宇宙

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

你一直在被哈勃定律所困扰吗?一直在为大爆炸而困惑吗?让我们重新审视一下这些问题,寻找这些宇宙学中重大问题的解答。

宇宙学的目的是了解宇宙的起源和演化,单从这一点就能看出它的雄心勃勃。近一个世纪前,天文学家发现绝大多数的星系正在远离我们,并由此揭示出了一个让人惊骇的事实——我们的宇宙正在膨胀。几十年前,天文学家意识到,天空中充满了宇宙形成之后不久光子所发出的微弱射电波。几年前,专门用来探测这一宇宙微波背景的威尔金森微波各向异性探测器(WMAP)则又发现了强有力的证据,证明我们的宇宙在极早期经历过一个超高速膨胀的“暴涨”阶段。

WMAP探测到的宇宙微波背景辐射。图中的不同颜色代表了温度在2.725开上下十万分之一的波动。版权:NASA。

有些人认为现如今的宇宙学正处于“黄金时代”。然而,相对于它不断所取得的进展,一些宇宙学中最基本的概念却让人难以把握。这里列举出五件宇宙学中最让人困扰的事情,它们或许是普通人想要理解宇宙学家们目前所做的最大障碍。

一、如果遥远的星系都在离我们而去,这是否意味着我们就处在宇宙的中心?

用一个字回答:不。

20世纪20年代,美国威尔逊天文台的埃德温·哈勃(Edwin Hubble)和米尔顿·赫马森(Milton Humason)发现,除了距离最近的星系之外,其他的星系都在远离我们而去。此外他们还发现,距离越远的星系其退行的速度越快。但是,这些星系的退行运动并不是穿行于宇宙空间之中的,而是宇宙空间自身的整体膨胀。星系只不过是搭了个便车而已。

1916年,德国理论物理学家阿尔伯特·爱因斯坦(Albert Einstein)发表了他的广义相对论。这一理论拓展了他早先的想法,囊括了引力对空间的形状以及时间流逝的影响。一年之后,荷兰天文学家威廉·德西特(Willem de Sitter)使用爱因斯坦的理论证明,一个几近真空的宇宙必定会膨胀。哈勃认为,他所看到的星系退行现象正是一个由“德西特空间”所组成的宇宙的如实表现。

在膨胀的宇宙中传播的光线会被拉伸。光子会损失能量,因此谱线的位置会向长波(红光)段移动。同时,超新星爆发的信号也会被拉伸。遥远星系中的超新星会比近距星系中的持续更长时间,而且距离越远持续的时间就越长。这就意味着宇宙空间自身也在膨胀。被镶嵌在宇宙空间中的星系在跟随空间一起远离其他的天体。

天文学家通常会使用气球来比喻膨胀的宇宙。气球表面的图案代表星系。对气球充气就相当于宇宙的膨胀,这时气球表面每个图案之间的距离就会变大。不幸的是,绝大多数人试图把这一类比推向另一个极端,询问气球的中心是什么。

[图片说明]:宇宙膨胀是宇宙空间自身的膨胀。版权:Astronomy/Roen Kelly。

必须要明白的是,这本质上是一个二维的实验。在一张白纸上画许多的点,然后在一张透明片上把刚才的画放大再画一遍。将两者重叠起来,并且任取一点作为参考点。“无论这个点在哪儿,每个点上的‘观测者’都会看到其他点在离他/她而去,”美国加州大学欧文分校的阿萨塔·库雷(Asantha Cooray)解释说,“这正是宇宙中的每个星系所正在发生的。”

另一个想象宇宙膨胀的途径是把它看成是一个葡萄干面包。当面包(宇宙空间)膨胀的时候,每颗葡萄干(星系)都会看到其他的葡萄干在远离自己而去。而这些葡萄干自身并没有改变,变化的是它们所处的空间。同时,每颗葡萄干也

都是等价的,因为所有葡萄干都在远离它。美国宇航局戈达德航天中心的宇宙学家、2006年诺贝尔奖得主约翰·马瑟(John Mather)说:“你所要做的就是想象一个空间,这个空间中的所有东西都在和它一起膨胀。”

宇宙学家假设,在足够大的距离上——远大于星系团的尺度,无论观测者身处何处,他/她所看到的宇宙都是相同的。在爱因斯坦的相对论中,它认为对于任何物理相互作用而言,不存在优越的参考系。上面的论断是对相对论的一种推广。科学家们把这一假设称为“宇宙学原理”,并且一直在检验它。到目前为止,它看起来依然是对宇宙非常好的一种近似。

二、膨胀中的宇宙在往哪里膨胀?

这是把气球类比膨胀宇宙过渡外推而导致的另一个问题。宇宙是自我独立的,它可以在不需要膨胀入其他东西的情况下自我膨胀。

爱因斯坦的相对论为审视宇宙提供了一条新的途径。它认为引力不再是一种力,而是时空的弯曲。引力场中的物质和能量会按照弯曲时空的“命令”运动。相对论预言,时空的弯曲也会使得光线的路径弯曲。

[图片说明]:大质量的天体会使得其周围的时空发生弯曲,由此导致了掠过其边缘的光线也发生偏折。

1919年的日全食给了科学家直接的证据。如果一个大质量天体(例如太阳)会使得时空发生弯曲,那么来自遥远恒星的光线在掠过这个天体的时候就会发生偏折。这一效应虽然很小,但是天文学家根据在日全食时测量到的太阳附近恒星位置的变化足以能发现它。

这只是爱因斯坦相对论众多实验验证中的一个。由此相对论也成为了现代宇宙的一大基石。正如德西特所证明的,空间是一个有机的整体,可以在不需要嵌入高维空间的情况下弯曲、收缩和膨胀。

三、“大爆炸”到底是什么样的爆炸?

“大爆炸”并不是通常意义下的任何一种爆炸。

“在物理学和科学中,‘大爆炸’和爆炸毫不相关,”WMAP的首席科学家查尔斯·贝内特(Charles Bennett)说。WMAP观测到了迄今精度最高的宇宙微波背景图。这些光子自宇宙诞生之后大约38万年电子和质子首次结合成中性原子起便穿行于宇宙之中。

天文学家已经知道,宇宙正在不断地变大、冷却,密度也在不断降低,这也正是宇宙膨胀的必然结果。如果我们把宇宙的历史向后推,那么以前的宇宙就会比现在天文学家看到的要更小,温度更高,密度更大。

[图片说明]:宇宙大爆炸之后的演化过程。

当可见的宇宙只有目前的一半的时候,物质的密度就会是现在的8倍,宇宙微波背景的温度就会是现在的2倍。当可见的宇宙只有现在的一百分之一的时候,宇宙微波背景的温度就是现在的100倍。当可见的宇宙只有现在的一亿分之一的时候,背景辐射的温度可以达到2.73亿开。此时宇宙中物质的密度将和目前地球表面空气的密度相仿。这一温度可以把宇宙中的气体完全电离成高速运动的质子和电子。

“‘大爆炸’对于这个理论而言并不是一个非常精确的名字,”贝内特解释说,“这一理论所描述的是宇宙的膨胀和冷却,而不是一次爆炸。”

但“大爆炸”不是在空间中的一次爆炸吗?它的名字会让人联想到诸如爆竹这样的化学爆炸现象,而一旦有了这些先入为主的印象,就很难把大爆炸想象成其他东西。事实上,“大爆炸”更接近物质、能量、时间以及空间自身的创生和伸展。

“更确切地讲,‘膨胀宇宙理论’是一个更贴切的名字,因为它就是一个关于宇宙如何膨胀的理论,”WMAP成员、美国普林斯顿大学的戴维·斯珀格尔(David Spergel)说。

相关文档
最新文档