16.2.二次根式的加减
二次根式的运算加减乘除

二次根式的运算加减乘除二次根式,是指具有根号的数学表达式,常见形式为√a或√(a + b),其中a和b为实数。
本文将围绕二次根式的运算进行讨论,包括加法、减法、乘法和除法。
一、二次根式的加法对于两个具有二次根式形式的数,如√a和√b,它们的和可以通过以下步骤进行计算:Step 1: 将两个二次根式化简为最简形式,即将根号内的数分解为互质的因数。
例如,√20可以化简为√(4 × 5),再进一步化简为2√5。
Step 2: 将化简后的二次根式进行合并,即将含有相同根号部分的项相加。
例如,对于√20 + √45,可以分别先将二次根式化简为2√5和3√5,然后相加得到5√5。
因此,二次根式的加法运算要先将根号内的数化简为互质的因数,然后合并相同根号部分。
二、二次根式的减法二次根式的减法与加法类似,也需要先将根号内的数化简为最简形式,然后合并相同根号部分。
以下是减法的步骤:Step 1: 将两个二次根式化简为最简形式。
Step 2: 将化简后的二次根式进行合并,即将含有相同根号部分的项相减。
例如,对于√20 - √45,可以先将二次根式化简为2√5和3√5,然后相减得到-√5。
需要注意的是,减法运算中可能会出现负数的结果,这也是合理的。
三、二次根式的乘法二次根式的乘法运算可以通过以下步骤进行:Step 1: 将两个二次根式进行分解,将根号内的数分别因式分解为互质的因数。
例如,对于√20 × √45,可以将20分解为2 × 2 × 5,45分解为3 × 3 × 5。
Step 2: 将每个二次根式的因数进行合并。
例如,√20 × √45可以化简为(2 × √5) × (3 × √5)。
Step 3: 将合并后的二次根式继续化简为最简形式。
对于(2 × √5) × (3 × √5),可以合并根号前的系数,得到6 × √(5 × 5),即6 × √25。
二次根式的混合运算

平方差公式:(a+b)(a-b)=a2-b2; 完全平方公式:(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 问题2 整式的乘法公式对于二次根式的运算也适
用吗?
前面我们已 经知道二次 根式运算类 比整式运算, 所以适用哟
整式的乘法 公式就是多 项式×多项
式
典例精析
例3 计算: (1) ( 5 3)( 5 3) ; (2) ( 3 2)2.
解:(1) ( 5 3)( 5 3) ( 5)2 ( 3)2 53 2.
(2) ( 3 2)2 ( 3)2 2 3 2+22 3 4 3+4 74 3.
(3) 3 2 48 18 4 3 ; (4) a3 a2b a b .
a ab
a b
解:(3) 3 2 48 18 4 3 3 2 4 3 3 2 4 3
2
5 1 4.
课堂小结
二次根式 混合运算
乘法公式
(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (x+a)(x+b)=x2 +(a+b)x+ab
化简已知条件和所求代数式 化简求值
分母有理化
解:∵ x 3 2, y 3 2 , ∴ x y 3 2 3 2 2 3,
xy 3 2 3 2 3 2 1,
∴x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]
1
2
3 2 2 1 10.
归纳 用整体代入法求代数式值的方法:求关于x,y的
a 3, b 10 3 . a2 b2 32 ( 10 3)2
人教版数学八年级下册16.2二次根式的乘除第一课时优秀教学案例

2.要求学生认真完成作业,并及时给予反馈,了解学生对知识点的掌握情况。如:“请同学们认真完成作业,明天我们将进行作业讲评。”
五、案例亮点
(二)问题导向
1.设计具有启发性的问题,引导学生思考二次根式乘除法的运算规律,如:“如何将二次根式的乘除法转化为我们已经学过的加减法?”等。
2.引导学生通过问题发现知识点之间的联系,如:提问:“二次根式的乘除法与实数的乘除法有什么异同?”等,让学生在思考中掌握知识。
(三)小组合作
1.组织学生进行小组讨论,分享各自的想法和解决问题的方法,让学生在合作中发现问题、解决问题,培养团队合作精神。
针对这一知识点,我设计了一节以学生为主体、注重实践与思考的优秀教学案例。首先,我会通过复习导入,引导学生回顾已学的二次根式知识,为新课的学习做好铺垫。接着,我将会引导学生通过小组合作、讨论交流的方式,探索二次根式的乘除运算规律,培养学生的主体探究能力和团队合作精神。在探索过程中,我会适时给予学生反馈和指导,帮助他们克服困难,理解并掌握二次根式的乘除运算方论,让学生分享各自对二次根式乘除法的理解和运算方法。如:“你们认为二次根式乘除法应该如何运算?请你们小组讨论一下,并分享给其他小组。”
2.引导学生通过讨论,发现和总结二次根式乘除法的运算规律。如:“通过讨论,我们发现二次根式乘除法可以转化为加减法,只需要将根号内的数相乘(或相除)即可。”
(四)总结归纳
1.教师引导学生总结本节课所学的二次根式乘除法的运算规律。如:“我们可以总结一下,二次根式的乘法可以理解为将根号内的数相乘,除法可以理解为将根号内的数相除。”
二次根式加减运算法则公式

二次根式加减运算法则公式1. 什么是二次根式?二次根式是指某个数的平方根,其中这个数可以是整数、分数或者解析式的形式。
例如√16、√(4/9)、√(x+1) 都是二次根式。
2. 二次根式加减法则对于二次根式的加减运算,需要遵循一定的法则,以下是二次根式加减法则:1. 对于同类项的二次根式,即根号里面的数相同的根式,可以直接合并,例如√2+√2=2√2。
2. 对于不同类项的二次根式,则不能直接合并,需要进行化简,即将其转化为同类项的形式后再合并。
3. 化简的方法一般有提公因式、有理化分母等,但需要保证等式两边的值相等。
3. 实例分析为了更好地了解二次根式加减法则,下面举几个例子进行分析:1. 化简√10+2√5-√80将√10 和√5 提取公因式得到√10+2√5-√80=√2(5+10-40)=√2(-25)=-5√2。
因此,√10+2√5-√80=-5√2。
2. 化简√(2/5)+√(3/20)先将分母提出来,即√(2/5)+√(3/20)=√(2)/√(5)+√(3)/√(20)。
然后将分母有理化,即分别用√(5) 和√(20) 乘以相应分子分母。
化简后的结果是:√(2)/√(5)+√(3)/√(20)=√(40)/5+√(15)/10。
3. 化简√3-√7+√12将√3和√12提取公因式,得到√3-√7+√12=√3+2√3-√7-2√3+√12=(√3+2√3+√12)-(2√3+√7)因此,√3-√7+√12=3√3-√7-2√3+√12=√3-√7+√12。
4. 总结二次根式是基础数学中的重要概念,对于二次根式的加减运算,也有一定的规则和方法。
只有掌握了二次根式的加减法则,才能更好地处理涉及到二次根式的问题。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
16.2.2二次根式的加减课件(2014年沪科版八年级下)

解: (1)原式=
倍 速 课 时 学 练
1 2 1 (2)原式 2 6 2 6 2 6 2 3 4
2 1 1 2 1 6 2 3 2 4
9 3 3 2 4 2 2 2 4 1 2 2 2 2
形式上都是二次根式,实质上
5 50 不是最简二次根式,可以化简:
倍 速 课 时 学 练
2
但4
2 是最简二次根式
50 18 32 和5 2 3 2 4 2
还可以化简吗?二次根式的加减
A
?m
C
倍 速 课 时 学 练
50
m
18 m
问题:已知△ABC中,∠C=90°,AB= BC= 18 m,那么△ABC的周长 L等于多少呢?
解:∵
48 4 3 4 3
2
2
4 3,
2 1 1 , 2 2 2
1 1 3 , 27 3 3 9
倍 速 课 时 学 练
2 8ab3 3
2 2 4 b 2ab 3
2 2b 2ab 3
4b 2ab 3
,
a a 6b 6b 2b 2b
a 2b 6b 2b 2b
4ab , ab
D. D
a 1, a 1
)
1 6 27
1 2
?
2. 与
A.
12 是同类二次根式的是( B C 125 D. 32 B. 24 C.
?
倍 速 课 时 学 练
× ×
1
3
3.判断:下列计算是否正确?为什么?
8 18 2 4
2 3 5; 2 2 2 2 2 ;
新人教版八年级下册二次根式(全章)习题及答案

二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》

沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》一. 教材分析《第16章二次函数16.2二次根式的运算(第2课时)》这一节的内容,主要是对二次根式的运算进行深入的讲解和练习。
在前一课时,学生已经了解了二次根式的定义和性质,本课时将在此基础上,进一步学习二次根式的加减乘除运算,以及混合运算的法则。
教材通过具体的例题和练习题,使学生掌握二次根式的运算方法,提高他们的数学运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有一定的了解。
但学生在进行二次根式运算时,容易出错,对混合运算的法则理解不够深入。
因此,在教学过程中,教师需要引导学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
三. 说教学目标1.知识与技能:学生会运用二次根式的加减乘除法则进行计算,解决一些简单的实际问题。
2.过程与方法:学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
3.情感态度与价值观:学生能够感受到数学与生活的联系,增强他们对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握二次根式的加减乘除运算方法,解决一些简单的实际问题。
2.教学难点:学生对混合运算的法则的理解和运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、讨论法、练习法等教学方法。
通过引导学生观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
同时,我将运用多媒体教学手段,展示二次根式的运算过程,使学生更加直观地理解二次根式的运算方法。
六. 说教学过程1.导入:通过复习上一课时所学的内容,引导学生回顾二次根式的定义和性质,为新课的学习做好铺垫。
2.教学新课:讲解二次根式的加减乘除运算方法,通过具体的例题,使学生掌握二次根式的运算规律。
3.巩固练习:学生进行一些相关的练习题,巩固新学的知识。
4.课堂小结:教师引导学生总结本节课所学的内容,使学生对二次根式的运算有一个清晰的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 8 ,18 ,0.5;
2
2,3
2,
2; 2
(2) 80 ,45 ,20 .
4 5 , 3 5, 2 5 .
化简后被开方数相同
问题3 有八只小白兔,每只身上都标有一个最简二 次根式,你能根据被开方数的特征将这些小白兔分 到四个不同的栅栏里吗?
2
23
25
3 2
3 2 2 7 5
47
讲授新课
序号).
① 48;②- 125;③ 11;④ 3;⑤ 18. 32
二 二次根式的加减及其应用 思考 现有一块长7.5dm、宽5dm的木板,能否采用如图 的方式,在这块木板上截出两个分别是8dm2和18dm2的 正方形木板?
问题1 怎样列式求两个正方形边长的和?
7.5dm
5dm S=18dm2
S=8dm2
解得
m
n
4, 3 1, 2
即 mn 4 1 6 .
32 3
归纳 确定可以合并的二次根式中字母取值的方法:利 用被开方数相同,指数都为2列关于待定字母的方程求 解即可.
练一练
1.下列各式中,与 3 是同类二次根式的是( D )
A. 2
Байду номын сангаас
B. 5
C. 8
D. 12
2. 8与最简二次根式 m 1能合并,则m=__1___. 3.下列二次根式,不能与 12 合并的是__②__⑤____(填
第16章 二次根式
16.2.2 二根次式的加减
第1课时 二次根式的加减
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解二次根式的加、减运算法则.(重点) 2.会用二次根式的加、减运算法则进行简单的运算. (难点)
导入新课
复习引入
问题1 满足什么条件的根式是最简二次根式? (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式. 问题2 化简下列两组二次根式,每组化简后有什 么共同特点?
一 在二次根式的加减运算中可以合并的二次根式 在七年级我们就已经学过单项式加单项式的法则.观 察下图并思考.
a
a
aa
a
a
a
a
aa
由上图,易得2a+3a=5a.
当a= 2 时,分别代入左右得 2 2 3 2=5 2 ; 当a= 3 时,分别代入左右得 2 3 3 3=5 3 ; ......
你发 现了 什么?
( 4 ) 5 12 -(3 82 27)_4_3__-6__2_.
课堂小结
二次根 式加减
法则
一般地,二次根式的加减 时,可以先将二次根式化成最 简二次根式,再将被开方数相 同的二次根式进行合并.
运 算 原 理 运算律仍然适用
注意 运算顺序
与实数的运 算顺序一样
归纳总结
二次根式的加减法法则:
一般地,二次根式加减时,可以先将二次根式 化成最简二次根式,再将被开方数相同的二次根 式进行合并.
加减法的运算步骤:
(1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)并——把被开方数相同的二次根式合并.
“一化简二判断三合并”
二次根
整式加
式性质 分配律 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 用分配 整式 二次根式 律合并 加减
依据:二次根式的性质、分配律和整式加减法则. 基本思想:把二次根式加减问题转化为整式加减问题.
练一练
1.下列计算正确的是 ( C )
A. 2 2 2
B. 3 2 3 2
注意:判断几个二次根式是否可以合并,一定都要 化为最简二次根式再判断. 合并的方法与合并同类项类似,把根号外的因数(式) 相加,根指数和被开方数(式)不变.如:
m a n a m n a
典例精析
例1 若最简根式2n1 3m 2n 与 3 可以合并,求
mn 的值.
解:由题意得32mn21n23, ,
8+ 18
问题2 所列算式能直接进行加减运算吗?如果不能, 把式中各个二次根式化成最简二次根式后,再试一
试(说出每步运算的依据).
解:列式如下:
在有理数
8+ 18
范围内成立的
2 2+3 2 (化成最简二次根式) 运算律,在实
(2+3) 2 5 2.
(逆用分配律)
数范围内仍然 成立.
18 3 2 5,5 2 7.5 ∴在这块木板上可以截出两个分别是8dm2和 18dm2的正方形木板.
C. 12 3 3
D. 3 2 5
2.已知一个矩形的长为 48 ,宽为 12 ,则其 周长为_1_2__3__.
当堂练习
1.二次根式:12、 3、18、27 中,与 3能进行合并的
2
是 A. 12与 3
2
B.
3与 18 2
(C )
C . 12与 27 2.下列运算中错误的是
D . 18与 27 ( A)
前面依次往下推导,由特殊到一般易知二次根式 的被开方数相同可以合并.继续观察下面的过程:
a
b
b
2a+3b
a
b
这两个二次根
式可以合并吗?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 . 因为3 8 3 22 2 6 2 ,由前面知两者可以合并. 你又有什么发现吗?
归纳总结
将二次根式化成最简式,如果被开方数相同,像这 样的二次根式称为同类二次根式.
A. 2 3 5
B. 2 3 6 C. 8 2 2 D. ( 3)2 3
3.三角形的三边长分别为 20 ,40 ,45 ,则这个三角 形的周长为_5__5_+__2_1_0__.
4.计算:
( 1 ) 5 2 18= __8__2__; ( 2 ) 4 18 -9 2 ___3__2____ ; ( 3 )10 2 (3 8-7 2)___9__2__;