函数解析式的表示形式及五种确定方式

合集下载

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。

本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。

1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。

通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。

例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。

2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。

通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。

例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。

3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。

例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。

根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。

4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。

通过观察差分序列之间的规律,可以尝试找到函数的解析式。

例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。

5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。

通过寻找函数性质和限制条件的推理,可以得到函数解析式。

例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。

因此,猜测函数解析式为f(x) = ax^2。

通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。

函数解析式的求解及常用方法

函数解析式的求解及常用方法

函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。

例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。

2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。

例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。

3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。

例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。

4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。

例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。

5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。

特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。

以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。

在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。

确定一次函数解析式的五种方法

确定一次函数解析式的五种方法

五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。

下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。

一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。

函数的解析式就确定出来了。

解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。

分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。

解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。

三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。

解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。

八年级数学下册知识梳理:五种类型一次函数解析式的确定

八年级数学下册知识梳理:五种类型一次函数解析式的确定

五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。

下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。

一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。

函数的解析式就确定出来了。

解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。

分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。

解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。

三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。

解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。

待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。

(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。

[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。

若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。

[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。

函数解析式的几种基本方法及例题

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。

(注意定义域)例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f Θ, 21≥+x x2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。

应用此法解题时往往需要解恒等式。

例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

五种类型一次函数解析式的确定

五种类型一次函数解析式的确定

五种种类一次函数分析式确实定确立一次函数的分析式,是一次函数学习的重要内容。

下边就确立一次函数的分析式的题型作以下的概括,供同学们学习时参照。

一、依据直线的分析式和图像上一个点的坐标,确立函数的分析式例1、若函数y=3x+b 经过点(2,-6 ),求函数的分析式。

剖析:由于,函数 y=3x+b 经过点( 2,-6 ),所以,点的坐标必定知足函数的关系式,所以,只要把 x=2,y=-6 代入分析式中,就能够求出 b 的值。

函数的分析式就确立出来了。

解:由于,函数y=3x+b 经过点(2,-6 ),所以,把 x=2,y=-6 代入分析式中,得: -6=3 ×2+b,解得: b=-12,所以,函数的分析式是: y=3x-12.二、依据直线经过两个点的坐标,确立函数的分析式例 2、直线 y=kx+b 的图像经过 A(3,4)和点 B(2,7),求函数的表达式。

剖析:把点的坐标分别代入函数的表达式,用含 k 的代数式分别表示 b,由于 b 是同一个,这样成立起一个对于 k 的一元一次方程,这样就能够把 k 的值求出来,而后,就转变成例 1 的问题了。

解:由于,直线 y=kx+b 的图像经过 A(3,4)和点 B( 2,7),所以, 4=3k+b,7=2k+b,解得: k=-3 ,b=13,所以,一次函数的分析式为:y=-3x+13 。

三、依据函数的图像,确立函数的分析式例 3、如图 1 表示一辆汽车油箱里节余油量y(升)与行驶时间 x(小时)之间的关系.求油箱里所剩油 y(升)与行驶时间 x(小时)之间的函数关系式,而且确立自变量x 的取值范围。

剖析:依据图形是线段,是直线上的一部分,所以,我们能够确立油箱里所剩油 y(升)是行驶时间 x(小时)的一次函数,理解这些后,就能够利用设函数分析式的方法去求函数的分析式。

解:由于,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,由于,图像经过点A(0,40), B(8,0)所以,把 x=0,y=40,x=8,y=0,分别代入 y=kx+b 中,得: 40=k×0+b, 0=8k+b解得: k=-5 ,b=40,所以,一次函数的表达式为:y=-5x+40 。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。

以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。

函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。

明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。

二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。

例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。

又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。

三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。

在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。

例如,求解经济学中的需求函数、生长模型等。

四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。

例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。

又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。

五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。

通过列方程并求解,可以得到函数解析式中的一些未知系数。

例如,可以通过建立差分方程求解离散函数的解析式。

六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。

通过逐项求和,可以得到函数解析式的形式。

例如,可以利用幂级数展开来确定一些特殊函数的解析式。

求函数解析式的几种方法

求函数解析式的几种方法

求函数解析式的几种方法函数的表示方法有三种:解析式法、图像法、列表法,其中最常用的是解析式法,下面介绍几种求函数解析式的方法。

一、利用换元法求函数的解析式。

例1、已知函数f(ex)=x2+1,求函数f(x)的解析式。

解:设ex=t,t>0,则x=㏑t, f(t)=㏑2t+1.则f(x)=㏑2x+1 (x>0).注:已知f[g(x)]是关于x的函数即f[g(x)]=F(x) 求函数f(x)的解析式。

通常令g(x)=t,解出x=φ将x=φ代入f[g(x)]=F(x)中,求得f(t) 的解析式,再用x替换t便得f(x) 的解析式。

用换元法求函数解析式时,如果所求函数的定义域不是全体实数,需要根据实际情况标明函数的定义域.二、根据函数的奇偶性求函数的解析式。

例2、设f(x)是定义在R上的奇函数,且当x∈(0,﹢∞)时f(x)=x2+lg(1+x), 求函数f(x)的解析式。

解:设x∈(-∞,0),则-x∈(0,﹢∞)。

f(x)=-f(-x)=-x-lg(1-x)则当x∈(0,﹢∞),f(x)=x2+lg(1+x),x=0时,f(x)=0 x∈(-∞,0),f(x)=-x2-lg(1-x)三、消元法求函数的解析式。

例3、已知函数f(x)满足3f(x)+2f()=4x, 求函数f(x)的解析式.解:用代换x,列方程组解f(x)3f(x)+2f()=4x, 3f()+2f(x)=解得f(x)=x- 。

注:此题是利用消元法和函数奇偶性求函数的解析式.四、根据对称性求函数的解析式。

例4、已知函数f(x)=x2-2x, x∈[2,3],且f(x)关于(2,0)中心对称,求x∈[1,2]上的解析式。

解:设p(x,y)是x∈[1,2]图像上的点,则其关于(2,0)的对称点为Q(4-x,-y),则-f(x)=(4-x)2-2(4-x) f(x)=-(4-x)2+2(4-x)。

五、利用赋值法求函数的解析式。

例5、已知函数y= f(x)对任意实数x. y均满足f(x-y)=f(x)-y(2x-y+1)且f(0)=1,求函数y= f(x)的解析式。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。

函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。

常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。

一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。

例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。

这些函数可以根据已知的系数和常数来确定解析式。

例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。

例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。

对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。

例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。

三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。

通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。

例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。

四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。

例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。

例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。

综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。

通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式是用数学语言描述数学函数的一种方法。

它可以方便地表示函数的定义域、值域、性质等,并且能够通过函数图像和方程表达式等形式直观地展现函数的特征。

下面将介绍六种常用的方法来求函数的解析式。

1.常函数法:常函数法是求解常函数的一种简单方法。

常函数表示所有的输入值都对应着相同的输出值。

常函数的解析式通常形如"f(x)=c",其中c是常数。

常函数的定义域和值域都是全体实数值。

例如,函数f(x)=3就是一个常函数,它的输出始终为32.幂函数法:幂函数是一种具有形如y=x^a的解析式的函数。

幂函数法是通过给定了函数的一些特定点来推导出整个函数的解析式。

常见的幂函数包括正幂函数、负幂函数和倒数函数。

例如,给定函数f(x)通过点(1,2)和(2,4),我们可以通过观察得出f(x)=2^x。

3.分段函数法:分段函数是一种具有不同解析式在不同区间上的函数。

分段函数法是通过将函数的定义域按照不同的区间划分,然后在每个区间上分别确定函数的解析式来得到函数的解析式。

例如,函数f(x)=,x,在x<0时取值为-x,在x≥0时取值为x,这就是一个分段函数。

4.复合函数法:复合函数是通过使用一个函数的输出结果作为另一个函数的输入来得到的函数。

复合函数法是通过将两个或多个函数的定义域和值域相互组合,然后确定新函数的解析式来求解函数的解析式。

例如,给定函数f(x)=x+1和g(x)=2x,我们可以求得f(g(x))=2x+15.反函数法:反函数是指一个函数的自变量和因变量对换后得到的新函数。

反函数法是通过将一个函数的自变量和因变量交换位置,然后求解得到函数的解析式。

例如,给定函数f(x)=2x,我们通过交换x和y的位置,可以求得反函数f^(-1)(x)=x/26.曲线拟合法:曲线拟合法是通过已知函数的一些点来找到一个与这些点最接近的函数的解析式。

它可以应用于实验数据分析和模型建立等领域。

函数解析式的定义

函数解析式的定义

函数解析式的定义函数解析式的定义函数是数学中一个非常重要的概念,它可以将一个或多个输入值映射到一个输出值。

在数学中,我们通常用函数解析式来表示一个函数。

本文将详细介绍函数解析式的定义及其相关概念。

一、什么是函数解析式?函数解析式是指用符号表示法来描述一个函数的公式或表达式。

它由自变量、因变量以及运算符和常数构成。

例如,y = f(x) 就是一个典型的函数解析式,其中 y 表示因变量,x 表示自变量,f(x) 表示对自变量x 进行一系列运算后得到的结果。

二、如何表示函数解析式?在数学中,我们通常使用字母和符号来表示一个函数。

例如,y = f(x) 中的 y 和 x 分别代表因变量和自变量。

而 f(x) 则表示对自变量 x 进行一系列运算后得到的结果。

在定义一个函数时,我们需要明确该函数所接受的输入(即自变量)和输出(即因变量)以及它们之间的关系。

这些信息可以通过符号来表示,例如:- 定义一个简单线性方程:y = ax + b- 定义一个三次多项式:y = ax^3 + bx^2 + cx + d- 定义一个正弦函数:y = sin(x)三、函数解析式的基本要素在理解函数解析式时,有一些基本概念和要素需要掌握。

1. 自变量自变量是指作为输入的变量,通常用 x 表示。

在函数解析式中,自变量是可以取任意值的,但也可能受到某些限制。

2. 因变量因变量是指作为输出的变量,通常用 y 表示。

在函数解析式中,因变量的值由自变量和一系列运算决定。

3. 运算符和常数在函数解析式中,我们可以使用各种运算符和常数来对自变量进行运算。

例如,加减乘除、幂运算、三角函数等等。

而常数则表示一个固定的值,不会随着自变量的改变而改变。

四、如何确定一个函数的定义域和值域?在定义一个函数时,我们需要明确该函数所接受的输入(即自变量)和输出(即因变量)以及它们之间的关系。

这些信息可以通过符号来表示,并且可以根据这些信息来确定该函数的定义域和值域。

1.2.2(2)函数的解析式的5种解法

1.2.2(2)函数的解析式的5种解法
令x y,代入①得: f (0) f ( x ) x(2 x x 1) 1
f ( x) x x 1
2
1 1 , 求f ( x ). 练习1 4. 已知f ( x 1 ) x 2
2
x
x
x
练习2 设f(2x–3)=4x+5, 求f(x).
练习3 已知f ( x)是一次函数,且满足 3f(x 1) - 2f(x-1) 2x 17,求 f(x).
2
三、【待定系数法】
若已知 f ( x) 的结构时,可设出含参数的表达式,再根据已知条件, f ( x) 列方程或方程组,从而求出待定的参数,求得 的表达式。
k y kx(k 0) y x (k 0) 正比列函数 反比列函数
y kx b(k 0)
一次函数
y ax2 bx c(a 0)
2
x (t 1) 2
②等式变形(用 t 表示 x ) ④把 t 换成 x
解题步骤
① 令g( x ) t ③求出f(t)
二、【换元法】 已知 f ( g ( x)) 的表达式,欲求 f ( x) ,我们常设 t g ( x)
解题步骤: ① 令g( x ) t ③求出f(t)
2
②等式变形(用 t 表示 x ) ④把 t 换成 x
练习、已知 2 f ( x) f ( x) x, 求f ( x).
解: 2 f ( x) f ( x) x, 令x取 x,
得2 f ( x) f ( x) x
于是得到关于 f ( x)与f ( x)方程组如下:
2 f ( x) f ( x) x
练1.已知f(x)是一次函数,且f[f(x)]=4x-1, 求f(x)的解析式

求函数解析式的几种方法及题型

求函数解析式的几种方法及题型

求函数解析式的几种方法及题型【最新版3篇】篇1 目录一、引言二、求函数解析式的常用方法1.待定系数法2.交点式3.顶点式4.换元法5.归纳法三、求函数解析式的题型及应用1.已知三个点求解析式2.已知顶点求解析式3.已知交点求解析式4.抽象复杂函数问题四、结论篇1正文一、引言求函数解析式是高中数学中的常见问题,也是高考的常规题型之一。

解决这类问题需要掌握一定的方法和技巧。

本文将介绍几种常用的求函数解析式的方法及题型,帮助同学们更好地理解和应用这些方法。

二、求函数解析式的常用方法1.待定系数法待定系数法是一种求未知数的方法。

将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。

然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。

2.交点式交点式适用于已知抛物线与 x 轴的两个交点的情况。

通过已知的交点,我们可以得到两个方程,解这两个方程可以求得抛物线的解析式。

3.顶点式顶点式适用于已知抛物线的顶点的情况。

通过已知的顶点,我们可以得到一个方程,这个方程包含了抛物线的顶点坐标和抛物线的解析式中的待定系数。

解这个方程可以求得抛物线的解析式。

4.换元法换元法是一种通用的求函数解析式的方法,适用于各种复杂的函数问题。

通过换元,我们可以将复杂的函数问题转化为简单的函数问题,从而求得函数的解析式。

5.归纳法归纳法适用于具有一定规律的函数问题。

通过观察函数的规律,我们可以猜测函数的解析式,然后通过数学归纳法证明我们的猜测是正确的。

三、求函数解析式的题型及应用1.已知三个点求解析式已知函数上的三个点,我们可以通过待定系数法求解函数的解析式。

设定函数的形式为 y=ax^2+bx+c,然后将三个点的坐标代入方程,得到三个方程组成的线性方程组,解这个方程组可以求得函数的解析式。

2.已知顶点求解析式已知抛物线的顶点,我们可以通过顶点式求解抛物线的解析式。

(完整版)求函数解析式常用的方法

(完整版)求函数解析式常用的方法

求函数解析式常用的方法求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。

以下主要从这几个方面来分析。

(一)待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。

解析:设2()f x ax bx c =++ (a ≠0)由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++整理得22(2)()1ax a b x a b c ax b c x c +++++=++++得 212211120011()22a ab b a bc c b c c f x x x ⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。

类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x(k≠0);f(x)为二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0)(二)换元法换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例2:已知1)1,f x =+求()f x 的解析式。

求函数解析式的6种方法

求函数解析式的6种方法

求函数解析式的6种方法函数解析式是描述函数行为的一种数学表示方法,可以通过不同的方法得到。

以下是六种常见的方法:1.点斜式:如果已知函数通过一点(x1,y1)且斜率为m,则可以使用点斜式来表示函数解析式。

点斜式的一般形式为y-y1=m(x-x1)。

例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=4(x-2)。

2.两点式:如果已知函数通过两个点(x1,y1)和(x2,y2),则可以使用两点式来表示函数解析式。

两点式的一般形式为(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

例如,如果已知函数通过点(1,2)和(3,4),则函数解析式可以表示为(y-2)/(4-2)=(x-1)/(3-1)。

3. 斜截式:如果已知函数通过y轴截距b且斜率为m,则可以使用斜截式来表示函数解析式。

斜截式的一般形式为y = mx + b。

例如,如果已知函数通过y轴截距为2且斜率为3,则函数解析式可以表示为y =3x + 24.一般式:一般式是一种通用的函数解析式表示方法,用Ax+By+C=0的形式表示。

其中A、B、C为常数。

一般式的选择通常取决于特定问题或需要。

例如,已知函数为3x+2y-6=0,则可以将其表示为一般式。

5.法线式:如果已知函数通过一点(x1,y1),则可以使用法线式来表示函数解析式。

法线式与点斜式类似,但斜率的倒数与点斜式斜率相反。

法线式的一般形式为y-y1=(-1/m)(x-x1),其中m为函数的斜率。

例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=(-1/4)(x-2)。

6.函数图形:通过观察函数的图形,可以得到函数的一些特征和规律,从而推断出函数解析式。

例如,通过观察函数图形的对称性、零点、极值点等,可以得到函数解析式的一些重要信息。

这种方法通常适用于简单的函数图形,对于复杂的函数图形可能需要借助计算机软件进行分析。

这些方法不是互斥的,可以根据具体问题和已知条件选择合适的方法来得到函数解析式。

五种类型一次函数解析式的确定

五种类型一次函数解析式的确定

五种类型一次函数解析式的确定一次函数,也叫线性函数,是指形如y = kx + b的函数,其中k和b是常数,且k ≠ 0。

一次函数的图像是一条直线。

下面将详细解析五种类型一次函数的确定。

1.斜率为正的一次函数:斜率为正表示直线向上倾斜。

形如y = kx + b,其中k > 0。

当x增大时,y也增大,表示函数具有正相关的关系。

斜率k表示每单位x变化时y的变化量,也就是直线的斜率。

2.斜率为负的一次函数:斜率为负表示直线向下倾斜。

形如y = kx + b,其中k < 0。

当x增大时,y减小,表示函数具有负相关的关系。

斜率k的绝对值表示每单位x变化时y的变化量,斜率的负号表示函数的方向。

3.斜率为零的一次函数:斜率为零表示直线平行于x轴,与y值无关。

形如y=b,其中b为常数。

无论x取何值,y始终为常数b。

该类型的一次函数表示两个变量之间没有线性关系。

4.斜率不存在的一次函数:斜率不存在表示直线垂直于x轴。

由于垂直线没有斜率,所以没有斜率的一次函数只有形如x=k的形式,其中k为常数。

这样的函数表示x取k时,y的取值可以是任意实数。

5.斜率为1的一次函数:斜率为1表示直线与x轴夹角为45度,即倾斜程度适中。

形如y=x+b,其中b为常数。

该类型的一次函数表示x的增加和y的增加的变化率相同,图像上的点都在45度直线上。

以上是五种类型一次函数的解析式的确定。

利用这些解析式,我们可以进一步进行函数的分析和计算,例如求解其零点、斜率、截距等。

一次函数是数学中非常基础和重要的概念,通过研究一次函数,我们可以更好地理解线性关系和直线的性质。

函 数 解 析 式 的 五 种 求 法

函 数 解 析 式 的 五 种 求 法

函 数 解 析 式 的 五 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f 解 x xf x f =-)1(2)( ① 显然,0≠x 将x 换成x1,得: xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:xx x f 323)(--= 例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 解 )(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴又11)()(-=+x x g x f ① , 用x -替换x 得:11)()(+-=-+-x x g x f 即11)()(+-=-x x g x f ② 解① ②联立的方程组,得11)(2-=x x f , xx x g -=21)( 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数解析式的表示形式及五种确定方式
函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。

一、解析式的表达形式
解析式的表达形式有一般式、分段式、复合式等。

1、一般式是大部分函数的表达形式,例
一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x
k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式
若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数
叫做分段函数。

例1、设函数(]()⎩⎨⎧+∞
∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。

解:当(]1,∞-∈x 时,由4
12=
-x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由41log 81=x 得,3=x 。

∴ 3=x 3、复合式
若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。

例2、已知3)(,12)(2
+=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。

解:[]721)3(21)(2)(2
2+=++=+=x x x g x g f [][]4443)12(3)()(222
++=++=+=x x x x f x f g 二、解析式的求法
根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方
程法等。

1待定系数法
若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求
出系数。

例3、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。

分析:二次函数的解析式有三种形式:
① 一般式:)0()(2≠++=a c
bx ax x f ② 顶点式:()为函数的顶点点其中k h a k h x a x f ,,0)()(2≠++=
③ 双根式:的两根是方程与其中0)(,0)
)(()(2121=≠--=x f x x a x x x x a x f 解法1:设)0()(2≠++=a c bx ax x f ,则
由y 轴上的截距为1知:1)0(=f ,即c=1 ① ∴ 1)(2++=bx ax x f
由)2()2(--=-x f x f 知:1)2()2(1)2()2(22+--+--=+-+-x b x a x b x a
整理得:0)4(=-x b a , 即: 04=-b a ②
由被x 轴截得的线段长为22知,22||21=-x x ,
即84)()(21221221=-+=-x x x x x x . 得:814
)(2=--a a b . 整理得: 2284a a b =- ③
由②③得: 2,21==b a , ∴ 122
1)(2++=x x x f . 解法2:由)2()2(--=-x f x f 知:二次函数对称轴为2-=x ,所以设)0()2()(2≠++=a k x a x f ;以下从略。

解法3:由)2()2(--=-x f x f 知:二次函数对称轴为2-=x ;由被x 轴截得的线段长为22知,22||21=-x x ;
易知函数与x 轴的两交点为()()0,22,0,22+---,所以设)0()
22)(22()(≠-+++=a x x a x f ,以下从略。

2、换元法
例4、已知:11)11(2-=+
x x f ,求)(x f 。

解:设x t 11+=,则1≠t ,11-=t x 代入已知得 t t t t t f 21)1(1111)(222-=--=-⎪⎭
⎫ ⎝⎛-= ∴ )
1(2)(2≠-=x x x x f
注意:使用换元法要注意t 的范围限制,这是一个极易忽略的地方。

3、配凑法
例5、已知:221)1(x
x x x f +=+,求)(x f 。

解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或
注意:1、使用配凑法也要注意自变量的范围限制; 2、换元法和配凑法在解题时可以通用,若一题能用换元法求解析式,则也能用配凑法求解析式。

4、赋值(式)法
例6、已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求)0(f 的值;(2)求)(x f 的解析式。

解:(1) 取0,1==y x ,则1)101()0()01(++=--f f ⇒2202)1()0(-=-=-=f f
(2)取0=y ,则有x x f x f )10()0()0(++=--.整理得:2)(2++=x x x f
5、方程法
例7、已知:)0(,31)(2≠=⎪⎭⎫
⎝⎛+x x x f x f ,求)(x f 。

解:已知:,31)(2x x f x f =⎪⎭⎫
⎝⎛+① 用
x 1去代换①中的x 得 :x
x f x f 3)()1(2=+ ② 由①×2-②得:)0(12)(≠-=x x x x f . 跟踪练习
1、设函数⎪⎩⎪⎨⎧>≤-=-0
,0,12
)(21x x x x f x ,若1)(0>x f ,则0x 的取值范围是( )
A .()1,1-
B .()+∞-,1
C .()()+∞⋃-∞-,02,
D .()()∞+⋃-∞-,1
1, 2、(1998上海)函数⎪⎩
⎪⎨⎧>+-≤<+≤+=1,510,30,32x x x x x x y 的最大值是 。

3、已知:x x x f 2)1(2
+=+,求)(x f 。

4、已知:)(x f 为二次函数,且x x x f x f 42)1()1(2-=-++,求)(x f 。

参考答案:1、D 2、4 3、12
-x 4、122--x x . .。

相关文档
最新文档