△ABC 的周长是10+20+20=50.14.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =________,a =________.答案255210 解析 由tan A =2,得sin A =2cos A , 由sin 2A +cos 2A =1,得sin A =255,又b =5,B =π4,故由正弦定理a sin A =bsin B ,得a =b sin A sin B =2522=210.15.在△ABC 中,若C =3B ,则cb 的取值范围为__________________________________.答案 (1,3)解析 由正弦定理,得c b =sin C sin B =sin 3B sin B =sin (B +2B )sin B =sin B ·cos 2B +cos B ·sin 2B sin B=cos 2B +2cos 2B =4cos 2 B -1,又∵A +B +C =180°,C =3B , ∴0°<B <45°,22<cos B <1, ∴1<4cos 2B -1<3, 即cb的取值范围为(1,3). 16.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =________ cm. 答案1063解析 如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,则在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理,得x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063 (cm).四、解答题(本大题共6小题,共70分)17.(10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且m =(2b -c ,cos C ),n =(a ,cos A ),m ∥n . (1)求角A 的大小;(2)若a =4,S △ABC =43,试判定△ABC 的形状. 解 (1)∵m ∥n ,m =(2b -c ,cos C ),n =(a ,cos A ), ∴(2b -c )cos A -a cos C =0,由正弦定理得(2sin B -sin C )cos A -sin A cos C =0,∴2sin B cos A -sin(C +A )=0,即sin B (2cos A -1)=0, ∵0<B <π,∴sin B ≠0,∴cos A =12,又0<A <π,∴A =π3.(2)∵S △ABC =12bc sin A =43,∴bc =16,又a 2=b 2+c 2-2bc cos A ,∴b 2+c 2=32,∴b =c =4, ∴△ABC 为等边三角形.18.(12分)在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,sin C =2sin B . (1)求BD CD; (2)若AD =AC =1,求BC 的长.解 (1)在△ABD 中,由正弦定理可得AD sin B =BDsin ∠BAD ,在△ACD 中,由正弦定理可得AD sin C =CDsin ∠CAD ,又因为∠BAD =∠CAD ,所以BD CD =sin Csin B =2.(2)由sin C =2sin B 及正弦定理得AB =2AC =2, 设DC =x ,则BD =2x ,则cos ∠BAD =AB 2+AD 2-BD 22AB ·AD =5-4x 24,cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =2-x 22,因为∠BAD =∠CAD ,所以5-4x 24=2-x 22,解得x =22.故BC =3x =322.19.(12分)如图,已知A ,B ,C 是一条直路上的三点,AB =BC =1 km ,从三点分别遥望塔M ,在A 处看见塔在北偏东45°方向,在B 处看见塔在正东方向,在C 处看见塔在南偏东60°方向,求塔到直路ABC 的最短距离.解 由题意得∠CMB =30°,∠AMB =45°, ∵AB =BC =1,∴S △MAB =S △MBC ,即12MA ×MB ×sin 45°=12MC ×MB ×sin 30°, ∴MC =2MA ,在△MAC 中,由余弦定理,得 AC 2=MA 2+MC 2-2MA ×MC ×cos 75°, ∴MA 2=43-22cos 75°,设M 到AB 的距离为h km ,则由△MAC 的面积得 12MA ×MC ×sin 75°=12AC ×h , ∴h =2MA 22×sin 75°=22×43-22cos 75°×sin 75°=7+5313. ∴塔到直路ABC 的最短距离为7+5313km.20.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A (cos B -3cos C )=cos A (3sin C -sin B ). (1)求sin C sin B的值;(2)若cos A =13,a =4,求△ABC 的面积.解 (1)因为sin A (cos B -3cos C ) =cos A (3sin C -sin B ), 所以sin A cos B +cos A sin B =3cos A sin C +3sin A cos C ,即sin(A +B )=3sin(A +C ),因为A +B +C =π,所以sin C =3sin B ,则sin Csin B =3.(2)因为sin C sin B =3,所以cb =3,即c =3b .由余弦定理可得a 2=b 2+c 2-2bc cos A , 因为cos A =13,a =4,c =3b ,所以16=b 2+9b 2-6b 2×13,解得b =2,c =3b =32, 因为cos A =13,所以sin A =223.故△ABC 的面积为12bc sin A =12×2×32×223=2 2.21.(12分)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答. ①sin A -sin C b =sin A -sin B a +c; ②2c cos C =a cos B +b cos A . (1)求角C 的大小;(2)若c =5,a +b =11,求△ABC 的面积. 解 (1)选择①,根据正弦定理得a -c b =a -ba +c ,从而可得a 2-c 2=ab -b 2,根据余弦定理c 2=a 2+b 2-2ab cos C , 解得cos C =12,因为C ∈(0,π),故C =π3.选择②,根据正弦定理得sin A cos B +sin B cos A =2sin C cos C , 即sin(A +B )=2sin C cos C , 即sin C =2sin C cos C ,因为C ∈(0,π),所以sin C ≠0,从而有cos C =12,故C =π3.(2)根据余弦定理c 2=a 2+b 2-2ab cos C , 得5=a 2+b 2-ab , 即5=(a +b )2-3ab , 解得ab =2,又因为△ABC 的面积为12ab sin C ,故△ABC 的面积为32. 22.(12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 都相距5 n mile ,与小岛D 相距3 5 n mile ,小岛A 对小岛B 与D 的视角为钝角,且sin A =35.(1)求小岛A 与小岛D 之间的距离和四个小岛所形成的四边形的面积;(2)记小岛D 对小岛B 与C 的视角为α,小岛B 对小岛C 与D 的视角为β,求sin(2α+β)的值.解 (1)∵sin A =35,且角A 为钝角,∴cos A =-1-⎝⎛⎭⎫352=-45. 在△ABD 中,由余弦定理得,AD 2+AB 2-2AD ·AB ·cos A =BD 2. ∴AD 2+52-2AD ×5×⎝⎛⎭⎫-45=(35)2⇒AD 2+8AD -20=0. 解得AD =2或AD =-10(舍去). ∴小岛A 与小岛D 之间的距离为2 n mile. ∵A ,B ,C ,D 四点共圆, ∴角A 与角C 互补.∴sin C =35,cos C =cos(180°-A )=-cos A =45. 在△BDC 中,由余弦定理得,CD 2+CB 2-2CD ·CB ·cos C =BD 2,∴CD 2+52-2CD ×5×45=(35)2 ⇒CD 2-8CD -20=0,解得CD =-2(舍去)或CD =10.∴S 四边形ABCD =S △ABD +S △BCD =12AB ·AD ·sin A +12CB ·CD ·sin C =12×5×2×35+12×5×10×35=3+15=18.∴四个小岛所形成的四边形的面积为18平方海里.(2)在△BDC 中,由正弦定理得,BC sin α=BD sin C ⇒5sin α=3535⇒sin α=55. ∵DC 2+BD 2>BC 2,∴α为锐角,∴cos α=255. 又∵sin(α+β)=sin(180°-C )=sin C =35, cos(α+β)=cos(180°-C )=-cos C =-45. ∴sin(2α+β)=sin [α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=55×⎝⎛⎭⎫-45+255×35=2525.。