怎样确定一次函数的解析式
人教版如何求一次函数的解析式
2=k+ b
k= -2
6= -k+b 解得 b=4
∴一次函数的解析式:y= -2x+4
(2)如图,直线y=-2x+4与y轴的交点A(0,4), 与x轴的交点B(2,0)
(0,4) (2,0)
∴OA=4,OB=2
∴S △AOB =
OA × OB=4
y2x4
函数解析 式y=kx+b
从数到形
选取
画出
满足条件的两定点
b=-1
∴这个一次函数的解析式为y=2x-1
写
象这样先设出函数解析式,再根据条件
确定解析式中未知的系数,从而具体写出 这个式子的方法,叫做待定系数法.
整理归纳:
函数解析 式y=kx+b
从数到形
选取 解出
画出
满足条件的两定点
(x1,y1)与(x2,y2)选取
从形到数
一次函数的
l 图象直线
数学的基本思想方法: 数形结合
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
求一次函数关系式的常见题型
1、利用图象求函数解析式
2、利用点的坐标求函数解析式
3、利用表格信息确定函数解析式
4、根据实际情况收集信息求函数解析式
归纳:
求函数关系式的一般步骤是怎样的呢?
可归纳为“一设、二代、三列、四解、五写”
一设:设出函数关系式的一般形式y=kx+b 二代:将已知点的坐标代入函数解析式 三列:列出关于k、b的一次方程 四解:解这个方程,求出k,b的值 五写:把求得k、b的值代入y=kx+b,写出函数 关系式
(2)写出购买量关于付款金额的函数解析式,
解:设购买量为x千克,付款金额为y元.
确定一次函数解析式的五种方法
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
19.2.2.3 确定一次函数的解析式
【课后作业】完成《学法大视野》 【预习】课本P93—P95《一次函数与方程、不等式》
已知一次函数的图象过点(0,2),且与两坐标轴围成 的三角形的面积为2,求此一次函数的解析式.
学有驰,习有张 书山有路勤独秀 学漠无垠恒至洲
x O2
2. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=___2___,k=____23__;
y
y
(2)当x=30时,y=__-1_8___; l 4
3
(3)当y=30时,x=__-_4_2__.
2
1
x
O 12345 x
3. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2), 求直线l的解析式.
能力提升
已知一次函数y=kx+b(k≠0)的自变量的取值范围是
- 3≤x≤ 6,相应函数值的范围是- 5≤y≤ - 2 ,求
这个函数的解析式.
分析:(1)当- 3≤x≤ 6时,- 5≤y≤ - 2,实质是给出
了两组自变量及对应的函数值;
(2)由于不知道函数的增减性,此题需分两种情况讨论.
答案:y = 1 x - 4或y = - 1 x - 3
∴b=2
∵一次函数的图象与x轴的交点是( 2 ,0),
k
则 1 2 2 2, 解得k=1或-1.
2
k
故此一次函数的解析式为y=x+2或y=-x+2.
当堂练习
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论 正确的是 ( D )
A.k=2
B.k=3
y
一次函数解析式求法
斜率 $k$ 的意义
截距 $b$ 的意义
解析式求法
表示函数图像的倾斜程度,$k > 0$ 时图像上升,$k < 0$ 时图像下降。
表示函数图像与 $y$ 轴交点的纵坐标。
通过已知的两个点坐标,利用两点式或点斜式求出一次函数的解析式。
关键知识点总结
忽视斜率 $k neq 0$ 的条件,将常数函数误认为一次函数。
已知斜率和一点坐标求解析式
已知一次函数的图像经过点 $(2, 3)$ 和 $(-1, -2)$,求这个一次函数的解析式。
例题
设一次函数解析式为 $y = kx + b$,根据已知条件列方程组
解
实际应用举例
$$begin{cases}
3 = 2k + b
2 = -k + b
实际应用举例
end{cases}$$
将求得的待定系数代回原解析式后,必须验证是否满足已知条件。
误区提示:常见的误区有以下几点
注意事项与误区提示
忽略了已知条件对解析式的限制;
在列方程或方程组时出现了错误;
在解方程或方程组时出现了计算错误;
没有验证求得的解析式是否满足已知条件。
01
02
03
04
注意事项与误区提示
04
解析式求法之图像法
创新思维在求解过程中运用
逆向思维
从问题的结论出发,逆向推导问题的条件,从而找到解决问题的新思路。
类比思维
将问题与其他类似问题进行类比,借鉴其他问题的解决方法,以启发新的解题思路。
转化思维
将问题转化为另一种形式或模型,以便利用已知的知识和方法进行求解。
06
总结回顾与拓展延伸
一次函数解析式的求解方法
一次函数解析式的求解方法嘿,你知道一次函数解析式咋求不?其实超简单!先确定两个点的坐标,这就好比找到宝藏的线索。
有了两个点,代入一次函数y = kx + b 中,不就得到两个方程嘛!解这俩方程,嘿,k 和b 就出来啦,解析式也就搞定啦!这能有啥难的?
那这过程安全不?稳定不?哎呀,放心吧!就跟走在平路上一样稳当。
只要你认真找对点,仔细计算,根本不会出岔子。
一次函数的应用场景那可老多啦!比如算路程和时间的关系,就像汽车在路上跑,速度一定的时候,路程不就随着时间变化嘛。
优势也很明显呀,简单易懂,能快速反映出两个变量之间的关系。
多棒!
举个例子哈,小明去超市,每分钟走50 米,距离超市的路程y 米和时间x 分钟就是一次函数关系。
设y = kx + b,一开始距离超市1000 米,走了10 分钟到了超市。
代入两个点(0,1000)和(10,0),轻松求出解析式。
你说这多实用!
一次函数解析式求解就是这么简单又好用,赶紧用起来吧!。
一次函数解析式,直线位置关系---第二讲
一次函数(2)--解析式、直线位置关系【考点聚焦】1、一次函数表达式的确定确定一次函数表达式:用 求解析式通常分四步:设、代、求、写.(1)对于正比例函数:将一个已知点的横、纵坐标代入 中,解一元一次方程,求出 ,从而确定此表达式;(2)对于一次函数:将两个已知点的横、纵坐标分别代入 中,建立关于,k b 的二元一次方程组,求出 的值,从而确定此表达式. 2、两条直线的位置关系及函数图象的平移 (1)两条直线的位置关系:设直线1l 和2l 的解析式为111b x k y +=和222b x k y +=,则 它们的位置关系可由其系数确定: ※①⎩⎨⎧≠=2121b b k k ⇔1l 与2l 互相 ; ②121-=⋅k k ⇔1l 与2l 互相 .(2)函数图象的平移:左加右减:(针对自变量而言) 上加下减:针对b 而言 (3)特殊角度①当一次函数图象与x 轴成°30:=k ②当一次函数图象与x 轴成°45:=k ③当一次函数图象与x 轴成°60:=k 3、确定两个函数图象的交点坐标确定两个函数图象的交点坐标:就是这两个函数解析式所组成的方程组的解. 4、一次函数中的面积问题【典例剖析】知识点一:一次函数表达式的确定【例1】(1)已知一次函数的图象经过)(2,1-和)(4,3-,求这个一次函数的解析式 。
(2)(嘉祥外国语)如果一次函数b kx y +=中自变量x 的取值范围是31≤≤-x 时,函数值y 的取值范围是62≤≤-y ,求这个一次函数解析式。
【变式1】已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是)4,0(0,2-)、(,则这个函数的解析式为_____________。
【变式2】已知一次函数b kx y +=,当13-≤≤x 时,对应y 的值为91≤≤y ,则这个函数的解析式为_____________。
【例2】如图,直线834+-=x y 与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的'B 处,则直线AM 的解析式为 .【变式1】已知一次函数)1)(1(2)1(≠-+-=a a x a y 的图象如图所示,已知OB OA 23=,求一次函数的解析式.【变式2】如图,一次函数232+-=x y 的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰ABC Rt ∆,︒=∠90BAC .求过B 、C 两点直线的解析式.知识点二:两条直线的位置关系【例3】已知一次函数b kx y +=的图象经过点()31,A 且和32-=x y 平行,则函数解析式为 .【变式1】(嘉祥外国语)若直线b kx y +=与直线x y 2-=平行,且过点()31,,则=k ________,=b _________.【例4】(湖南湘潭中考)已知两直线,,,222:b x k y l +=111:b x k y l +=,若21l l ⊥,则1·21-=k k .①应用:已知12+=x y 与1-=kx y 垂直,求k ;②直线经过()3,2A ,且与3+=x y 垂直,求该直线解析式.【例5】(武汉中考)(1)点()1,0向下平移2个单位后的坐标是_________,直线12+=x y 向下平移2个单位后的解析式是___________;直线12+=x y 向右平移2个单位后的解析式是_____________;【变式】将一次函数13-=x y 的图象沿y 轴向上平移3个单位,再沿x 轴向左平移4个单位后,得到的图象对应的函数关系式为【例6】已知直线b kx y l +=:过点()32,, (1)当l 与x 轴的夹角为30°时,求直线解析式; (2)当l 与x 轴的夹角为45°时,求直线解析式; (3)当l 与x 轴的夹角为60°时,求直线解析式.【变式】如图,已知A 点坐标为()05,,直线)>0(b b x y +=与y 轴交于点B ,连接AB ,︒=∠75α,则b 的值为( ) 、A 3 B 、335 C 、4 D 、435知识点三:确定两个函数图象的交点坐标【例7】在同一平面直角坐标系中,若一次函数2-=x y 与12+-=x y 的图象交于点M ,则点M 的坐标为 .【变式1】无论m 为何值,直线m x y +=2和5+-=x y 图象的交点不可能在第 象限.【变式2】如图,在平面直角坐标系中,直线32+=x y 与y 轴交于点A ,直线1-=kx y 与y 轴交于点B ,与直线32+=x y 交于点()n C ,1-.(1)求k n 、的值; (2)求ABC ∆的面积.**挑战题1.(2017双流)已知在平面直角坐标系中,直线l 分别与x 轴,y 轴交于A ,B 两点,其中,点A 在x 轴的负半轴上,点B 在y 轴的正半轴上.(1)如图1,若点A 的坐标是(2m -1,0),点B 的坐标是(0,3-m ),OA =34OB , AD平分∠BAO 交y 轴于D ;①求直线l 的函数表达式以及点D 的坐标;②点C 是第二象限内一点,且∠BCA =∠BAC ,当AC ⊥AD 时,求点C 的坐标; (2)如图2,点E 在x 轴的正半轴上,OA =OB =OE ,P 为线段AB 上一动点(不与端点重合),OQ ⊥OP 交BE 于Q ,OR ⊥AQ 交AB 于R .当P 点运动时,PRQE的值是否发生变化?如果不变,求出其值;如果发生变化,请说明理由.(图1)(图2)随堂练习: 一、选择题1、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点(,)a b ,且26a b +=,则直线AB 的解析式是( ).A 26y x =-+ .B 26y x =--.C 23y x =-+.D 23y x =--二、填空题 2、如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC PD +值最小时点P 的坐标为 .3、如图, 在平面直角坐标系中, 平行四边形OABC 的顶点A 在x 轴上, 顶点B 的坐标为(6,4). 若直线l 经过点(1,0),且将平行四边形OABC 分割成面积相等的两部分, 则直线l 的函数解析式是 .4、已知一次函数y kx b =+过点()4,0和()2,2两点,则该函数的解析式为 .5、一次函数y kx b =+,当41≤≤x 时,63≤≤y ,则bk的值是 .6、在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、⋯、正方形1n n n n A B C C -,使得点1A 、2A 、3A ⋯在直线l 上,点1C 、2C 、3C ⋯在y 轴正半轴上,则点n B 的坐标是 .7、已知一次函数的图象经过点(0,2)P -,且与两条坐标轴截得的直角三角形的面积为 3 ,则此一次函数的解析式为 .三、解答题8、已知点0(P x ,0)y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d =计算.例如:求点(1,2)P -到直线37y x =+的距离. 解:因为直线37y x =+,其中3k =,7b =.所以点(1,2)P -到直线37y x =+的距离为d ===. 根据以上材料,解答下列问题: (1)点(1,1)P -到直线1y x =+的距离;(2)已知直线21y x =-+与26y x =-+平行,求这两条直线之间的距离。
一次函数解析式23招经典解法
一次函数表达式的方法解法(23招)求一次函数的表达式基本解法1、待定系数法(1)图象过原点:函数为正比例函数,可设表达式为y=kx ,再找图象上除原点外的一个点的坐标代入表达式,即可求出k.(2)图象不过原点:函数为一般的一次函数,可设表达式为y=kx+b ,再找图象上的两个点的坐标代入表达式,即可求出k ,b 。
例:已知一次函数y=kx+b (k ,b 为常数且0≠k )的图象经过点A (0,-2)和点B (1,0),则k=______,b=______.答案:k=2,b=-2例:已知正比例函数)0(≠=k kx y 的图象经过点(1,-2),则这个正比例函数的表达式为______.答案:y=-2x常见解法:1、定义式例:已知函数3)3(82+-=-mx m y 是一次函数,求其解析式。
解析:该函数是一次函数, ∴182=-m解得m=±3,又m≠3∴m=-3故解析式为y=-6x+32、点斜式要点:如何求k ?(1)公式:1212x x y y k --=,(2)图象(比值):|k |=BCAB (两直角边的比) (3)增量:V (速度)、P (电功率)(4)平移变换:k 值相等(5)垂直变换:121-=k k(6)对称变换:|k|、|b|不变(7)相似比:(略)(8)正切值:tanα(斜率)(9)旋转变换:(略)例:已知一次函数y=kx-3的图象过点(2,-1),求这个函数解析式。
解析:方法一:(代入法)将点(2,-1)代入y=kx-3得,-1=2k-3,解得k=1.故解析式为y=x-3方法二:(一点式)解析:一次函数y=kx-3的图象过点(2,-1),∴可令y=k(x-2)-1=kx-2k-1,∴-2k-1=-3,解得k=1,∴这个函数解析式为y=x-3.3、两点式例:一次函数经过(-2,0)、(0,4),求此函数的解析式。
解析:方法一:(构建方程组)令解析式为y=kx+b,过(-2,0)、(0,4),则⎩⎨⎧=+-=b b k 420 解得k=2,b=4 故解析式为y=2x+4. 方法二:由点斜式,得)2(0041212---=--=x x y y k =2 再一点式,得y=2(x+2)+0=2x+4方法三:由斜截式,得y=2x+4方法四:由数形结合,得y=2x+4(k=直角边的比)方法五:(纯一点式)y=k(x+2)=k(x+0)+4⇒k=24、一点式:例:过(2,5)的一次函数解析式为_____。
一次函数解析式的确定与应用
与 x 轴交点时,可令 y = 0 ,得到方程kx + b = 0 ,解方程得 x = - ,直线 y = kx + b 交 x 轴于 (- ,0) ,-A . y = -2 xB . y = -2 x (-1 < x < 0)C . y = - xD . y = - x (-1 < x < 0)2一次函数解析式的确定与应用例题精讲一、用待定系数法求一次函数解析式先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字 系数法.用待定系数法求函数解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将 x ,y 的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方 程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.二、一次函数与一元一次方程的关系直线 y = kx + b (k ≠ 0)与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0(k ≠ 0) 的解。
求直线 y = kx + bb b b k k k就是直线 y = kx + b 与 x 轴交点的横坐标。
三、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为 a x + b > 0 或 a x + b < 0 ( a 、b 为常数,a ≠ 0 )的形式,所以解一元一 次不等式可以看作:当一次函数值大(小)于 0 时,求自变量相应的取值范围。
例题精讲【例1】 已知函数图象如图所示,则此函数的解析式为() 1122y21-1O12 x【例2】 已知: y 与 x + 2 成正比例,且 x = 1 时, y = -6 .⑴求 y 与 x 之间的函数关系式; ⑵点 (a ,) 在这个函数的图像上,求 a 的值.【例3】 已知一次函数 y = kx + b 的图象与直线 y = 2 x + 1 平行并且过点 P (-1,2),求这个一次函数的解析式.P age 1 of 100 0【例4】 已知直线 y = (3m + 2) x + 2 和 y = -3x + 6 交于 x 轴上同一点, m 的值为()A . -2B . 2C . -1D . 0【例5】 已知一次函数 y = -2 x + 3(1)当 x 取何值时,函数 y 的值在 -1 与 2 之间变化?(2)当 x 从 -2 到 3 变化时,函数 y 的最小值和最大值各是多少?【例6】 直线 l : y = k x + b 与直线 l : y = k x 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式1 12 2k x > k x + b 的解集为______.21yl 2l 13-1 O x【例7】 若直线 y = (m - 2) x - 6 与 x 轴交于点 (6 ,) ,则 m 的值为()A.3B.2C.1D.0 【例8】 如图,直线 y = kx + b 与 x 轴交于点 (-4 ,) ,则 y > 0 时, x 的取值范围是(A. x > -4B . x > 0 C. x < -4 D . x < 0【例9】 一次函数 y = kx + b 的图象如图所示,当 y < 0 时, x 的取值范围是()A . x > 0B . x < 0C . x > 2D . x < 2)y-4 O xy3O2 xP age 2 of 10B 0C。
例谈求一次函数解析式的常见题型
例谈求一次函数解析式的常见题型一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。
求一次函数的解析式,是学习一次函数最基本也是最重要的内容之一。
中考单独命题考查者不多,但许多综合性题目中都要用到它。
本文略举几例介绍几种求一次函数解析式的常见题型。
希望对同学们的学习有所帮助。
一. 定义型例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。
如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
解:一次函数的图像过点(2,-1),即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
三. 两点型例3、一次函数经过A(2,4)、B(0,2)两点,与x轴相交于C点。
(1)求这个一次函数的解析式;(2)求的面积。
解:(1)据题意,得说明:求一次函数解析式必须知道两个独立的条件。
待定系数法是最基本的方法,其他方法也是由此演化而来。
四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为说明:已知图象求解析式要注意图形中的细节部分,例如空心点或实心点,这也决定一次函数的定义域,往往同学们不注意。
五. 斜截型例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线:;:。
当,时,直线与直线平行,。
又直线在y轴上的截距为2,故直线的解析式为说明:与已知直线平行的直线斜率相同,即如果已知直线y=kx+b,则平行直线为y=kx+c;与已知直线垂直的直线斜率成负倒数,即如果已知直线y=kx+b,则垂直直线为y=- x+c.六. 平移型例6. 把直线向下平移2个单位得到的图像解析式为___________。
一次函数的解析式与方程
一次函数的解析式与方程一次函数是指具有形如y = ax + b的解析式的函数,其中a和b为常数,并且a不等于零。
一次函数也被称为一元一次方程。
本文将详细介绍一次函数的解析式与方程的相关概念、性质以及求解方法。
一、一次函数的解析式一次函数的解析式一般可以写成y = ax + b的形式,其中a被称为斜率,b被称为截距。
斜率描述了函数的变化趋势,截距表示函数与y 轴的交点。
1. 斜率斜率用于描述一次函数的变化速率。
斜率可以通过计算函数图像上两个点的纵坐标之差与横坐标之差的比值来确定。
具体计算公式为:斜率a = (y₂ - y₁) / (x₂ - x₁)其中(x₁, y₁)和(x₂, y₂)为函数图像上任意两点的坐标。
2. 截距截距用于描述一次函数与y轴的交点。
当x等于零时,函数的解析式可以简化为y = b。
因此,截距b表示函数与y轴的交点的纵坐标。
二、一次函数的方程一次函数的方程一般可以写成ax + by = c的形式,其中a、b、c为常数,a和b不同时为零。
一次函数的方程可以用来定量描述一次函数的特性以及求解一次方程的根。
1. 方程解与斜率关系对于一次函数的方程ax + by = c来说,斜率可以通过将方程转换为解析式的形式来求解。
具体步骤如下:将方程转换为解析式形式:y = - (a/b)x + c/b比较得出斜率:斜率a' = -a/b通过比较,可以发现斜率a'与方程的斜率a之间存在关系,即a' = -a/b。
这个关系可以帮助我们快速计算一次函数的斜率。
2. 方程解的求解方法求解一次函数的方程可以使用代入法、消元法、图像法或者其他方法。
下面以代入法为例介绍一次函数方程解的求解过程。
步骤一:将方程转换为解析式形式。
ax + by = c转换为:y = (c/b) - (a/b)x步骤二:选取任意值给x赋值,计算出相应的y值。
步骤三:将求得的x和y值代入方程,判断是否满足等式。
一次函数解析式的求法
第14讲确定一次函数表达式(A)【知识回顾】1、一次函数的形式:(其中k、b是常数,);当b=0时,一次函数 ( )叫做正比例函数;正比例函数是特殊的一次函数.2、一次函数的图像是一条。
正比例函数的图像是必定过的一条直线.3、一次函数(),如果几个一次函数的k相同b不同则这几个一次函数的图像(直线);如果几个一次函数的k不同b相同则这几个一次函数的图像(直线)与轴相交于同一点(,)【基础知识精讲】一、待定系数法:1、我们要画出一次函数的图像只要知道2个点的坐标就可以确定,利用一次函数关系式可以求出来;反过来如果知道一次函数y=kx+b的2个点的坐标或者2组x和y 的值,那么就可以用待定系数法求解出一次函数关系式。
2、待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
例1:一次函数的图象经过点(3,3)和(1,-1).求它的函数关系式3、用待定系数法求函数的步骤:(1)设:设出函数一般形式;(2)列:代入特殊点的坐标,列出方程(组)(3)解:解方程(组),求出待定系数(4)写:写出函数关系式。
练习、1、一次函数的图像经过了点(2,3),并且与y轴相交于(0,6)。
求此一次函数的关系式。
2:一次函数的图像经过了点(2,3),并且与x轴相交于(6,0)。
求此一次函数的关系式。
二、直线的平移:函数y=kx+b由正比例函数y=kx上下平移得到【例2】1、把直线向上平移3个单位,就得到直线,它经过象限2、一次函数的图象过点(,),且与直线平行,则其解析式为()、、、、变式训练:把一次函数向平移个单位得到;【例3】、一次函数图像过点(3,7),并且与正比例函数y=2x图像平行,求一次函数关系式。
三、交点问题例4、1.直线与直线的交点在第象限。
2.若直线经过一次函数的交点,则的值是;3.一次函数图像与函数平行,并且与的交点是(,),请确定一次函数的函数关系式。
求一次函数解析式的方法
依题意得 :
解 得
-
点. 求 , . b
’
.
4
பைடு நூலகம்
.
{ + . r一 2 1胖 k 2 O b6 , k =0 = . :9  ̄ :。 , 9
/ -2 D
‘ . .
所 求 的解 析式 为 : 2 4 y= x+ .
6 验证. .
方法四 利用平行求解析式.
t 秘 糖
解 巧与 法 罅 题技 方 鞋5 8臻 ≥ 魂
§~
函数
◎ 罗全 文 ( 江西 省 南 昌市 西 湖 区抚 生路 学校 30 2 ) 3 0 5
方 法 一 给 出一 次 函数 上 的 两点 坐 标 求 函数 的解析 式 . 例 1 已知 一 次 函数 Y x =k +b的 图像 经过 点 A( , 1 , 2一 )
同理
.
・ . .
直 线 解 析 式 为 : =一 x+5或 y x一5 y 2 =2 .
解 设 h=k d+b 依题 意得 : ,
数学 学 习与 研 究 2 0 . 0 99
B( 4, 3 . 一 一1 ) 求这 个 函数 的解 析 式. 解 依题意得 :
f + 1f {9 2 b6i k, 0 =0 b k , =  ̄
. .
h与 d之 间 的 函数 关 系 式 为 : h=9 d一2 . 0
{+:。 得 ; 2b 一 解 : 一+- . f . k = 4 1 ,
/
方法 五
通 过 表 格求 解 析 式.
例 5 大拇 指 与 小拇 指 尽 量 张 开 时 ,两 指 尖 的 距 离 称
解由 意 : I5 孚, 图2 题 得1 =
求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
八年级数学一次函数课件-求一次函数的解析式
数学
(2)∵△ABC的面积为4,
∴4=12BC×OA,即4=12BC×2. ∴BC=4. ∴OC=BC-OB=4-3=1. ∴C(0,-1). 设直线l2的解析式为y=kx+b. ቊ2kb+ =b-=10. ,解得ቐbk==-121,.
∴直线l2的解析式为y=12x-1.
八年级 下册
人教版
第4课时求一次函数的解析式
知识点1 待定系数法求一次函数的解析式 类型一 已知直线的解析式和图象上一点的坐标 【例题1】若函数y=3x+b的图象经过点(2,-6),求函数的 解析式. y=3x-12.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
【变式1】若一次函数y=kx-3的图象经过点M(-2,1),求 这个一次函数的解析式. 解:∵一次函数y=kx-3的图象经过点 M(-2,1). ∴-2k-3=1.解得k=-2. ∴这个一次函数的解析式为y=-2x-3.
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第4课时求一次函数的解析式
第十九章 一次函数
19.2 一次函数 第4课时求一次函数的解析式
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
人教版
第4课时求一次函数的解析式
了解待定系数法的含义;能根据已知条件确定一次函数 的表达式;会用待定系数法确定一次函数的表达式.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
类型二 已知直线经过两个点的坐标 【例题2】一次函数y=kx+b的图象经过点(3,2)和点 (1,-2). (1)求这个函数的解析式; (2)判断(-5,3)是否在此函数的图象上.
[中考数学]求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省蒙城县板桥中学 张飞轮 邮编 233529 E-mail zfl6732@
怎样确定一次函数的解析式
一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。
其中求一次函数解析式就是一类常见题型。
现以部分中考题为例介绍几种求一次函数解析式的常见题型。
希望对同学们的学习有所帮助。
确定一次函数的解析式步骤:先设待求函数的关系式(其中含有未知常数系数即k 和b 的值),再根据条件列出方程,求出未知系数,从而得到所求结果。
一、根据定义:一般地,如果变量y 与变量x 有关系式y= kx+b (k,b 是常数,且k 不为0),那么,y 叫x 的一次函数。
已知函数y m x m =-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130
-=-≠⎧⎨⎩
∴=±≠⎧⎨⎩
m m 33 ∴=-m 3,故一次函数的解析式为y x =-+33
注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证m -≠30
二、根据语言叙述
已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式。
解:设这个一次函数的解析式为:y= kx+b ……一设
因为y= kx+b 的图象过点(3,5)与(-4,-9),
所以3549k b k b +=⎧⎫⎨⎬-+=-⎩⎭
……二代 解得21k b =⎧⎫⎨⎬=-⎩⎭
……三解 这个一次函数的解析式为y=2x-1……四写
三、根据图象
(2007陕西)如图2,一次函数图象经过点A
图象交于点B ,则该一次函数的表达式为( )B
A .2y x =-+
B .2y x =+
C .2y x =-
D .2y x =-- 图2
解: 设这个一次函数解析式为y =kx +b ,
根据题意列方程组得:
102
k b k b -+=⎧⎨+=⎩ 解方程组得1 2k b =⎧⎨=⎩ 所以这个一次函数解析式为y =x +2.
四、根据表格信息、
(2007甘肃白银等7市)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的
日销售量y (件)之间的关系如下表:
若日销售量y 是销售价x 的一次函数.
(1)求出日销售量y (件)与销售价x (元)的函数关系式;
(2)求销售价定为30元时,每日的销售利润.
解:(1)设此一次函数解析式为.y kx b =+
则1525,2020.
k b k b +=⎧⎨+=⎩ 解得k =-1,b =40. 即一次函数解析式为40y x =-+.
(2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元
五、根据图象平移特点
(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。
A 、y =2x +2
B 、y =2x -2
C 、y =2(x -2)
D 、y =2(x +2)
解:设函数解析式为y kx b =+,直线y=2x 向下平移2个单位得到的直线与直线y=2x 平行,k=2,直线y kx b =+在y 轴上的截距为b=-2 ,故图像解析式为y=2x-2
六、根据实际问题
某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。
解:由题意得Q t =-2002.,即Q t =-+0220.
Q t ≥∴≤0100,
故所求函数的解析式为Q t =-+0220.(0100≤≤t )
注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
x。