棱柱棱锥棱台PPT优秀课件
合集下载
棱柱棱锥棱台的表面积和体积完整版课件
北京奥运会场馆图
北京奥运会结束后,国家对体育场馆都进行了改造,从专业比赛场馆逐 步成为公众观光、健身的综合性体育场馆,国家游泳中心也完成了上述 变身,新增了内部开放面积,并建成了大型的水上乐园.经营方出于多 种考虑,近几年内“水立方”外墙暂不承接商业化广告,但出于长远考 虑,决定为水立方外墙订制特殊显示屏,届时“水立方”将重新焕发活 力,大放异彩.能否计算出“水立方”外墙所用显示屏的面积?
高
例2.如图,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥, 两部分的高都是0.5cm,公共面ABCD是边长为1cm的正方形,那么这个漏斗 的容积是多少立方米(精准到0.01m3)?
解:由题意知
V长方体ABCDABCD 11 0.5 0.5(m3 )
V棱锥P ABCD
1 11 0.5 3
柱
一般棱柱的体积公式也是V = Sh,其中S为底面面积,h为
体
高(即两底面之间的距离,即从一底面上任意一点向另一
个底面作垂线,这点与垂足(垂线与底面的交点)之间的
距离。
h
s
锥
正棱椎的体积公式是 V 1 Sh
3
体
(其中S为底面面积,h为高)
它是同底同高的棱柱的体积的 1 3
棱锥的体积公式也是 V 1 Sh 3
1 B.2
3 D. 4
4.把一个棱长为a的正方体,切成27个全等的小正方体,则所 有小正方体的表面积为 18a2 . 【解析】原正方体的棱长为 a,切成的 27 个小正方体的棱长为13a, 每个小正方体的表面积 S1=19a2×6=23a2,所以 27 个小正方体的表面 积是23a2×27=18a2.
垂线,这点与垂足之间的距离。
思考:柱体、锥体、台体的体积公式之间有什么关系?你能用棱 柱、棱锥、棱台的结构特征来解释这种关系吗?
北京奥运会结束后,国家对体育场馆都进行了改造,从专业比赛场馆逐 步成为公众观光、健身的综合性体育场馆,国家游泳中心也完成了上述 变身,新增了内部开放面积,并建成了大型的水上乐园.经营方出于多 种考虑,近几年内“水立方”外墙暂不承接商业化广告,但出于长远考 虑,决定为水立方外墙订制特殊显示屏,届时“水立方”将重新焕发活 力,大放异彩.能否计算出“水立方”外墙所用显示屏的面积?
高
例2.如图,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥, 两部分的高都是0.5cm,公共面ABCD是边长为1cm的正方形,那么这个漏斗 的容积是多少立方米(精准到0.01m3)?
解:由题意知
V长方体ABCDABCD 11 0.5 0.5(m3 )
V棱锥P ABCD
1 11 0.5 3
柱
一般棱柱的体积公式也是V = Sh,其中S为底面面积,h为
体
高(即两底面之间的距离,即从一底面上任意一点向另一
个底面作垂线,这点与垂足(垂线与底面的交点)之间的
距离。
h
s
锥
正棱椎的体积公式是 V 1 Sh
3
体
(其中S为底面面积,h为高)
它是同底同高的棱柱的体积的 1 3
棱锥的体积公式也是 V 1 Sh 3
1 B.2
3 D. 4
4.把一个棱长为a的正方体,切成27个全等的小正方体,则所 有小正方体的表面积为 18a2 . 【解析】原正方体的棱长为 a,切成的 27 个小正方体的棱长为13a, 每个小正方体的表面积 S1=19a2×6=23a2,所以 27 个小正方体的表面 积是23a2×27=18a2.
垂线,这点与垂足之间的距离。
思考:柱体、锥体、台体的体积公式之间有什么关系?你能用棱 柱、棱锥、棱台的结构特征来解释这种关系吗?
高中数学第1章1.1.2棱柱棱锥和棱台的结构特征课件新人教B必修2.ppt
跟踪训练 3 正四棱锥 S-ABCD 的高为 3, 侧棱长为 7. (1)求侧面上的斜高; (2)求一个侧面的面积; (3)求底面的面积.
解:(1)如图所示,在正四棱锥 S-ABCD 中, 高 SO= 3,侧棱 SA=SB=SC=SD= 7, 解 Rt△SOA,得 OA=2,则 AC=4, ∴AB=BC=CD=DA=2 2. 作 OE⊥AB 于 E,则 E 为 AB 的中点, ∴OE=12BC= 2. 连接 SE,则 SE 为斜高.
5 10)·2(
3
3-
63x),
解得 x=2 15.
∴上底面的边长为 2 15.
【点评】 在正棱台的有关计算中, 要注意寻 找直角梯形,一般有:正棱台两底面中心连线, 相应的边心距和斜高组成一个直角梯形;两底面 中心连线,侧棱和两底面相应的外接圆半径组成 一个直角梯形. 跟踪训练4 已知正四棱台的上、下底面面积分 别为4、16,一侧面面积为12,分别求该棱台的 斜高、高、侧棱长.
如果棱锥的底面水平放置,则顶点与过顶点的铅 垂线和底面的交点之间的线段或距离,叫做棱锥 的高. 棱锥中过不相邻的两条侧棱的截面叫做对角面. 思考感悟
1.有一个面是多边形,其余各面都是三角形的 几何体是棱锥吗? 提示:不一定.如图:
(2)棱锥的分类 ①按底面边数分类 底面为三角形、四边形、五边形……的棱锥分别 叫做三棱锥、四棱锥、五棱锥……其中三棱锥又 叫__四_面__体______. ②正棱锥 如果棱锥的底面是正多边形,并且水平放置,它 的顶点又在过正多边形中心的铅垂线上,则这个 棱锥叫做正棱锥. 正 棱 锥 侧 面 等 腰 三 角 形 底 边 上 的 高 ,正叫棱做 __锥_的__斜__高 ________________.
1.多面体 (1)多面体是由若干个平面多边形所围成的几何体. (2)多面体的元素 ①围成多面体的各个_多__边__形____叫做多面体的面. ②相邻的两个面的__公__共__边_____叫做多面体的棱. ③棱和棱的_公__共__点____叫做多面体的顶点. ④连接不在同一面上的两个顶点的线段叫做多面体 的__对__角__线_____.
【课件】棱柱、棱锥、棱台的结构特征
棱柱的表示:
用表示底面各顶点的字母表示 棱柱ABC- A'B'C'
C'
A'
B'
D' A'
C' B'
D'
E'
C'
A' B'
A
C
D
BA
C B
三棱柱
四棱柱
E DC
A五棱柱B
棱柱的结构特征
思考:对于棱柱,
1.侧棱长相等吗? 相等
侧面是什么四边形?
平行四边形
E' F'
A'
D' C'
B'
2.两个底面多边形是什么关系? E D
C’ B’
有两个面互相平行,
其余各面都是四边形,
底
并且每相邻两个四边形
面
的公共边都互相平行。
ED
侧棱 F
C
A
B
侧面
顶点
棱柱的结构特征
1.棱柱的概念:
棱柱的底面:两个互相平行的面. 底面
简称底.
E' D'
F'
C'
棱柱的侧面:其余各面.
A'
B' 侧
棱柱的侧棱:
侧
面
棱 ED
相邻侧面的公共边. F
棱柱的顶点:
【解析】面最少的棱柱是三棱柱,它有 5 个面;顶点最少的一个棱台 是三棱台,它有 3 条侧棱.
5.画一个三棱台,再把它分成: (1)一个三棱柱和另一个多面体; (2)三个三棱锥,并用字母表示.
【解析】画三棱台一定要利用三棱锥. (1)如图①所示,三棱柱是棱柱 A′B′C′-AB″C″,另一个多
棱柱、棱锥、棱台的结构特征 课件
答案 (2)(3)(4)
规律方法 判断棱锥、棱台形状的两个方法 (1)举反例法: 结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构 特征的某些说法不正确. (2)直接法:
棱锥
棱台
定底 只有一个面是多边形,此 两个互 相 平行的 面 ,
面 面即为底面
看侧 棱
相交于一点
即为底面 延长后相交于一点
类型三 多面体的表面展开图(互动探究) 【例3】 画出如图所示的几何体的表面展开图.
[课堂小结] 1.棱柱、棱锥、棱台的关系 在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用 下图表示出来(以三棱柱、三棱锥、三棱台为例).
2.(1)各种棱柱之间的关系 ①棱柱的分类
棱柱直棱柱正 一棱 般柱 的直棱柱 斜棱柱
②常见的几种四棱柱之间的转化关系
(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
规律方法 棱柱的结构特征: (1)两个面互相平行; (2)其余各面是四边形; (3)相邻两个四边形的公共边互相平行.求解时,首先看是否有 两个平行的面作为底面,再看是否满足其他特征.
类型二 棱锥、棱台的结构特征 【例2】 下列关于棱锥、棱台的说法:
(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何 体叫棱台; (2)棱台的侧面一定不会是平行四边形; (3)棱锥的侧面只能是三角形; (4)由四个面围成的封闭图形只能是三棱锥; (5)棱锥被平面截成的两部分不可能都是棱锥. 其中正确说法的序号是________.
解析 (1)错误,若平面不与棱锥底面平行,用这个平面去截 棱锥,棱锥底面和截面之间的部分不是棱台; (2)正确,棱台的侧面一定是梯形,而不是平行四边形; (3)正确,由棱锥的定义知棱锥的侧面只能是三角形; (4)正确,由四个面围成的封闭图形只能是三棱锥; (5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.
规律方法 判断棱锥、棱台形状的两个方法 (1)举反例法: 结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构 特征的某些说法不正确. (2)直接法:
棱锥
棱台
定底 只有一个面是多边形,此 两个互 相 平行的 面 ,
面 面即为底面
看侧 棱
相交于一点
即为底面 延长后相交于一点
类型三 多面体的表面展开图(互动探究) 【例3】 画出如图所示的几何体的表面展开图.
[课堂小结] 1.棱柱、棱锥、棱台的关系 在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用 下图表示出来(以三棱柱、三棱锥、三棱台为例).
2.(1)各种棱柱之间的关系 ①棱柱的分类
棱柱直棱柱正 一棱 般柱 的直棱柱 斜棱柱
②常见的几种四棱柱之间的转化关系
(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
规律方法 棱柱的结构特征: (1)两个面互相平行; (2)其余各面是四边形; (3)相邻两个四边形的公共边互相平行.求解时,首先看是否有 两个平行的面作为底面,再看是否满足其他特征.
类型二 棱锥、棱台的结构特征 【例2】 下列关于棱锥、棱台的说法:
(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何 体叫棱台; (2)棱台的侧面一定不会是平行四边形; (3)棱锥的侧面只能是三角形; (4)由四个面围成的封闭图形只能是三棱锥; (5)棱锥被平面截成的两部分不可能都是棱锥. 其中正确说法的序号是________.
解析 (1)错误,若平面不与棱锥底面平行,用这个平面去截 棱锥,棱锥底面和截面之间的部分不是棱台; (2)正确,棱台的侧面一定是梯形,而不是平行四边形; (3)正确,由棱锥的定义知棱锥的侧面只能是三角形; (4)正确,由四个面围成的封闭图形只能是三棱锥; (5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.
11.1.4棱锥与棱台-人教B版(2019)高中数学必修(第四册)课件(共22张PPT)
第十一章 立体几何初步
11.1.4 棱锥与棱台
知识回顾
棱柱:有两个面互相平行,且多面体的顶点都在这
两个面上,其余各面都是平行四边形,这样
棱柱顶点
的多面体称为棱柱. 棱柱的分类:
按侧棱与底面是否垂直分类: 棱柱底面
棱柱侧面
按底面多边形的边数分类: 分为三棱柱、四棱柱、五棱柱、……
棱柱侧棱
一.1.棱锥的有关概念
有一个面是多边形,其余各面 都是有一个公共顶点的三角形
如果一个多面体有 一个面是多边形 ,且其余各面都是 有一个 公共顶点的三角形 ,则称这个多面体为棱锥.
顶点
D A
底面
P 侧面 (1)棱锥中, 是多边形的那个面称为棱锥的 底面 ,
侧棱 有公共顶点的各三角形称为棱锥的 侧面 ,
各侧面的公共顶点称为棱锥的 顶点 ,
v
解: 因为底面正方形ABCD的面积是16,
所以BC=4,MB=OM=2,
O B B M 2 O M 2 22
D
又因为VB=2 11 ,在Rt∆VOB中,
C
o
M 由勾股定理得
A
B
VO VB2 OB2
(2 11)2 (2 2)2 6
在Rt△VOM中,由勾股定理得 V M 6 2 2 2 21 0
即正四棱锥的高为6,斜高为 2 1 0
(7)棱台所有侧面的面积之和称为棱台的侧面积. (8)棱台可以按底面的形状分类,分为三棱台、四棱台等. (9)由 正棱锥 截得的棱台称为正棱台.
D1
A1
A
D
E
(10)正棱台上、下底面都是 正多边形 ,
C1
两者中心的连线是棱台的高.
B 1 M (11)正棱台的侧面都 全等 ,且都
11.1.4 棱锥与棱台
知识回顾
棱柱:有两个面互相平行,且多面体的顶点都在这
两个面上,其余各面都是平行四边形,这样
棱柱顶点
的多面体称为棱柱. 棱柱的分类:
按侧棱与底面是否垂直分类: 棱柱底面
棱柱侧面
按底面多边形的边数分类: 分为三棱柱、四棱柱、五棱柱、……
棱柱侧棱
一.1.棱锥的有关概念
有一个面是多边形,其余各面 都是有一个公共顶点的三角形
如果一个多面体有 一个面是多边形 ,且其余各面都是 有一个 公共顶点的三角形 ,则称这个多面体为棱锥.
顶点
D A
底面
P 侧面 (1)棱锥中, 是多边形的那个面称为棱锥的 底面 ,
侧棱 有公共顶点的各三角形称为棱锥的 侧面 ,
各侧面的公共顶点称为棱锥的 顶点 ,
v
解: 因为底面正方形ABCD的面积是16,
所以BC=4,MB=OM=2,
O B B M 2 O M 2 22
D
又因为VB=2 11 ,在Rt∆VOB中,
C
o
M 由勾股定理得
A
B
VO VB2 OB2
(2 11)2 (2 2)2 6
在Rt△VOM中,由勾股定理得 V M 6 2 2 2 21 0
即正四棱锥的高为6,斜高为 2 1 0
(7)棱台所有侧面的面积之和称为棱台的侧面积. (8)棱台可以按底面的形状分类,分为三棱台、四棱台等. (9)由 正棱锥 截得的棱台称为正棱台.
D1
A1
A
D
E
(10)正棱台上、下底面都是 正多边形 ,
C1
两者中心的连线是棱台的高.
B 1 M (11)正棱台的侧面都 全等 ,且都
《棱柱棱锥棱台》课件
棱柱的分类
总结词
根据底面的形状,棱柱可以分为直棱 柱和斜棱柱。
详细描述
直棱柱的底面是矩形或正六边形等, 侧面是垂直于底面的平行线段。斜棱 柱的底面是梯形或平行四边形等,侧 面则是与底面形成一定角度的线段。
棱柱的性质
总结词
棱柱的性质包括底面平行、侧棱平行且相等、侧棱与底面垂 直等。
详细描述
棱柱的底面平行意味着两个底面始终保持平行关系。侧棱平 行且相等指的是棱柱的所有侧棱都是平行的,并且长度相等 。侧棱与底面垂直则说明侧棱始终与底面垂直。这些性质是 判断一个几何体是否为棱柱的重要依据。
总结词
棱台是由平行于棱锥底面的截面截取 棱锥部分而形成的几何体。
详细描述
棱台的定义基于棱锥,通过截取棱锥 的一部分,得到一个多面体,这个多 面体就是棱台。棱台的两个平行的多 边形面称为底面,而其他各面都是有 一个公共顶点的三角形。
棱台的分类
总结词
根据底面的形状,棱台可以分为正棱台和斜棱台。
详细描述
02
棱锥的定义与性质
棱锥的基本定义
总结词
棱锥是由一个多边形和其内部一 点连接而成的几何体。
详细描述
棱锥是一个多面体,由一个多边 形底面和一个顶点组成。顶点与 底面各顶点连接,形成棱锥的侧 棱。
棱锥的分类
总结词
根据底面的形状,棱锥可以分为三棱锥、四棱锥、五棱锥等。
详细描述
根据底面的边数,棱锥可以分为三棱锥、四棱锥、五棱锥等,边数越多,则称为 多边棱锥。
正棱台的底面是正多边形,而斜棱台的底面是等腰或不等腰的梯形。此外,根据顶面的形状,棱台还可以进一步 细分为齐棱台和曲棱台。
棱台的性质
总结词
棱台具有一些独特的性质,如侧面积等 于原棱锥的侧面积减去下底面的面积。
《基本立体图形》立体几何初步 PPT教学课件(第1课时棱柱、棱锥、棱台的结构特征)
③棱台的侧棱所在直线均相交于同一点. 解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因
而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台
是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而
其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶
点),故②错,③对.因而正确的有①③. 答案:①③
栏目 导引
第八章 立体几何初步
4.一个棱柱有 10 个顶点,所有的侧棱长的和为 60 cm,则每 条侧棱长为__________cm. 解析:因为棱柱有 10 个顶点,所以棱柱为五棱柱,共有五条侧 棱,所以侧棱长为650=12(cm). 答案:12
栏目 导引
第八章 立体几何初步
空间几何体的平面展开图
(1)水平放置的正方体的六个面分别用
“前面、后面、上面、下面、左面、右面”表示,
如图是一个正方体的平面展开图(图中数字写在
正方体的外表面上),若图中的“2”在正方体的
上面,则这个正方体的下面是( )
A.1
B.9
C.快
D.乐
栏目 导引
第八章 立体几何初步
(2)如图是三个几何体的侧面展开图,请问各是什么几何体?
【解】 (1)选 B.由题意,将正方体的展开图还原成 正方体,“1”与“乐”相对,“2”与“9”相对,“0” 与“快”相对,所以下面是“9”.
栏目 导引
第八章 立体几何初步
(2)题图①中,有 5 个平行四边形,而且还有两个全等的五边形, 符合棱柱的特点;题图②中,有 5 个三角形,且具有共同的顶 点,还有一个五边形,符合棱锥的特点;题图③中,有 3 个梯 形,且其腰的延长线交于一点,还有两个相似的三角形,符合 棱台的特点,把侧面展开图还原为原几何体,如图所示:
8.3.1棱柱、棱锥、棱台的表面积和体积课件
在直角梯形EOO1E1中,
O1E1=12A1B1=3
cm,OE=1AB=5 2
cm,
∴O1O= 142 -5-32 =8 3 (cm).
故该正四棱台的体积为 V=1×8 3
1568
3 ×(62+102+6×10)= 3
3
(cm3).
例题讲解 LOGO
1.等积变换法
如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1-D1EF的体积.
故侧棱长即为直棱柱的高.
探究新知 LOGO
问题5 取一摞书放在桌面上,并改变它们的位置,高度、书中每页纸面积和 顺序不变,观察改变前后的体积是否发生变化?
探究新知 LOGO
课本P 121-122
祖暅[gèng]原理 “幂势既同,则积不容异”
夹在两个平行平面之间的两个几何体,被平行于这 两个平面的任何平面所截,如果截得的两个截面的 面积总相等,那么这两个几何体的体积相等.
我国古代著名数学家祖冲之在计算圆周率等问题方面有光辉的 成就.祖冲之的儿子祖暅也在数学上有突出贡献.祖暅在实践的基础 上,于5世纪末提出了这个体积计算原理.
祖暅提出这个原理,要比其他国家的数学家早一千多年.在欧 洲只到17世纪,才有意大利数学家卡瓦列里(Cavalieri .B,1598 年--1647年)提出上述结论.
(Sh
(S
S'
)h1
)
S' h S S'
1 (Sh (S S' ) S' h) 1 h(S (S S ' ) S'( S S')) 1 (S
3
S S' 3
S S'
基本立体图形(1)棱柱、棱锥、棱台课件
课堂导学
1.下列叙述正确的是(
D ).
A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱
B.有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
D.棱台各侧棱的延长线交于一点
解析 A 项,没有满足棱柱各侧棱平行的条件,故 A 项错
误;B 项,一个长方体上面叠加一个各侧面与长方体各侧面都
三棱台:由三棱锥截得的棱台
四棱台:由四棱锥截得的棱台
二、特殊的棱台:
由正棱锥截得的棱台,上下底面都是正多边形,
侧面都是全等的等腰梯形的棱台叫做正棱台。
五棱台:由五棱锥截得的棱台
Part 02
典型例题分析
融会贯通
例1.将下列各类几何体之间的关系用Venn图表示出来:
多面体,长方体,棱柱棱锥,棱台,直棱柱,四面体,平行六面体
由这些面所围成的多面体叫做棱锥。
★ 这个多边形面叫棱锥的底面
★ 有公共顶点的各个三角形面叫做棱锥的侧面,
★ 相邻侧面的公共边叫做棱锥的侧棱;
★ 各侧面的公共顶点叫做棱锥的顶点。
棱锥 −
2.棱锥
有一个面是多边形,其余各面都是三角形的几何体就是棱锥吗?
注意:一定要三角形交于同一个顶点,
比如右图的两张图片就不符和要求 。
棱锥的结构特征
仅有一个底面是多边形
侧面都是三角形
各侧面有且只有一个公共顶点
2.棱锥
棱锥的分类
一、按棱锥底面边数分类: 三棱锥,四棱锥,五棱锥......;
三棱椎:底面是三角形.
三棱锥又叫四面体.
四棱锥:底面是四边形.
二、特殊的棱锥:
底面是正多边形,并且顶点与底面中心的连
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱棱锥棱台PPT优秀课件
你认识棱柱吗? 看图 他们是棱柱吗? 他们有什么共同点?
一、什么叫棱柱:由一个多边形, 沿某一方向平移,
这样形成的空间几何体叫棱柱。
D C
A
B
侧棱
D1 A1
C1 B1
侧面
底面
什么叫底面 ? 什么叫侧面? 什么叫侧棱? 棱柱表示:ABCD-A1B1C1D1 棱柱分类:三、四、五
棱柱性质:底面 ?侧面?
你认识棱锥吗? 看图 他们是怎样形成的? 他们有什么共同点?
二、什么叫棱锥: 底面 ?侧面?侧棱?
S
A
C
棱锥表示: s-ABCD 棱锥分类:三、四、五 棱锥性质:底面 ?侧面?
B D
三、什么叫棱台:底面 ? 侧面? 侧棱? 看图
表示?分类?性质:
这个叫棱台吗?
1
1
1
2
2、看图
s1 1
s1
1
s2
49
2
s2
3、画一个六面体(1)使它有两个平行平
面
(2)使它共有五个顶点
(3)使它共有六个顶点
4、把一个四棱锥的一个侧面和一个三棱锥的底面 重合恰好构成六面体。五面体呢?
你会画吗?
步骤是:
5、画一个三棱台再把它分成三个三棱锥
A A1
C B
C1
B1
好玩吗?
2
2
2
1
2
4
2
3
例1课本P7画一个四棱柱
你会画四棱柱了吗?步是: 四边形平移一定得到四棱柱吗?为什么? 以四棱柱的对棱为边至多可以构成多少个平行四边形?
例2、课本P7画一个三棱台 你会画三棱台了吗?步骤是:
四、什么叫多面体:
ห้องสมุดไป่ตู้由多边形 围成的
几何体叫 多面体
多面体最少
有
几个平面?
幸福
1、分别画一个四棱柱、五棱锥、六棱台
你认识棱柱吗? 看图 他们是棱柱吗? 他们有什么共同点?
一、什么叫棱柱:由一个多边形, 沿某一方向平移,
这样形成的空间几何体叫棱柱。
D C
A
B
侧棱
D1 A1
C1 B1
侧面
底面
什么叫底面 ? 什么叫侧面? 什么叫侧棱? 棱柱表示:ABCD-A1B1C1D1 棱柱分类:三、四、五
棱柱性质:底面 ?侧面?
你认识棱锥吗? 看图 他们是怎样形成的? 他们有什么共同点?
二、什么叫棱锥: 底面 ?侧面?侧棱?
S
A
C
棱锥表示: s-ABCD 棱锥分类:三、四、五 棱锥性质:底面 ?侧面?
B D
三、什么叫棱台:底面 ? 侧面? 侧棱? 看图
表示?分类?性质:
这个叫棱台吗?
1
1
1
2
2、看图
s1 1
s1
1
s2
49
2
s2
3、画一个六面体(1)使它有两个平行平
面
(2)使它共有五个顶点
(3)使它共有六个顶点
4、把一个四棱锥的一个侧面和一个三棱锥的底面 重合恰好构成六面体。五面体呢?
你会画吗?
步骤是:
5、画一个三棱台再把它分成三个三棱锥
A A1
C B
C1
B1
好玩吗?
2
2
2
1
2
4
2
3
例1课本P7画一个四棱柱
你会画四棱柱了吗?步是: 四边形平移一定得到四棱柱吗?为什么? 以四棱柱的对棱为边至多可以构成多少个平行四边形?
例2、课本P7画一个三棱台 你会画三棱台了吗?步骤是:
四、什么叫多面体:
ห้องสมุดไป่ตู้由多边形 围成的
几何体叫 多面体
多面体最少
有
几个平面?
幸福
1、分别画一个四棱柱、五棱锥、六棱台