机械优化设计实验报告
机械优化设计实验报告
《机械优化设计》课程实验报告M a t l a b优化工具箱一、实验目的和要求熟悉Matlab7.0软件的界面和基本功能,了解Matlab优化工具箱的常用算法;使用Matlab优化工具箱的f m i n u n c/f m i n s e a r c h函数求解多变量非线性无约束优化问题;使用Matlab优化工具箱的f m i n c o n函数求解多变量非线性约束优化问题。
二、实验设备和软件台式计算机,Matlab7.0软件。
三、实验内容求解下列优化问题的最优解。
要求:(1)编写求解优化问题的M文件,(2)在命令窗口输入求解优化问题的命令,并得出计算结果。
1、标量优化问题1) f=x2-10x+362) f=x4-5x3+4x2-6x+603) f=(x+1)(x-2)22、多变量非线性无约束优化问题1) f=4(x1-5) 2+( x2-6) 2初始点:x0=[8,9]T;2) f=(x12+x2-11)2+( x1+ x22-7)2初始点:x0=[1,1]T;3) f=[1.5- x1(1- x2)]2+[2.25- x1(1- x22)]2+[2.625- x1(1- x23)]2初始点:x0=[2,0.2]T;4) f=( x12+12 x2-1)2+(49 x1+49 x2+84 x1+2324 x2-681)2初始点:x0=[1,1]T;5) f=( x1+10 x2)2+5(x3- x4)2+( x2-2 x3)4+10(x1- x4)4初始点:x0=[3,-1,0,1]T;3、多变量非线性约束优化问题1) f=( x1-2)2+( x2-1)2g1= x12-x2≤0g2= x1+x2-2≤0初始点:x0=[3,3]T;2) f= x23[( x1-3)2-9]/273≤0g1=x2-x1/3≤0g2=-x1+x2/3≤0g3=x1+x2/3-6≤0g4=-x1≤0g5=-x2≤0初始点:x0=[1,5]T;3) f=1000- x12-2x2 2-x32-x1x2-x1x3g1=-x1≤0g2=-x2≤0g3=-x3≤0g4=x12+x22+x3 2-25=0g5=8x1+14x2+7x3-56=0初始点:x0=[2,2,2]T4)f=100(x2-x12)2+(1-x1)2+90(x4-x32)2+(1-x3)2+10[(x2-1)2+(x4-1)2]+19.8(x2-1)(x4-1)-10≤x1≤10-10≤x2≤10-10≤x3≤10-10≤0x4≤10初始点:x0=[-3,-1,-3,-1]T;四、M文件、在命令窗口输入的求解命令清单及计算结果记录>>1、(1)目标函数的M文件function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)} x =5.0000fval =11.00002、(2)目标函数的M文件function f=fun2(x)f=x^4-5*x^3+4*x^2-6*x+60调用求解命令x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun2,lb,ub,options)x =3.2796fval =22.65902、(3)目标函数的M文件function f=fun3(x)f=(x+1)*(x-2)^2调用求解命令> x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun3,lb,ub,options)x =2.0000fval =1.9953e-0113(1)目标函数的M文件function f=fun4(x)f=4*(x(1)-5)^2+(x(2)-6)^2调用求解命令x0=[8,9];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun4,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =5.00006.0000fval =1.7876e-0123(2)目标函数的M文件function f=fun5(x)f=(x(1)^2+x(2)-11)^2+(x(1)+x(2)^2-7)^2调用求解命令>> x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun5,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 2.0000fval =5.2125e-0123(3)目标函数的M文件function f=fun6(x)f=[1.5-x(1)*(1-x(2))]^2+[2.25-x(1)*(1-x(2)^2)]^2+[2.625-x(1)*(1-x(2)^3)]^2调用求解命令x0=[2,0.2];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun6,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 0.5000fval =3.9195e-0143(4)目标函数的M文件function f=fun7(x)f=(x(1)^2+12*x(2)-1)^2+(49*x(1)+49*x(2)+84*x(1)+2324*x(2)-681)^2调用求解命令x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun7,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =0.9570 0.2333fval =7.37643(5)目标函数的M文件function f=fun8(x)f=(x(1)+10*x(2))^2+5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+10*(x(1)-x(4))^4调用求解命令>> x0=[3,-1,0,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun8,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =0.0015 -0.0002 -0.0031 -0.0031fval =6.3890e-009三、3、(1)目标函数的M文件function f=fun9(x)f=(x(1)-2)^2+(x(2)-1)^2约束函数的M文件function [c,cep]=con1(x)c=[x(1)^2-x(2);x(1)+x(2)-2];cep=[]当前窗口条用求解命令x0=[3,3];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun9,x0,[],[],[],[],[],[],@con1,options)Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin12x =1.0000 1.0000fval =1.00003、(2)目标函数的M文件function f=fun10(x)f=x(2)^3*[(x(1)-3)^2-9]/27*3^(1/2)约束函数的M文件function [c,cep]=con2(x)c=[x(2)-x(1)/3^(1/2);-x(1)+x(2)/3^(1/2);x(1)+x(2)/3^(1/2)-6];cep=[]当前窗口条用求解命令x0=[1,5];lb=[0,0];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun10,x0,[],[],[],[],lb,ub,@con2,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin13x =4.5000 2.5981fval =-7.59383、(3)目标函数的M文件function f=fun11(x)f=1000-x(1)^2-2*x(2)^2-x(3)^2-x(1)*x(2)-x(1)*x(3)约束函数的M文件function [c,cep]=con3(x)c=[];cep=[x(1)^2+x(2)^2+x(3)^2-25;8*x(1)+14*x(2)+7*x(3)-56];当前窗口条用求解命令x0=[2,2,2];lb=[0,0,0];ub=[];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun11,x0,[],[],[],[],lb,ub,@con3,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.No active inequalitiesx =3.5121 0.2170 3.5522fval =961.71523、(4)目标函数的M文件function f=fun12(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)^2+(1-x(3))^2+10*[(x(2)-1) ^2+(x(4)-1)^2]+19.8*(x(2)-1)*(x(4)-1)约束函数的M文件function [c,cep]=con4(x)cep=[];当前窗口条用求解命令x0=[-3,-1,-3,-1,];lb=[-10,-10,-10,-10];ub=[10,10,10,10];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun12,x0,[],[],[],[],lb,ub,@con4,options)Optimization terminated: Magnitude of directional derivative in searchdirection less than 2*options.TolFun and maximum constraint violationis less than options.TolCon.No active inequalitiesx =1.0001 1.0002 0.9999 0.9997fval =2.3989e-007五、质疑和建议对于一维标量优化问题搜索,在当前窗口中调用求解命令时,[x,fval]=fminbnd(@fun1,lb,ub,options)可以改成[x,fval]=fminbnd(@fun1,-10,10)如下:function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)}x =5.0000fval =11.0000。
《机械优化设计》课程实践报告
合肥工业大学《机械优化设计》课程实践研究报告班级:学号:姓名:授课教师:日期: 2016年 11月 12 日目录1。
λ=0。
618的证明、一维搜索程序作业2。
单位矩阵程序作业3. 注释最佳再现给定运动规律连杆机构优化设计问题模型子程序4. 连杆机构问题+自行选择小型机械设计问题或其他工程优化问题(1)分析优化对象,根据设计问题的要求,选择设计变量,确立约束条件,建立目标函数,建立优化设计的数学模型并编制问题程序;(2)选择适当的优化方法,简述方法原理,进行优化计算;(3)进行结果分析,并加以说明。
5。
课程实践心得体会1。
λ=0.618的证明、一维搜索程序作业1.1证明:a α1 α2 ba α3 α1 α2黄金分割法要求插入点α1,α2的位置相对于区间[a,b]两端点具有对称性,即α1=b-λ(b-a)α2=b+λ(b-a)其中λ为待定常数.除了对称要求外,黄金分割法还要求在保留下来的区间内再插入一点,所形成的新三段与原来区间的三段具有相同的比例分布,故有1-λ=λ2取方程正数解,得≈0.618λ=√5−121.2一维搜索C语言程序:(以正弦函数y=sinx为例)#include〈stdio.h>#include<math.h>int main(){double a,b,c=0。
618,x[3],y[3],d;printf(”请输入区间[a,b]的值以及精度:\n”);scanf(”%lf,%lf,%lf”,&a,&b,&d);x[1]=b—c*(b—a);x[2]=a+c*(b—a);y[1]=sin(x[1]);y[2]=sin(x[2]);do{ if(y[1]>y[2]){ a=x[1];x[1]=x[2];y[1]=y[2];x[2]=a+c*(b—a);y[2]=sin(x[2]);}else{ b=x[2];x[2]=x[1];y[2]=y[1];x[1]=b—c*(b—a);y[1]=sin(x[1]);}}while(fabs((b-a)/b)>d);x[0]=(a+b)/2;y[0]=sin(x[0]);printf("极小点x*=%lf\n”,x[0]);printf("极小值y=%lf\n”,y[0]);}C语言程序运行结果:2. 单位矩阵程序作业2。
机械优化设计上机实践报告【精编版】
机械优化设计上机实践报告【精编版】机械优化设计上机实践报告班级:机械(茅以升)101姓名:学号: 1004010510成绩:指导教师: 张迎辉日期: 2013.11.201 《一维搜索方法》上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。
(一)进退法1. 算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。
因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。
(1) 如果()()00f x f x h <+则可知搜索区间为0[,]xx h +%,其中x %待求,为确定x %,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。
(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x %,其中x %待求,为确定x %,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。
2. 算法步骤用进退法求一维无约束问题min (),f x x R ∈的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点(0)x ,初始步长0h ,令0h h =,(1)(0)x x =,0k =;(2) 令(4)(1)x x h =+,置1k k =+;(3) 若()()(4)(1)f x f x <,则转步骤(4),否则转步骤(5);(4) 令(2)(1)(1)(4),x x x x ==,()()(2)(1)f x f x =,()()(1)(4)f x f x =,令2h h =,转步骤(2);(5) 若1k =,则转步骤(6)否则转步骤(7);(6) 令h h =-,(2)(4)x x =,()()(2)(4)f x f x =,转步骤(2);(7) 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小值点包含于区间(1)(3)(3)(1)[,][,]x x x x 或(二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于[a ,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。
机械优化设计实验报告
机械优化设计实验报告机械优化设计实验报告引言机械优化设计是一门重要的工程学科,旨在通过优化设计方法,提高机械系统的性能和效率。
本实验旨在通过对某一机械系统的优化设计,探索并验证优化设计的有效性和可行性。
实验目的本实验的主要目的是通过对某一机械系统进行优化设计,提高其性能和效率。
具体而言,我们将通过改变材料、几何形状等参数,寻找最佳设计方案,并通过实验验证其优化效果。
实验方法1. 确定优化目标:首先,我们需要明确机械系统的优化目标,例如提高系统的强度、降低系统的重量等。
2. 确定设计变量:根据机械系统的特点,确定需要进行优化的设计变量,例如材料的选择、零件的几何形状等。
3. 建立数学模型:根据机械系统的结构和运行原理,建立数学模型,用于优化设计的计算和分析。
4. 优化设计:使用优化算法,例如遗传算法、粒子群算法等,对机械系统进行优化设计,得到最佳设计方案。
5. 实验验证:根据最佳设计方案,制作实际样品,并进行实验验证,比较实验结果与模型计算结果的一致性。
实验结果经过优化设计和实验验证,我们得到了以下结果:1. 材料优化:通过对不同材料的比较,我们发现材料A具有更好的强度和耐久性,因此在最佳设计方案中选择了材料A。
2. 几何形状优化:通过对不同几何形状的比较,我们发现几何形状B具有更好的流体动力学性能,因此在最佳设计方案中采用了几何形状B。
3. 性能提升:通过与原设计方案进行对比,我们发现最佳设计方案在强度和效率方面都有显著提升,验证了优化设计的有效性。
讨论与分析通过本实验,我们可以得出以下结论:1. 机械优化设计可以显著提高机械系统的性能和效率,为工程设计提供了有力的支持。
2. 优化设计需要综合考虑多个因素,如材料、几何形状等,以达到最佳设计效果。
3. 优化设计的结果需要通过实验验证,以确保其可行性和有效性。
结论本实验通过对某一机械系统的优化设计,验证了机械优化设计的有效性和可行性。
通过改变材料、几何形状等参数,我们成功提高了机械系统的性能和效率。
机械优化设计实验报告
一、实验目的本次实验旨在通过计算机编程,加深对机械优化设计方法的理解,掌握常用的优化算法,并能够利用计算机解决实际问题。
二、实验内容1. 黄金分割法(1)实验原理黄金分割法是一种常用的优化算法,适用于一元函数的极值求解。
其基本原理是:在给定初始区间内,通过迭代计算,逐步缩小搜索区间,直到满足收敛条件。
(2)实验步骤① 设计实验程序,实现黄金分割法的基本算法。
② 编写函数,用于计算一元函数的值。
③ 设置初始区间和收敛精度。
④ 迭代计算,更新搜索区间。
⑤ 判断是否满足收敛条件,若满足则输出结果,否则继续迭代。
(3)实验结果通过编程实现黄金分割法,求解函数f(x) = x^3 - 6x^2 + 9x + 1在区间[0, 10]内的极小值。
实验结果显示,该函数在区间[0, 10]内的极小值为1,且收敛精度达到0.001。
2. 牛顿法(1)实验原理牛顿法是一种求解非线性方程组的优化算法,其基本原理是:利用函数的导数信息,逐步逼近函数的极值点。
(2)实验步骤① 设计实验程序,实现牛顿法的基本算法。
② 编写函数,用于计算一元函数及其导数。
③ 设置初始值和收敛精度。
④ 迭代计算,更新函数的近似值。
⑤ 判断是否满足收敛条件,若满足则输出结果,否则继续迭代。
(3)实验结果通过编程实现牛顿法,求解函数f(x) = x^3 - 6x^2 + 9x + 1在区间[0, 10]内的极小值。
实验结果显示,该函数在区间[0, 10]内的极小值为1,且收敛精度达到0.001。
3. 拉格朗日乘数法(1)实验原理拉格朗日乘数法是一种求解约束优化问题的优化算法,其基本原理是:在约束条件下,构造拉格朗日函数,并通过求解拉格朗日函数的驻点来求解优化问题。
(2)实验步骤① 设计实验程序,实现拉格朗日乘数法的基本算法。
② 编写函数,用于计算目标函数、约束函数及其导数。
③ 设置初始值和收敛精度。
④ 迭代计算,更新拉格朗日乘数和约束变量的近似值。
机械优化设计上机实践报告
机械优化设计上机实践报告本次机械优化设计上机实践报告是由学生在机械专业课程的学习中所完成的一项任务,旨在通过实践操作提高学生的机械设计和优化能力。
本次实践任务分为两个部分,第一部分是机械零件的设计,第二部分是该零件的优化设计。
一、机械零件设计在机械零件设计的部分,我们需要使用软件来实现。
首先,我们需要通过建立一个零部件的三维模型,然后通过在模型上进行绘制,来完成机械零件的设计。
在实践过程中,我们学习了许多机械零件设计的基本操作。
比如,怎样用不同的工具来创建不同的几何形状的零件。
同时我们还学习了常用的切削工具和块状建模工具。
这些工具让我们能够在短时间内完成复杂的机械零件的建模操作。
我们也学会了如何使用装配工具,通过将不同的零部件组合成装配体,从而使业主更直观地看到最终的产品形态。
二、机械优化设计经过机械零件设计的部分后,我们就开始了机械零件的优化设计。
因为在设计过程中,我们不仅需要考虑性能问题,还要考虑到材料成本和制造工艺等实际因素。
机械优化设计就是在保证零部件符合需要的功能的前提下,通过对材料和几何形状的优化,提高了零部件的机械性能和制造效率。
在实践过程中,我们首先需要了解机械零件的功能和作用,然后参考相关的设计标准和规范,确定重点优化对象。
我们还需要收集和分析机械零件在使用中的各种受力情况,然后确定机械零件的性能参数和指标,然后对机械零件的机械性能和材料利用率进行计算和分析。
经过机械优化设计的部分后,我们已经对完成的机械零件进行了大量的优化操作。
我们优化了零部件的材料选取、几何形状、工艺流程等方面,使机械零件的机械性能得到进一步提升,同时也降低了制造成本,实现了性价比的优化。
总结通过本次机械优化设计研讨实践,我们更好地理解和掌握了机械零件的设计和优化方法。
我们学会了如何使用专业设计软件,更好地了解了机械零件的实际构造和特性。
我们也学会了机械优化设计的思维方式,明确了优化设计需要考虑的各方面因素,能够更好地满足机械零件使用的实际要求。
(完整word版)机械优化设计实验报告(word文档良心出品)
《机械优化设计》实验报告目录1.进退法确定初始区间 (3)1.1 进退法基本思路 (3)1.2 进退法程序框图 (3)1.3 题目 (3)1.4 源程序代码及运行结果 (3)2.黄金分割法 (4)2.2黄金分割法流程图 (4)2.3 题目 (5)2.4 源程序代码及结果 (5)3.牛顿型法 (5)3.1牛顿型法基本思路 (6)3.2 阻尼牛顿法的流程图 (6)3.3 题目 (6)3.4 源程序代码及结果 (6)4.鲍威尔法 (7)4.1 鲍威尔法基本思路 (7)4.2 鲍威尔法流程图 (7)4.3 题目 (8)4.4 源程序代码及结果 (8)5. 复合形法 (15)5.1 复合行法基本思想 (15)5.3 源程序代码及结果 (15)6. 外点惩罚函数法 (23)6.1解题思路: (23)6.2 流程框图 (23)6.3 题目 (23)6.4 源程序代码及结果 (23)7.机械设计实际问题分析 (29)7.2计算过程如下 (29)7.3 源程序编写 (30)8.报告总结 (32)1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
1.2 进退法程序框图1.3 题目:用进退法求解函数()2710=-+的搜索区间f x x x1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
合肥工业大学《机械优化设计》课程实践报告
合肥工业大学《机械优化设计》课程实践研究报告班级:学号:姓名:授课教师:日期:2016年11 月7 日目录作业要求 (2)一、λ=0.618的证明、一维搜索程序作业 (3)1、0.618法的基本思想 (3)2、关于0.618法中参数λ=0.618的证明 (4)3、一维搜索程序作业 (5)二、单位矩阵程序作业 (8)三、注释最佳再现给定运动规律连杆机构优化设计 (10)问题模型子程序 (10)四、连杆机构问题+其他工程优化问题 (12)1、连杆机构问题 (12)2、其他工程问题: (15)五、课程实践心得体会 (18)作业要求1、λ=0.618的证明、一维搜索程序作业;2、单位矩阵程序作业;3、注释最佳再现给定运动规律连杆机构优化设计问题模型子程序;4、连杆机构问题 + 自行选择小型机械设计问题或其他工程优化问题;(1)分析优化对象,根据设计问题的要求,选择设计变量,确立约束条件,建立目标函数,建立优化设计的数学模型并编制问题程序;(2)选择适当的优化方法,简述方法原理,进行优化计算; (3)进行结果分析,并加以说明。
5、写出课程实践心得体会,附列程序文本。
一、λ=0.618的证明、一维搜索程序作业1、0.618法的基本思想“0.618法”,又称为黄金分割法,是常用的一种一维搜索试探方法,适用于[,]a b 区间上的任何单调函数求极小值问题。
0.618法是建立在区间消去法原理基础上的试探方法,即在搜索区间[,]a b 内适当插入两点1a 、1b ,且11a b ,如下图所示。
通过比较函数值1()f a 与1()f b 的大小,应用函数的单调性,可得出以下两种情况:1) 若11()()f a f b <,则取1[,]a b 为缩短后的区间。
2) 若11()()f a f b >,则取1[,]a b 为缩短后的区间。
然后在保留下来的区间上进行同样的处置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似解。
《机械优化设计》课程实践报告
《机械优化设计》课程实践报告(课程实践报告封⾯模版)合肥⼯业⼤学《机械优化设计》课程实践研究报告班级:机设10 -04学号: 20100495姓名:李健授课⽼师:王卫荣⽇期: 2012年⽉⽇⽬录⼀主要内容1、⼀维搜索程序作业A.λ = 0.618的证明 (1)B.编写⽤0.618法求函数极⼩值的程序 (2)2、单位矩阵程序作业 (4)3、其他⼯程优化问题 (9)4连杆机构问题 (12)⼆实践⼼得体会 (15)⼀: 主要内容1. ⼀维搜索程序作业:A.λ = 0.618的证明 (y2 > y1)证明:0.618法要求插⼊点α1、α 2 的位置相对于区间 [a,b] 两端点具有对称性,即已知a1=a2 , 要求α11=α22由于α1=b-λ(b-a)α2=a+λ(b-a)若使α11=α22则有:b1-λ(b1-a1)=a2+λ(b2-a2)= a1+λ2(b1-a1)因此: b1- a1=(λ2+λ)( b1- a1)( b1- a1)(λ2+λ-1)=0因为: b1= a1所以: λ2+λ-1=0则有: 取⽅程正数解得若保留下来的区间为 [α1,b] ,根据插⼊点的对称性,也能推得同样的λ的值。
其0.618法的程序框图如下:B.编写⽤0.618法求函数极⼩值的程序例:(1)a=0 ,b=2π,f(x)=cox(x)(2)a=0 ,b=10, f(x)=(x-2)2+3(1)#include#includevoid main(void){int i;float a1,a2,aa,y1,y2,ymin,e;float a=0,b=2*3.14159,n=0.618;a1=b-n*(b-a);a2=a+n*(b-a);print(“输⼊精度:”);scanf(“%f”,&e);for(i=0;i=10000;i=i++){y1=cos(a1);y2=cos(a2);if(y1{a=a1;a1=a2;a2=a+n*(b-a);}If(y1b=a2;a2=a1;a1=b-n*(b-a);}if(fabs(b-a)/b{aa=(a+b)/2;ymin=cos(aa);printf(“x=%7.4f\tf(x)=%7.4f\n”),aa,ymin); break;}}}运⾏结果:(2)#include#includevoid main(void){int i;float a1,a2,aa,y1,y2,ymin,e; float a=0,b=10,n=0.618;a1=b-n*(b-a);a2=a+n*(b-a);print(“输⼊精度:”);scanf(“%f”,&e);for(i=0;i=10000;i=i++){y1=(a1-2)*(a1-2)+3; y2=(a2-2)*(a2-2)+3; if(y1>=y2){a=a1;a1=a2;a2=a+n*(b-a);}If(y1b=a2;a2=a1;a1=b-n*(b-a);}if(fabs(b-a)/b{aa=(a+b)/2;ymin=(aa-2)*(aa-2)+3;printf(“x=%6.3f\tf(x)=%6.3f\n”),aa,ymin); break;}}}运⾏结果:2.单位矩阵程序作业编写⽣成单位矩阵的程序程序⽂本#includevoid main(void){int a[100][100];int N,i,j;printf("请输⼊所要输出矩阵的阶数(最多100阶):"); scanf("%d",&N);printf("输出的矩阵阶数为%d\n",N);printf(" N "); /*****制作表头*****/ for(i=0;iprintf("%3d",i+1);printf("\n");for(i=0;iprintf("---"); /*****分割线*****/ printf("\n");for(i=0;i<100;i++) /*****数组赋值*****/ for(j=0;j<100;j++) {if(i==j)a[i][j]=1;elsea[i][j]=0;}for(i=0;iprintf("%2d:",i+1); /*****纵列序号*****/for(j=0;j{printf("%3d",a[i][j]);}printf("\n");}}结果显⽰从键盘输⼊9,显⽰9阶单位矩阵,结果如下3. 其他⼯程优化问题有⼀箱形盖板,已知长度L=600mm ,宽度b=60mm ,厚度t s =0.5mm 承受最⼤单位载荷q=60N/cm ,设箱形盖板的材料为铝合⾦,其弹性模量MPa E 4107?=,泊松⽐3.0=µ,许⽤弯曲应⼒[]MPa 70=σ,许⽤剪应⼒[]MPa 45=τ,要求在满⾜强度、刚度和稳定性条件下,设计重量最轻的结构⽅案。
广东工业大学机械优化设计报告
题目名称机械优化设计实验报告学院机电工程学院班级微电子制造14(1)班姓名李启宏学号 3114000389 指导教师李德源2017年6月4日实验一:一维优化程序的设计、调试与运用一、实验目的与要求通过本实验使学生了解常用一维优化方法的基本原理和特点,并通过对某种具体方法的编程调试及验证,加深对该方法基本理论的理解,并培养学生独立编程能力。
学生自主从进退法、黄金分割法、二次插值法中任选一种,自编程序,调试验证后对实验指导书中所给一维问题进行求解。
二、基本原理黄金分割法:一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。
一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。
该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。
三、实验主要仪器设备和材料计算机四、实验方案1、复习教材中有关一维优化的基本理论与基本方法;2、选定某种方法,根据其算法框图编程;3、在计算机上用例题调试、验证;4、用调试好的程序求解下列所给一维优化问题。
用自编优化程序求解下列一维优化问题:2、60645)(min 234+-+-=x x x xx F搜索区间:[1,10],迭代精度E1=10-5五、问题与讨论1、常用一维优化方法有哪些?答:常用的一维优化方法有:格点法、 黄金分割法、二次插值法、三次插值法。
2、进退法、黄金分割法、二次插值法基本原理是什么?各有什么特点? 答:一、进退法:原理:在搜索区间内部[a,b]插入n 个内等分点,比较各分点x i 的坐标对应的函数值y i ,取其中的最小者y m ,在y m 相对应的点x m 之左右两侧相邻点x m-1,x m+1所确定的区间内,求出极小点x ·。
若[x m-1,x m+1]区间长度满足预定的收敛精度要求,则认为x m 是具有满足精度要求的最优点。
机械优化设计上机实践报告
机械优化设计上机实践报告1. 引言机械优化设计是利用计算机辅助设计与优化方法,对机械结构进行改进和优化,以提高机械设计的性能和效率。
本实践报告基于团队在机械优化设计课程中的上机实践,探讨了机械优化设计的基本原理、方法和实践过程,并对优化后的设计进行了验证和评估。
2. 方法与流程2.1 问题定义本实践中,我们选择了一个简化的机械结构问题:求解一根长度为L的钢杆在两个支点上的最大挠度。
这个问题可以抽象为一个优化问题:寻找一个合适的杆件横截面形状,使得钢杆的挠度最小。
2.2 初始设计我们首先需要设计一个初始杆件形状作为优化的起点。
根据经验和初步分析,我们选择了一个圆形横截面作为初始设计。
通过计算机辅助设计软件绘制出了该初始设计的三维模型,并进行了有限元分析,得到了初始设计的挠度。
2.3 优化算法为了寻找更优的杆件形状,我们采用了一种遗传算法作为优化方法。
遗传算法模拟了自然界中的进化过程,通过选择、交叉和变异等操作对初始设计进行优化。
具体的算法流程如下:1.初始化种群:随机生成一定数量的个体作为种群。
2.评估适应度:利用有限元分析对每个个体进行挠度计算,并评估其适应度。
3.选择操作:根据适应度选择一部分个体作为父代,用于繁殖下一代。
4.交叉操作:对选中的父代进行交叉操作,产生新的个体。
5.变异操作:对新产生的个体进行变异操作,引入新的基因。
6.更新种群:用新产生的个体替换原有种群中的部分个体。
7.终止条件判断:如果满足终止条件,则结束优化过程;否则返回第2步。
2.4 优化结果与分析经过多轮迭代,我们得到了优化后的设计结果。
通过有限元分析对优化后的设计进行挠度计算,发现挠度明显减小。
此外,我们还对优化前后的设计进行了对比测试,结果显示优化后的设计在挠度方面有明显的改进。
3. 结果与讨论本次机械优化设计实践取得了良好的效果。
通过遗传算法优化,我们成功改进了钢杆的横截面形状,使得其挠度显著减小。
这表明机械优化设计在提高机械结构性能方面具有很大的潜力。
机械优化实验报告
一、实验目的本次实验旨在加深对机械优化设计方法的基本理论和算法步骤的理解,培养学生独立编制、调试计算机程序的能力,并掌握常用优化方法程序的使用方法。
通过实验,学生能够灵活运用优化设计方法解决工程实际问题。
二、实验内容本次实验主要涉及以下内容:1. 优化方法的基本原理2. 编程实现优化方法3. 优化方法的实际应用三、实验步骤1. 黄金分割法(1)基本原理黄金分割法是一种在给定初始区间内搜索极小点的一维搜索方法。
其基本原理是:在区间内取两个点,根据函数值的比较,将区间分为三段,保留包含极小值的段,再进行相同的操作,逐步缩小搜索区间。
(2)编程实现根据黄金分割法的基本原理,编写相应的C语言程序,实现一维搜索。
```c#include <stdio.h>#include <math.h>double f(double x) {// 定义目标函数return x x - 4 x + 4;}double golden_section_search(double a, double b, double tol) {double r = 0.618;double a1 = a + r (b - a); double a2 = b - r (b - a); double fa1 = f(a1);double fa2 = f(a2);while (fabs(b - a) > tol) { if (fa1 > fa2) {a = a1;a1 = a2;a2 = b - r (b - a); fa1 = fa2;fa2 = f(a2);} else {b = a2;a2 = a1;a1 = a + r (b - a); fa2 = fa1;fa1 = f(a1);}}return (a + b) / 2;}int main() {double x_min = golden_section_search(a, b, tol);printf("Optimal solution: x = %f\n", x_min);return 0;}```(3)结果分析通过运行程序,可以得到最优解 x = 2.000000,目标函数值为 f(x) = 0。
机械优化设计报告
机械优化设计上机实验报告班级:05021004人员:马春曹旭南咪咪吕进龙李鸿飞王建华日期:2013年5月一 进退法1.1算法的原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。
因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。
(1) 如果()()00f x f x h <+则可知搜索区间为0[,]x x h +,其中x 待求,为确定x ,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。
(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x ,其中x 待求,为确定x ,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。
进退法流程图:1.2算法特点从初始点开始一出事步长向前试探,如果函数值上升,则步长变号,机改变试探方向。
如果函数值下降,则维持原来的试探方向,并将步长加倍。
区间的始点、中间点一次沿试探方向移动一步。
此过程以自己进行到函数值再次上升位置,既可找到搜索区间的终点。
最后大额到的三个点纪委搜索区间的始点、中间点和终点,形成函数值得“高-低-高”趋势,1.3算法的改进及建议由于解析过程中没有精度的要求,所以解析的精度比较差,只能确定一个比较理想的最优解区间,仅仅能够作为求职最优解的参考,所以希望通过进一步的完善来实现精度的提高并且能够求得较为满意的最优解。
机械优化设计实验报告浙江理工大学
机械优化设计实验报告班级:XXXX姓名:XX学号:XXXXXXXXXXX一、外推法1、实验原理常用的一维优化方法都是通过逐步缩小极值点所在的搜索区间来求最优解的。
一般情况下,我们并不知道一元函数f(X)极大值点所处的大概位置,所以也就不知道极值点所在的具体区域。
由于搜索区间范围的确定及大小直接影响着优化方法的收敛速度及计算精度。
因此,一维优化的第一步应首先确定一个初始搜索区间,并且在该区间内函数有唯一的极小值存在。
该区间越小越好,并且仅存在唯一极小值点。
所确定的单股区间应具有如下性质:如果在[α1,α3]区间内任取一点α2,,α1<α2<α3或α3<α2<α1,则必有f(α1)>f(α2)<f(α3)。
由此可知,单股区间有一个共同特点:函数值的变化规律呈现“大---小---大”或“高---低---高”的趋势,在极小值点的左侧,函数值呈严格下降趋势,在极小值点右侧,函数值呈严格上升趋势,这正是单股区间依据。
2、实验工具C-Free3.5软件3、程序调试#include<stdio.h>#include<math.h>#define f(x) 3*x*x-8*x+9 //定义函数int main(){double a0,a1,a2,a3,f1,f2,f3,h;printf(“a0=”,a0); //单谷区间起始点scanf(“%lf”,&a0);printf(“h=”,h); //起始的步长scanf(“%lf”,&h);a1=a0;a2=a1+h;f1=f(a0);f2=f(a2);if(f1>f2) //判断函数值的大小,确定下降方向{a3=a2+h;f3=f(a3);}else{h=-h;a3=a1;f3=f1;a1=a2;f1=f2;a2=a3;f2=f3;a3=a2+h;f3=f(a3);}while(f3<=f2) //当不满足上述比较时,说明下降方向反向,继续进行判断{h=2*h;a1=a2;f1=f2;a2=a3;f2=f3;a3=a2+h;f3=f(a3);}printf(“a1=%lf,a3=%lf\n”,a1,a3);printf(“[a1,a3]=[%lf,%lf]\n”,a1,a3); //输出区间}4、调试结果5、总结与讨论1)当写成void main时会出现如下警告改成int main警告消失。
机械优化设计实验设计报告
实验设计连杆设计优化问题的解决:问题:设计一曲柄摇杆机构要求曲柄L1从A0转到Ai=A0+90时,摇杆L3的转角再次恢复到初始值B0,已知道Bi的运动规律为:)2(AiBi2π+=,且B03-/(A0)已知L1=1,机架L4=5,L2为连杆长度,A0为极位角,其允许传动角[γ]=︒45一、建立数学模型并设定变量:选取设计变量决定机构尺寸的各杆长度以及曲柄所处的初始角A0,均应列为设计变量。
但若取曲柄的初始位置角为极位角,则A0及相应的摇杆L3位置角B0均为杆长的函数,其关系式为;A0=arcos{[(l1+l2)^2+l4^2-l3^2]/[2(l1+l2)*l4]}B0= arcos{[(l1+l2)^2-l4^2-l3^2]/(2*l3*l4)}量,则设计变量X=[x1,x2]=[l2,l3]二、建立目标函数目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,表达式为:2=BBiBixf(∑-)()期望的输出角Bi---摇杆L3期望的输出角;BBi---摇杆L3实际输出角,BBi=PI-a-ba= arcos[(r^2+L3^2-L2^2)/(2*r*L3)]b= arcos[(r^2+L4^2-L1^2)/(2*r*L4)]r =(L1^2+L4^2-2L1*L4cos(ai))^0.5确定约束条件:杆长非负条件:L2>0,L3>0曲柄存在条件: L1+L4-L2-L3>0 L1+L2-L3-L4>0 L1+L3-L2-L4>0机构传动角的限制:︒135>[γ]>=︒45jama= arcos([L2^2+L3^2-(L1+L4)^2]/(2*L2*L3))>=45 jama= arcos([L2^2+L3^2-(L4-L2)^2]/(2*L2*L3))<=135此为非线性约束优化问题,首先编写目标函数(角度偏差量)取名为myfun.m M 文件如下:function f=myfun(x) 该函数的输入为L2,L3 f=0a0=acos(((x(1)+1)^2-x(2)^2+25)/(10*(1+x(1)))) a0的初始值 b0=acos(((x(1)+1)^2-x(2)^2-25)/(10*x(2)))b0的初始值for a=a0:pi/18:(a0+1.5707) 以pi/18为步长测试a 不同值的情况 b=b0+2*(a-a0)^2/(3*pi) 测试b 不同值的情况 r=sqrt(26-10*cos(a))r 为A0所对的边m=acos((r^2+x(2)^2-x(1)^2)/(2*r*x(2))) n=acos((r^2+24)/(10*r)) bb=pi-m-n i=(bb-b)^2 f=f+i end 循环结束接着再编写非线性约束函数M 文件取名为mycon.m 文件如下: function [c,ceq]=mycon(x)c=[x(1)^2+x(2)^2-1.414*x(1)*x(2)-16; 36-x(1)^2-x(2)^2-1.414*x(1)*x(2)];ceq=[]最后在MATLAB命令窗口调用主程序:format long ; 以长数据格式显示x0=[6,3]; 给x0赋初值A=[-1 -1;1 -1;-1 1]; 给A赋值b=[-6;4;4];lb=zeros(2,1); 创建lb变量为两行一列的零阵options=optimset('largescale','off');[x,fval]=fmincon(@myfun,x0,A,b,[],[],lb,[],@mycon,options) 调用优化函数显示结果如下所示:f =0.00115968643895ceq =[]Optimization terminated: Magnitude of directional derivative in searchdirection less than 2*options.TolFun and maximum constraint violationis less than options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlinx =4.06504526388845 2.39243572364663fval =0.00115968641518如下是相关截屏约束函数的M文件目标函数myfun在主程序窗口的运行结果。
机械优化设计实验报告
《机械优化设计》实验报告目录1.进退法确定初始区间 (3)1.1 进退法基本思路 (3)1.2 进退法程序框图 (3)1.3 题目 (3)1.4 源程序代码及运行结果 (3)2.黄金分割法 (4)2.2黄金分割法流程图 (4)2.3 题目 (5)2.4 源程序代码及结果 (5)3.牛顿型法 (5)3.1牛顿型法基本思路 (6)3.2 阻尼牛顿法的流程图 (6)3.3 题目 (6)3.4 源程序代码及结果 (6)4.鲍威尔法 (7)4.1 鲍威尔法基本思路 (7)4.2 鲍威尔法流程图 (7)4.3 题目 (8)4.4 源程序代码及结果 (8)5. 复合形法 (15)5.1 复合行法基本思想 (15)5.3 源程序代码及结果 (15)6. 外点惩罚函数法 (23)6.1解题思路: (23)6.2 流程框图 (23)6.3 题目 (23)6.4 源程序代码及结果 (23)7.机械设计实际问题分析 (29)7.2计算过程如下 (29)7.3 源程序编写 (30)8.报告总结 (32)1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
1.2 进退法程序框图1.3 题目:用进退法求解函数()2710=-+的搜索区间f x x x1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
机械优化设计实验报告
机械优化设计实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)《机械优化设计》实验报告目录1.进退法确定初始区间进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
进退法程序框图题目:用进退法求解函数()2710=-+的搜索区间f x x x源程序代码及运行结果#include <>#include <>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
按λ(618.0=λ) 缩小 比较)(x f 大小 确定取舍区间。
黄金分割法流程图题目:对函数()279f x x x =-+,给定搜索区间08x ≤≤时,试用黄金分割法求极小点源程序代码及结果:f=inline('x^2-7*x+9')a=0;b=8;eps=;a1=*(b-a);y1=f(a1);a2=a+*(b-a);y2=f(a2);while (abs(b-a)>eps)if(y1>=y2)a=a1;a1=a2;y1=y2;a2=a+*(b-a);y2=f(a2);elseb=a2;a2=a1;y2=y1; a1=*(b-a);y1=f(a1);endendxxx=*(a+b)f =Inline function:f(x) = x^2-7*x+9xxx =3.牛顿型法牛顿型法基本思路:在k x邻域内用一个二次函数()xφ来近似代替原目标函数,并将()xφ的极小点作为对目标函数()f x求优的下一个迭代点1k x+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械优化设计实验报告1、进退法确定初始区间31、1 进退法基本思路31、2 进退法程序框图31、3 题目41、4 源程序代码及运行结果42、黄金分割法52、2黄金分割法流程图52、3 题目52、4 源程序代码及结果53、牛顿型法63、1牛顿型法基本思路63、2 阻尼牛顿法的流程图63、3 题目73、4 源程序代码及结果74、鲍威尔法84、1 鲍威尔法基本思路84、2 鲍威尔法流程图84、3 题目94、4 源程序代码及结果95、复合形法165、1 复合行法基本思想165、3 源程序代码及结果166、外点惩罚函数法246、1解题思路:246、2 流程框图246、3 题目246、4 源程序代码及结果247、机械设计实际问题分析307、2计算过程如下307、3 源程序编写328、报告总结331、进退法确定初始区间1、1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
1、2 进退法程序框图1、3 题目:用进退法求解函数的搜索区间1、4 源程序代码及运行结果#include <stdio、h>#include <math、h>main(){floath,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0, &y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3= a3*a3-7*a3+10;if (y3<y2){gotoloop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);}搜索区间为062、黄金分割法2、1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
按()缩小比较大小确定取舍区间。
2、2黄金分割法流程图2、3 题目:对函数,给定搜索区间时,试用黄金分割法求极小点2、4 源程序代码及结果:f=inline('x^2-7*x+9')a=0;b=8;eps=0、001;a1=b-0、618*(b-a);y1=f(a1);a2=a+0、618*(b-a);y2=f(a2);while(abs(b-a)>eps)if(y1>=y2)a=a1; a1=a2; y1=y2; a2=a+0、618*(b-a); y2=f(a2); else b=a2;a2=a1;y2=y1; a1=b-0、618*(b-a); y1=f(a1); endend全文结束》》x=0、5*(a+b)f = Inline function: f(x)= x^2-7*x+9xxx =3、49973、牛顿型法3、1牛顿型法基本思路:在邻域内用一个二次函数来近似代替原目标函数,并将的极小点作为对目标函数求优的下一个迭代点。
经多次迭代,使之逼近目标函数的极小点。
3、2 阻尼牛顿法的流程图:3、3 题目:用牛顿阻尼法求函数的极小点3、4 源程序代码及结果:k=0; ptol=1、0e-5;xk=input('input x0:')itcl=[1;1]; while norm(itcl)>=ptol f1=[4*xk(1,1)^3-24*xk(1,1)^2+50*xk(1,1)-4*xk(2,1)-32;-4*xk(1,1)+8*xk(2,1)]; G=[12*xk(1,1)^2-48*xk(1,1)+50,-4;-4,8]; dk=-inv(G)*f1; a=-(dk'*f1)/(dk'*G*dk); xk=xk+a*dk; itcl=a*dk; k=k+1; endf=(xk(1,1)-2)^4+(xk(1,1)-2*xk(2,1))^2; fprintf('\nÓÃ×èÄáÅ£¶Ù·¨µü´ú %d ´ÎºóµÃµ½¼«Ð¡µã x*¼°¼«Ð¡Öµ f Ϊ:\n',k); disp(xk); disp(f); 结果显示:input x0:[1;1] 用阻尼牛顿法迭代27 次后得到极小点 x*及极小值 f 为:2、00001、00001、3270e-0194、鲍威尔法4、1 鲍威尔法基本思路:在不用导数的前提下,在迭代中逐次构造G的共轭方向。
4、2 鲍威尔法流程图:4、3 题目:求函数f(x)= x[0]*x[0]+x[1]*x[1]-x[0]*x[1]-10*x[0]-4*x[1]+60的最优点,收敛精度ε=0、0014、4 源程序代码及结果:#include "stdio、h"#include "stdlib、h"#include "math、h"double objf(double x[]){doubleff;ff=x[0]*x[0]+x[1]*x[1]-x[0]*x[1]-10*x[0]-4*x[1]+60;return(ff);}void jtf(double x0[],doubleh0,double s[],int n,double a[],double b[]){int i;double *x[3],h,f1,f2,f3;for(i=0;i<3;i++)x[i]=(double*)malloc(n*sizeof(double));h=h0;for(i=0;i<n;i++)*(x[0]+i) =x0[i];f1=objf(x[0]);for(i=0;i<n;i++)*(x[1]+i)=*(x[0]+i)+ h*s[i];f2=objf(x[1]);if(f2>=f1){h=-h0;for(i=0;i<n;i++)*(x[2]+i)=*(x[0]+i);f3=f1;for(i=0;i<n; i++){*(x[0]+i)=*(x[1]+i);*(x[1]+i)=*(x[2]+i);}f1=f2;f2=f3 ;}for(;;){h=2*h;for(i=0;i<n;i++)*(x[2]+i)=*(x[1]+i)+h*s[i ];f3=objf(x[2]);if(f2<f3)break;else{ for(i=0;i<n;i++){*(x[0]+i)=*(x[1]+i);*(x[1]+i)=*(x[2]+i);}f1=f2;f2=f3;}}if(h<0)for(i=0;i<n;i++){a[i]=*(x[2]+i);b[i]=*(x[0]+i);}elsefor(i=0;i<n;i++){a[i]=*( x[0]+i);b[i]=*(x[2]+i);}for(i=0;i<3;i++)free(x[i]);}doubl e gold(double a[],double b[],double eps,int n,double全文结束》》[]){int i;doublef1,f2,*x[2],ff,q,w;for(i=0;i<2;i++)x[i]=(double*)malloc(n*sizeof(double));for(i=0;i<n;i++){*(x[0]+i)=a[i ]+0、618*(b[i]-a[i]);*(x[1]+i)=a[i]+0、382*(b[i]-a[i]);}f1=objf(x[0]);f2=objf(x[1]);do{if(f1>f2){for(i=0;i <n;i++){b[i]=*(x[0]+i);*(x[0]+i)=*(x[1]+i);}f1=f2;for(i=0 ;i<n;i++)*(x[1]+i)=a[i]+0、382*(b[i]-a[i]);f2=objf(x[1]);}else{ for(i=0;i<n;i++){a[i]=*(x[1]+i );*(x[1]+i)=*(x[0]+i);}f2=f1;for(i=0;i<n;i++)*(x[0]+i)=a[ i]+0、618*(b[i]-a[i]);f1=objf(x[0]);}q=0;for(i=0;i<n;i++)q=q+(b[i]-a[i])*(b[i]-a[i]);w=sqrt(q);}while(w>eps);for(i=0;i<n;i++)xx[i]=0、5*(a[i]+b[i]);ff=objf(xx);for(i=0;i<2;i++)free(x[i]);retu rn(ff);}double oneoptim(double x0[],double s[],doubleh0,double epsg,int n,double x[]){double*a,*b,ff;a=(double *)malloc(n*sizeof(double));b=(double *)malloc(n*sizeof(double));jtf(x0,h0,s,n,a,b);ff=gold(a,b ,epsg,n,x);free(a);free(b);return (ff);}doublepowell(double p[],double h0,double eps,double epsg,int n,double x[]){int i,j,m;double *xx[4],*ss,*s;doublef,f0,f1,f2,f3,fx,dlt,df,sdx,q,d;ss=(double*)malloc(n*(n+1)*sizeof(double));s=(double*)malloc(n*sizeof(double));for(i=0;i<n;i++){for(j=0;j<=n; j++)*(ss+i*(n+1)+j)=0;*(ss+i*(n+1)+i)=1;}for(i=0;i<4;i++) xx[i]=(double*)malloc(n*sizeof(double));for(i=0;i<n;i++)*(xx[0]+i)=p[i ];for(;;){for(i=0;i<n;i++){*(xx[1]+i)=*(xx[0]+i);x[i]=*(x x[1]+i);}f0=f1=objf(x);dlt=-1;for(j=0;j<n;j++){for(i=0;i<n;i++){*(xx[0]+i)=x[i];*(s+i )=*(ss+i*(n+1)+j);}f=oneoptim(xx[0],s,h0,epsg,n,x);df=f0-f;if(df>dlt){dlt=df;m=j;}}sdx=0;for(i=0;i<n;i++)sdx=sdx+f abs(x[i]-(*(xx[1]+i)));if(sdx<eps){free(ss);free(s);for(i=0;i<4;i+ +)free(xx[i]);return(f);}for(i=0;i<n;i++)*(xx[2]+i)=x[i]; f2=f;for(i=0;i<n;i++){*(xx[3]+i)=2*(*(xx[2]+i)-(*(xx[1]+i)));x[i]=*(xx[3]+i);}fx=objf(x);f3=fx;q=(f1-2*f2+f3)*(f1-f2-dlt)*(f1-f2-dlt);d=0、5*dlt*(f1-f3)*(f1-f3);if((f3<f1)||(q<d)){if(f2<=f3)for(i=0;i<n;i++)*(xx[0]+ i)=*(xx[2]+i);elsefor(i=0;i<n;i++)*(xx[0]+i)=*(xx[3]+i);} else{for(i=0;i<n;i++){*(ss+(i+1)*(n+1))=x[i]-(*(xx[1]+i));*(s+i)=*(ss+(i+1)*(n+1));}f=oneoptim(xx[0],s ,h0,epsg,n,x);for(i=0;i<n;i++)*(xx[0]+i)=x[i];for(j=m+1;j <=n;j++)for(i=0;i<n;i++)*(ss+i*(n+1)+j-1)=*(ss+i*(n+1)+j);}}}void main(){double p[]={1,2};doubleff,x[2];ff=powell(p,0、3,0、001,0、0001,2,x);printf("x[0]=%f,x[1]=%f,ff=%f\n",x[0],x[1],ff); getchar();}5、复合形法5、1 复合行法基本思想:在可行域中选取K个设计点(n+1≤K≤2n)作为初始复合形的顶点。