机械优化设计实验报告浙江理工大学.docx

合集下载

机械优化设计实验报告

机械优化设计实验报告

《机械优化设计》课程实验报告M a t l a b优化工具箱一、实验目的和要求熟悉Matlab7.0软件的界面和基本功能,了解Matlab优化工具箱的常用算法;使用Matlab优化工具箱的f m i n u n c/f m i n s e a r c h函数求解多变量非线性无约束优化问题;使用Matlab优化工具箱的f m i n c o n函数求解多变量非线性约束优化问题。

二、实验设备和软件台式计算机,Matlab7.0软件。

三、实验内容求解下列优化问题的最优解。

要求:(1)编写求解优化问题的M文件,(2)在命令窗口输入求解优化问题的命令,并得出计算结果。

1、标量优化问题1) f=x2-10x+362) f=x4-5x3+4x2-6x+603) f=(x+1)(x-2)22、多变量非线性无约束优化问题1) f=4(x1-5) 2+( x2-6) 2初始点:x0=[8,9]T;2) f=(x12+x2-11)2+( x1+ x22-7)2初始点:x0=[1,1]T;3) f=[1.5- x1(1- x2)]2+[2.25- x1(1- x22)]2+[2.625- x1(1- x23)]2初始点:x0=[2,0.2]T;4) f=( x12+12 x2-1)2+(49 x1+49 x2+84 x1+2324 x2-681)2初始点:x0=[1,1]T;5) f=( x1+10 x2)2+5(x3- x4)2+( x2-2 x3)4+10(x1- x4)4初始点:x0=[3,-1,0,1]T;3、多变量非线性约束优化问题1) f=( x1-2)2+( x2-1)2g1= x12-x2≤0g2= x1+x2-2≤0初始点:x0=[3,3]T;2) f= x23[( x1-3)2-9]/273≤0g1=x2-x1/3≤0g2=-x1+x2/3≤0g3=x1+x2/3-6≤0g4=-x1≤0g5=-x2≤0初始点:x0=[1,5]T;3) f=1000- x12-2x2 2-x32-x1x2-x1x3g1=-x1≤0g2=-x2≤0g3=-x3≤0g4=x12+x22+x3 2-25=0g5=8x1+14x2+7x3-56=0初始点:x0=[2,2,2]T4)f=100(x2-x12)2+(1-x1)2+90(x4-x32)2+(1-x3)2+10[(x2-1)2+(x4-1)2]+19.8(x2-1)(x4-1)-10≤x1≤10-10≤x2≤10-10≤x3≤10-10≤0x4≤10初始点:x0=[-3,-1,-3,-1]T;四、M文件、在命令窗口输入的求解命令清单及计算结果记录>>1、(1)目标函数的M文件function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)} x =5.0000fval =11.00002、(2)目标函数的M文件function f=fun2(x)f=x^4-5*x^3+4*x^2-6*x+60调用求解命令x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun2,lb,ub,options)x =3.2796fval =22.65902、(3)目标函数的M文件function f=fun3(x)f=(x+1)*(x-2)^2调用求解命令> x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun3,lb,ub,options)x =2.0000fval =1.9953e-0113(1)目标函数的M文件function f=fun4(x)f=4*(x(1)-5)^2+(x(2)-6)^2调用求解命令x0=[8,9];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun4,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =5.00006.0000fval =1.7876e-0123(2)目标函数的M文件function f=fun5(x)f=(x(1)^2+x(2)-11)^2+(x(1)+x(2)^2-7)^2调用求解命令>> x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun5,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 2.0000fval =5.2125e-0123(3)目标函数的M文件function f=fun6(x)f=[1.5-x(1)*(1-x(2))]^2+[2.25-x(1)*(1-x(2)^2)]^2+[2.625-x(1)*(1-x(2)^3)]^2调用求解命令x0=[2,0.2];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun6,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 0.5000fval =3.9195e-0143(4)目标函数的M文件function f=fun7(x)f=(x(1)^2+12*x(2)-1)^2+(49*x(1)+49*x(2)+84*x(1)+2324*x(2)-681)^2调用求解命令x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun7,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =0.9570 0.2333fval =7.37643(5)目标函数的M文件function f=fun8(x)f=(x(1)+10*x(2))^2+5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+10*(x(1)-x(4))^4调用求解命令>> x0=[3,-1,0,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun8,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =0.0015 -0.0002 -0.0031 -0.0031fval =6.3890e-009三、3、(1)目标函数的M文件function f=fun9(x)f=(x(1)-2)^2+(x(2)-1)^2约束函数的M文件function [c,cep]=con1(x)c=[x(1)^2-x(2);x(1)+x(2)-2];cep=[]当前窗口条用求解命令x0=[3,3];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun9,x0,[],[],[],[],[],[],@con1,options)Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin12x =1.0000 1.0000fval =1.00003、(2)目标函数的M文件function f=fun10(x)f=x(2)^3*[(x(1)-3)^2-9]/27*3^(1/2)约束函数的M文件function [c,cep]=con2(x)c=[x(2)-x(1)/3^(1/2);-x(1)+x(2)/3^(1/2);x(1)+x(2)/3^(1/2)-6];cep=[]当前窗口条用求解命令x0=[1,5];lb=[0,0];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun10,x0,[],[],[],[],lb,ub,@con2,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin13x =4.5000 2.5981fval =-7.59383、(3)目标函数的M文件function f=fun11(x)f=1000-x(1)^2-2*x(2)^2-x(3)^2-x(1)*x(2)-x(1)*x(3)约束函数的M文件function [c,cep]=con3(x)c=[];cep=[x(1)^2+x(2)^2+x(3)^2-25;8*x(1)+14*x(2)+7*x(3)-56];当前窗口条用求解命令x0=[2,2,2];lb=[0,0,0];ub=[];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun11,x0,[],[],[],[],lb,ub,@con3,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.No active inequalitiesx =3.5121 0.2170 3.5522fval =961.71523、(4)目标函数的M文件function f=fun12(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)^2+(1-x(3))^2+10*[(x(2)-1) ^2+(x(4)-1)^2]+19.8*(x(2)-1)*(x(4)-1)约束函数的M文件function [c,cep]=con4(x)cep=[];当前窗口条用求解命令x0=[-3,-1,-3,-1,];lb=[-10,-10,-10,-10];ub=[10,10,10,10];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun12,x0,[],[],[],[],lb,ub,@con4,options)Optimization terminated: Magnitude of directional derivative in searchdirection less than 2*options.TolFun and maximum constraint violationis less than options.TolCon.No active inequalitiesx =1.0001 1.0002 0.9999 0.9997fval =2.3989e-007五、质疑和建议对于一维标量优化问题搜索,在当前窗口中调用求解命令时,[x,fval]=fminbnd(@fun1,lb,ub,options)可以改成[x,fval]=fminbnd(@fun1,-10,10)如下:function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)}x =5.0000fval =11.0000。

《机械优化设计》课程实践报告

《机械优化设计》课程实践报告

合肥工业大学《机械优化设计》课程实践研究报告班级:学号:姓名:授课教师:日期: 2016年 11月 12 日目录1。

λ=0。

618的证明、一维搜索程序作业2。

单位矩阵程序作业3. 注释最佳再现给定运动规律连杆机构优化设计问题模型子程序4. 连杆机构问题+自行选择小型机械设计问题或其他工程优化问题(1)分析优化对象,根据设计问题的要求,选择设计变量,确立约束条件,建立目标函数,建立优化设计的数学模型并编制问题程序;(2)选择适当的优化方法,简述方法原理,进行优化计算;(3)进行结果分析,并加以说明。

5。

课程实践心得体会1。

λ=0.618的证明、一维搜索程序作业1.1证明:a α1 α2 ba α3 α1 α2黄金分割法要求插入点α1,α2的位置相对于区间[a,b]两端点具有对称性,即α1=b-λ(b-a)α2=b+λ(b-a)其中λ为待定常数.除了对称要求外,黄金分割法还要求在保留下来的区间内再插入一点,所形成的新三段与原来区间的三段具有相同的比例分布,故有1-λ=λ2取方程正数解,得≈0.618λ=√5−121.2一维搜索C语言程序:(以正弦函数y=sinx为例)#include〈stdio.h>#include<math.h>int main(){double a,b,c=0。

618,x[3],y[3],d;printf(”请输入区间[a,b]的值以及精度:\n”);scanf(”%lf,%lf,%lf”,&a,&b,&d);x[1]=b—c*(b—a);x[2]=a+c*(b—a);y[1]=sin(x[1]);y[2]=sin(x[2]);do{ if(y[1]>y[2]){ a=x[1];x[1]=x[2];y[1]=y[2];x[2]=a+c*(b—a);y[2]=sin(x[2]);}else{ b=x[2];x[2]=x[1];y[2]=y[1];x[1]=b—c*(b—a);y[1]=sin(x[1]);}}while(fabs((b-a)/b)>d);x[0]=(a+b)/2;y[0]=sin(x[0]);printf("极小点x*=%lf\n”,x[0]);printf("极小值y=%lf\n”,y[0]);}C语言程序运行结果:2. 单位矩阵程序作业2。

机械优化设计上机实践报告【精编版】

机械优化设计上机实践报告【精编版】

机械优化设计上机实践报告【精编版】机械优化设计上机实践报告班级:机械(茅以升)101姓名:学号: 1004010510成绩:指导教师: 张迎辉日期: 2013.11.201 《一维搜索方法》上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。

(一)进退法1. 算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。

因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。

(1) 如果()()00f x f x h <+则可知搜索区间为0[,]xx h +%,其中x %待求,为确定x %,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。

(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x %,其中x %待求,为确定x %,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。

2. 算法步骤用进退法求一维无约束问题min (),f x x R ∈的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点(0)x ,初始步长0h ,令0h h =,(1)(0)x x =,0k =;(2) 令(4)(1)x x h =+,置1k k =+;(3) 若()()(4)(1)f x f x <,则转步骤(4),否则转步骤(5);(4) 令(2)(1)(1)(4),x x x x ==,()()(2)(1)f x f x =,()()(1)(4)f x f x =,令2h h =,转步骤(2);(5) 若1k =,则转步骤(6)否则转步骤(7);(6) 令h h =-,(2)(4)x x =,()()(2)(4)f x f x =,转步骤(2);(7) 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小值点包含于区间(1)(3)(3)(1)[,][,]x x x x 或(二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于[a ,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。

机械优化设计上机报告

机械优化设计上机报告

机械优化设计上机实践报告班级:机械(茅以升)101姓名:学号: 1004010510成绩:指导教师: 张迎辉日期: 2013.11.201 《一维搜索方法》上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。

(一)进退法 1. 算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。

因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。

(1) 如果()()00f x f x h <+则可知搜索区间为0[,]x x h +,其中x 待求,为确定x ,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。

(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x ,其中x 待求,为确定x ,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。

2. 算法步骤用进退法求一维无约束问题min (),f x x R ∈的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点(0)x ,初始步长0h ,令0h h =,(1)(0)x x =,0k =; (2) 令(4)(1)x x h =+,置1k k =+;(3) 若()()(4)(1)f x f x <,则转步骤(4),否则转步骤(5);(4) 令(2)(1)(1)(4),x x x x ==,()()(2)(1)f x f x =,()()(1)(4)f x f x =,令2h h =,转步骤(2); (5) 若1k =,则转步骤(6)否则转步骤(7);(6) 令h h =-,(2)(4)x x =,()()(2)(4)f x f x =,转步骤(2);(7) 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小值点包含于区间(1)(3)(3)(1)[,][,]x x x x 或(二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于[a ,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。

机械优化设计上机实践报告书

机械优化设计上机实践报告书

机械优化设计上机实践报告班级:机械(茅以升)101姓名:学号: 1004010510成绩:指导教师: 张迎辉日期: 2013.11.201 《一维搜索方法》上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。

(一)进退法1.算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。

因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。

(1) 如果()()00f x f x h <+则可知搜索区间为0[,]x x h +,其中x 待求,为确定x ,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。

(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x ,其中x 待求,为确定x ,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。

2. 算法步骤用进退法求一维无约束问题min (),f x x R ∈的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点(0)x ,初始步长0h ,令0h h =,(1)(0)x x =,0k =; (2) 令(4)(1)x x h =+,置1k k =+;(3) 若()()(4)(1)f x f x <,则转步骤(4),否则转步骤(5);(4) 令(2)(1)(1)(4),x x x x ==,()()(2)(1)f x f x =,()()(1)(4)f x f x =,令2h h =,转步骤(2); (5) 若1k =,则转步骤(6)否则转步骤(7);(6) 令h h =-,(2)(4)x x =,()()(2)(4)f x f x =,转步骤(2);(7) 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小值点包含于区间(1)(3)(3)(1)或x x x x[,][,](二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。

(完整word版)机械优化设计实验报告(word文档良心出品)

(完整word版)机械优化设计实验报告(word文档良心出品)

《机械优化设计》实验报告目录1.进退法确定初始区间 (3)1.1 进退法基本思路 (3)1.2 进退法程序框图 (3)1.3 题目 (3)1.4 源程序代码及运行结果 (3)2.黄金分割法 (4)2.2黄金分割法流程图 (4)2.3 题目 (5)2.4 源程序代码及结果 (5)3.牛顿型法 (5)3.1牛顿型法基本思路 (6)3.2 阻尼牛顿法的流程图 (6)3.3 题目 (6)3.4 源程序代码及结果 (6)4.鲍威尔法 (7)4.1 鲍威尔法基本思路 (7)4.2 鲍威尔法流程图 (7)4.3 题目 (8)4.4 源程序代码及结果 (8)5. 复合形法 (15)5.1 复合行法基本思想 (15)5.3 源程序代码及结果 (15)6. 外点惩罚函数法 (23)6.1解题思路: (23)6.2 流程框图 (23)6.3 题目 (23)6.4 源程序代码及结果 (23)7.机械设计实际问题分析 (29)7.2计算过程如下 (29)7.3 源程序编写 (30)8.报告总结 (32)1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。

1.2 进退法程序框图1.3 题目:用进退法求解函数()2710=-+的搜索区间f x x x1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。

《机械优化设计》大作业

《机械优化设计》大作业
printf(“序号\t a1\t\t a2\t\t f(a1)\t\t f(a2)\n”);
for(i=0;i<64;i++)
printf(“-“);
printf(“\n”);
i=0;
while((b-a)>size)/*****用精度控制循环次数*****/
{
i++;
a1=b-K*(b-a);/*****按0.618法插入两点*****/
a2=a+K*(b-a);
printf(“%2d:\t%f\ta%f\t%f\t%f\n”,I,a1,a2,f(a1),f(a2));
/*****输出每次计算后a1,a2,f(a1),f(a2)的值*****/
if(f(a1)>=f(a2))
a=a1;
else
b=a2;
}
printf(“所求极小值点为:x=%lf\t极小值f(x)=%f\n”,a,f(b));
(2)选择适当的优化方法,简述方法原理,进行优化计算;
(3)进行结果分析,并加以说明。
4、写出课程实践心得体会,附列程序文本。
5、为响应学校2014年度教学工作会议的改革要求,探索新的课程考核评价方法,特探索性设立一开放式考核项目,占总成绩的5%。
试用您自己认为合适的方式(书面)表达您在本门课程学习方面的努力、进步与收获。(考评将重点关注您的独创性、简洁性与可验证性)。
end
end
x=0.5*(a+b);
end
对f函数的确立
10function y=f(x)
y=(x-2)^2+3;
end
11function y=f(x)
y=cosx

机械优化设计上机报告

机械优化设计上机报告

机械优化设计上机实践报告班级:机械(茅以升)101姓名 :学号 : 1004010510成绩 :指导教师 : 迎辉日期 : 2013.11.201 《一维搜索方法》上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。

(一)进退法 1. 算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。

因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。

(1) 如果()()00f x f x h <+则可知搜索区间为0[,]x x h +%,其中x %待求,为确定x %,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。

(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x %,其中x %待求,为确定x %,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。

2. 算法步骤用进退法求一维无约束问题min (),f x x R ∈的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点(0)x ,初始步长0h ,令0h h =,(1)(0)x x =,0k =; (2) 令(4)(1)x x h =+,置1k k =+;(3) 若()()(4)(1)f x f x <,则转步骤(4),否则转步骤(5);(4) 令(2)(1)(1)(4),x x x x ==,()()(2)(1)f x f x =,()()(1)(4)f x f x =,令2h h =,转步骤(2); (5) 若1k =,则转步骤(6)否则转步骤(7);(6) 令h h =-,(2)(4)x x =,()()(2)(4)f x f x =,转步骤(2);(7) 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小值点包含于区间(1)(3)(3)(1)[,][,]x x x x 或(二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于[a ,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。

《机械优化设计》实验指导书

《机械优化设计》实验指导书

《机械优化设计》实验指导书王彩红编写院部:机电工程学院专业:机械设计专业华北科技学院二0一二年十二月上机实验说明【实验环境】操作系统:Microsoft Windows XP应用软件:Visual C++或TC。

【实验要求】1、每次实验前,熟悉实验目的、实验内容及相关的基本理论知识。

2、无特殊要求,原则上实验为1人1组,必须独立完成。

3、实验所用机器最好固定,以便更好地实现实验之间的延续性和相关性,并便于检查。

4、按要求认真做好实验过程及结果记录。

【实验项目及学时分配】实验共计4学时,实验项目及学时分配如下:【实验报告和考核】1、实验报告必需采用统一的实验报告纸,撰写符合一定的规范,详见实验报告撰写格式及规范。

(一)预习准备部分1. 预习每次所做的实验。

2. 按照程序框图试写出汇编程序。

(二)实验过程部分1. 写出经过上机调试后正确的程序,并说明程序的功能、结构。

2. 记录执行程序后的数据结果。

3. 调试说明,包括上机调试的情况、上机调试步骤、调试所遇到的问题是如何解决的,并对调试过程中的问题进行分析,对执行结果进行分析。

(三)实验报告内容每次上机实验结束后,学生要作一份完整的实验报告,实验报告内容应包括:1、优化方法的基本原理简述及程序框图绘制。

2、编制优化方法程序。

3、用考核题对所编程序进行考核。

(四)实验考核办法本课程实验成绩依据以下几个方面进行考核1、实验报告2、考核所编制的程序3、实验纪律、出勤等实验(一)【实验题目】一维搜索方法【实验目的】1.熟悉一维搜索的方法-黄金分割法,掌握其基本原理和迭代过程;2.利用计算语言(C语言)编制优化迭代程序,并用给定实例进行迭代验证。

【实验内容】1、搜索区间的确定与区间消去法(进退法)原理(1)方法概要有了目标函数,确定了搜索方向,假设函数f(a)具有单谷性,确定极小点a* 所在的区间[a b]:①在搜索方向上,选定初始点a1,初始点步长h0=0.01(经验,可调整),前进一步得a2点。

机械优化设计实验报告之欧阳音创编

机械优化设计实验报告之欧阳音创编

《机械优化设计》实验报告目录1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。

1.2 进退法程序框图1.3 题目:用进退法求解函数()2710f x x x =-+的搜索区间1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3; scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y 3=%f\n",a1,a2,a3,y1,y2,y3);}搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。

按λ(618.0=λ)缩小比较)(x f 大小确定取舍区间。

2.2黄金分割法流程图2.3 题目:对函数()279f x x x =-+,给定搜索区间08x ≤≤时,试用黄金分割法求极小点2.4 源程序代码及结果:f=inline('x^2-7*x+9')a=0;b=8;eps=0.001;a1=b-0.618*(b-a);y1=f(a1);a2=a+0.618*(b-a);y2=f(a2);while (abs(b-a)>eps)if (y1>=y2)a=a1;a1=a2;y1=y2;a2=a+0.618*(b-a);y2=f(a2);elseb=a2;a2=a1;y2=y1;a1=b-0.618*(b-a);y1=f(a1);endendxxx=0.5*(a+b)f =Inline function:f(x) = x^2-7*x+9xxx =3.49973.牛顿型法3.1牛顿型法基本思路:在k x 邻域内用一个二次函数()x φ来近似代替原目标函数,并将()x φ的极小点作为对目标函数()f x 求优的下一个迭代点1k x +。

机械优化设计上机实践报告

机械优化设计上机实践报告

机械优化设计上机实践报告班级:机械(茅以升)101姓名:学号: 1004010510成绩:指导教师: 张迎辉日期: 2013.11.201 《一维搜索方法》上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。

(一)进退法 1. 算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对于任意12,[,]x x a b ∈,如果()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。

因此,在给定初始点0x ,及初始搜索步长h 的情况下,首先以初始步长向前搜索一步,计算()0f x h +。

(1) 如果()()00f x f x h <+则可知搜索区间为0[,]x x h +%,其中x %待求,为确定x %,后退一步计算0()f x h λ-,λ为缩小系数,且01λ<<,直接找到合适的*λ,使得()*00()f x h f x λ->,从而确定搜索区间*00[,]x h x h λ-+。

(2) 如果()()00f x f x h >+则可知搜索区间为0[,]x x %,其中x %待求,为确定x %,前进一步计算0()f x h λ+,λ为放大系数,且1λ>,知道找到合适的*λ,使得()*00()f x h f x h λ+<+,从而确定搜索区间*00[,]x x h λ+。

2. 算法步骤用进退法求一维无约束问题min (),f x x R ∈的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点(0)x ,初始步长0h ,令0h h =,(1)(0)x x =,0k =; (2) 令(4)(1)x x h =+,置1k k =+;(3) 若()()(4)(1)f x f x <,则转步骤(4),否则转步骤(5);(4) 令(2)(1)(1)(4),x x x x ==,()()(2)(1)f x f x =,()()(1)(4)f x f x =,令2h h =,转步骤(2); (5) 若1k =,则转步骤(6)否则转步骤(7);(6) 令h h =-,(2)(4)x x =,()()(2)(4)f x f x =,转步骤(2);(7) 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小值点包含于区间(1)(3)(3)(1)[,][,]x x x x 或(二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于[a ,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。

机械优化实验报告

机械优化实验报告

一、实验目的本次实验旨在加深对机械优化设计方法的基本理论和算法步骤的理解,培养学生独立编制、调试计算机程序的能力,并掌握常用优化方法程序的使用方法。

通过实验,学生能够灵活运用优化设计方法解决工程实际问题。

二、实验内容本次实验主要涉及以下内容:1. 优化方法的基本原理2. 编程实现优化方法3. 优化方法的实际应用三、实验步骤1. 黄金分割法(1)基本原理黄金分割法是一种在给定初始区间内搜索极小点的一维搜索方法。

其基本原理是:在区间内取两个点,根据函数值的比较,将区间分为三段,保留包含极小值的段,再进行相同的操作,逐步缩小搜索区间。

(2)编程实现根据黄金分割法的基本原理,编写相应的C语言程序,实现一维搜索。

```c#include <stdio.h>#include <math.h>double f(double x) {// 定义目标函数return x x - 4 x + 4;}double golden_section_search(double a, double b, double tol) {double r = 0.618;double a1 = a + r (b - a); double a2 = b - r (b - a); double fa1 = f(a1);double fa2 = f(a2);while (fabs(b - a) > tol) { if (fa1 > fa2) {a = a1;a1 = a2;a2 = b - r (b - a); fa1 = fa2;fa2 = f(a2);} else {b = a2;a2 = a1;a1 = a + r (b - a); fa2 = fa1;fa1 = f(a1);}}return (a + b) / 2;}int main() {double x_min = golden_section_search(a, b, tol);printf("Optimal solution: x = %f\n", x_min);return 0;}```(3)结果分析通过运行程序,可以得到最优解 x = 2.000000,目标函数值为 f(x) = 0。

机械优化设计实验报告浙江理工大学

机械优化设计实验报告浙江理工大学

机械优化设计实验报告班级:XXXX姓名:XX学号:XXXXXXXXXXX一、外推法1、实验原理常用的一维优化方法都是通过逐步缩小极值点所在的搜索区间来求最优解的。

一般情况下,我们并不知道一元函数f(X)极大值点所处的大概位置,所以也就不知道极值点所在的具体区域。

由于搜索区间范围的确定及大小直接影响着优化方法的收敛速度及计算精度。

因此,一维优化的第一步应首先确定一个初始搜索区间,并且在该区间内函数有唯一的极小值存在。

该区间越小越好,并且仅存在唯一极小值点。

所确定的单股区间应具有如下性质:如果在[α1,α3]区间内任取一点α2,,α1<α2<α3或α3<α2<α1,则必有f(α1)>f(α2)<f(α3)。

由此可知,单股区间有一个共同特点:函数值的变化规律呈现“大---小---大”或“高---低---高”的趋势,在极小值点的左侧,函数值呈严格下降趋势,在极小值点右侧,函数值呈严格上升趋势,这正是单股区间依据。

2、实验工具C-Free3.5软件3、程序调试#include<stdio.h>#include<math.h>#define f(x) 3*x*x-8*x+9 //定义函数int main(){double a0,a1,a2,a3,f1,f2,f3,h;printf(“a0=”,a0); //单谷区间起始点scanf(“%lf”,&a0);printf(“h=”,h); //起始的步长scanf(“%lf”,&h);a1=a0;a2=a1+h;f1=f(a0);f2=f(a2);if(f1>f2) //判断函数值的大小,确定下降方向{a3=a2+h;f3=f(a3);}else{h=-h;a3=a1;f3=f1;a1=a2;f1=f2;a2=a3;f2=f3;a3=a2+h;f3=f(a3);}while(f3<=f2) //当不满足上述比较时,说明下降方向反向,继续进行判断{h=2*h;a1=a2;f1=f2;a2=a3;f2=f3;a3=a2+h;f3=f(a3);}printf(“a1=%lf,a3=%lf\n”,a1,a3);printf(“[a1,a3]=[%lf,%lf]\n”,a1,a3); //输出区间}4、调试结果5、总结与讨论1)当写成void main时会出现如下警告改成int main警告消失。

机械优化设计实验报告

机械优化设计实验报告

机械优化设计实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)《机械优化设计》实验报告目录1.进退法确定初始区间进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。

进退法程序框图题目:用进退法求解函数()2710=-+的搜索区间f x x x源程序代码及运行结果#include <>#include <>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。

按λ(618.0=λ) 缩小 比较)(x f 大小 确定取舍区间。

黄金分割法流程图题目:对函数()279f x x x =-+,给定搜索区间08x ≤≤时,试用黄金分割法求极小点源程序代码及结果:f=inline('x^2-7*x+9')a=0;b=8;eps=;a1=*(b-a);y1=f(a1);a2=a+*(b-a);y2=f(a2);while (abs(b-a)>eps)if(y1>=y2)a=a1;a1=a2;y1=y2;a2=a+*(b-a);y2=f(a2);elseb=a2;a2=a1;y2=y1; a1=*(b-a);y1=f(a1);endendxxx=*(a+b)f =Inline function:f(x) = x^2-7*x+9xxx =3.牛顿型法牛顿型法基本思路:在k x邻域内用一个二次函数()xφ来近似代替原目标函数,并将()xφ的极小点作为对目标函数()f x求优的下一个迭代点1k x+。

机械优化设计实验报告之欧阳道创编

机械优化设计实验报告之欧阳道创编

《机械优化设计》实验报告目录1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。

1.2 进退法程序框图1.3 题目:用进退法求解函数()2710f x x x =-+的搜索区间1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);}搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。

按λ(618.0=λ)缩小比较)(x f 大小确定取舍区间。

2.2黄金分割法流程图2.3 题目:对函数()279f x x x =-+,给定搜索区间08x ≤≤时,试用黄金分割法求极小点2.4 源程序代码及结果:f=inline('x^2-7*x+9')a=0;b=8;eps=0.001;a1=b-0.618*(b-a);y1=f(a1);a2=a+0.618*(b-a);y2=f(a2);while (abs(b-a)>eps)if (y1>=y2)a=a1;a1=a2;y1=y2;a2=a+0.618*(b-a);y2=f(a2);elseb=a2;a2=a1;y2=y1;a1=b-0.618*(b-a);y1=f(a1);endendxxx=0.5*(a+b)f =Inline function:f(x) = x^2-7*x+9xxx =3.49973.牛顿型法3.1牛顿型法基本思路:在k x 邻域内用一个二次函数()x φ来近似代替原目标函数,并将()x φ的极小点作为对目标函数()f x 求优的下一个迭代点1k x +。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械优化设计实验
报告
班级:XXXX
姓名:XX
学号:XXXXXXXXXXX
一、外推法
1、实验原理
常用的一维优化方法都是通过逐步缩小极值点所在的搜索区间来求最优解的。

一般情况下,我们并不知道一元函数f(X)极大值点所处的大概位置,所以也就不知道极值点所在的具体区域。

由于搜索区间范围的确定及大小直接影响着优化方法的收敛速度及计算精度。

因此,一维优化的第一步应首先确定一个初始搜索区间,并且在该区间内函数有唯一的极小值存在。

该区间越小越好,并且仅存在唯一极小值点。

所确定的单股区间应具有如下性质:如果在[α1,α3]区间内任取一点α2,,α1<α2<α3或α3<α2<α1,则必有f(α1)>f(α2)<f(α3)。

由此可知,单股区间有一个共同特点:函数值的变化规律呈现“大---小---大”或“高---低---高”的趋势,在极小值点的左侧,函数值呈严格下降趋势,在极小值点右侧,函数值呈严格上升趋势,这正是单股区间依据。

2、实验工具
C-Free3.5软件
3、程序调试
#include<stdio.h>
#include<math.h>
#define f(x) 3*x*x-8*x+9 //定义函数
int main()
{
double a0,a1,a2,a3,f1,f2,f3,h;
printf(“a0=”,a0); //单谷区间起始点
scanf(“%lf”,&a0);
printf(“h=”,h); //起始的步长
scanf(“%lf”,&h);
a1=a0;
a2=a1+h;
f1=f(a0);
f2=f(a2);
if(f1>f2) //判断函数值的大小,确定下降方向
{
a3=a2+h;
f3=f(a3);
}
else
{
h=-h;
a3=a1;
f3=f1;
a1=a2;
f1=f2;
a2=a3;
f2=f3;
a3=a2+h;
f3=f(a3);
}
while(f3<=f2) //当不满足上述比较时,说明下降方向反向,继续进行判断
{
h=2*h;
a1=a2;
f1=f2;
a2=a3;
f2=f3;
a3=a2+h;
f3=f(a3);
}
printf(“a1=%lf,a3=%lf\n”,a1,a3);
printf(“[a1,a3]=[%lf,%lf]\n”,a1,a3); //输出区间}
4、调试结果
5、总结与讨论
1)当写成void main时会出现如下警告
改成int main警告消失。

二、黄金分割法
1、实验原理
在外推法确定了单股区间[α1,α3]的基础上去其中对称两点α2,α4,且满足
α2=α3−λ(α3−α1)
α4=α1+λ(α3−α1)
式中,λ位0~1的缩小系数。

计算点α2,α4的函数值,记f2=f(α2),f4=f(α4),并比较他们的大小,可能存在如下三种情况:
(1)f2<f4:此时必有极小值点α∈[α1,α4],应舍去区间[α4,α3],保留的区间长度为λl,缩小后的新区间为[α1,α4];
(2)f2>f4:此时必有极小值点α∈[α2,α3],应舍去区间[α1,α2],保留的区间长度为λl,缩小后的新区间为[α2,α3];
(3)f2=f4:此时必有极小值点α∈[α2,α4],应舍去区间[α1,α2]或[α4,α3]。

经过比较取舍后,缩小后所得的新区建长度均为λl,将区间端点重新命名为[α1,α3],就可以进行新一轮的比较,如此循环。

2、实验工具
C-Free 3.5软件
3、程序调试
#include<stdio.h>
#include<math.h>
#define f(x) 3*x*x-8*x+9
#define v 0.618 //黄金分割点
int main()
{
float a0,a1,a2,a3,a4,f0,f1,f2,f3,f4,b; //b收敛精度
puts("单谷区间a1=");
scanf("%f",&a1);
puts("单谷区间a3=");
scanf("%f",&a3);
puts("收敛精度b=");
scanf("%.4f",b);
a2=a3-v*(a3-a1);
f2=f(a2);
a4=a1+v*(a3-a1);
f4=f(a4);
do //do-while循环,知道满足条件退出循环
{
if(f2>f4) //判断函数值大小,缩小比较区间
{
a1=a2;
a2=a4;
f2=f4;
a4=a1+v*(a3-a1);
f4=f(a4);
}
else
{
a3=a4;
a4=a2;
f4=f2;
a2=a3-v*(a3-a1);
f2=f(a2);
}
}
while(abs(a3-a1)>b);。

相关文档
最新文档